
Chapter 5: Quotient topology (and groups acting 
on spaces)

Definition 5.1. Let  f : X -> Y  be a surjective 
mapping from a topological space  X  to a set  Y. 
The quotient topology on  Y  (with respect to  f ) 
is the family
       = {  U | f^{-1}(U) is open in  X }

Proposition. (a)  If  Y  has the quotient topology 
then  f  is continuous.
(b)  The quotient topology is the smallest 
topology on  Y  so that  f  is continuous.

True or false? Let  S  be a subset of a 
topological space  X.  

(i) The induced topology on  S  is the 
largest topology on  S  so that the 
inclusion map  g : S -> X  is continuous.

(ii) The induced topology on  S  is the 
smallest topology on  S  so that the 
inclusion map  g : S -> X  is continuous.
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Pre-class Warm-up!!!
Can you remember what the ingredients in the 
quotient topology are?
We have a map surjective  f : X -> Y.  Which (if 
any) is a correct description?

a. X  is a topological space  and  U  is open in  X  
<=>  f(U)  is open in  Y.

b. Y  is a topological space  and  U  is open in  X  
<=>  f(U)  is open in  Y.

c. X  is a topological space  and  f^{-1}(U)  is 
open in  X  <=>  U  is open in  Y.

d.  Y  is a topological space  and  f^{-1}(U)  is 
open in  X  <=>  U  is open in  Y.

Second question: how many ways can you 
think of to define the n-sphere  S^n ?

a. 0
b. 1
c. 2
d. ≥ 3

Sh = EveR
+ /llvll = 13
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Examples for the quotient topology
Example: projective space.

Questions:
1. Have you ever encountered a theorem in 

projective geometry before?  Yes / No
2. How many ways have you seen before of 

constructing a projective space, such as the 
real projective plane  RP^2 ?

a. 0
b. 1
c. 2
d. 3
e. >3

Pairs of antipodal points

Lines in  R^{n+1}  (not done in the book)

A quotient of a ball (a disk in 2-D)
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Quotients given by equivalence relations

Examples for the quotient topology

The Möbius strip or band again 
Ta

A quotient of a square

When n = 2
,
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Examples for the quotient topology

Consider the following spaces obtained by 
identifying points on the boundary of a square. 
How many can you give a name to?

~ projective plane
4

s - cylinder
>
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Mobius strip.nv Kleinbottle

.

3

1

>

n torus
1 a sphere &2
>

7)



Worksheet 3 8d: Worksheet 3 8e

Worksheet 3 8h

Prove Xy*=Y
FuB = Au Go to the definitions Proof. X-Y = X - Ulopenats[Y)
Look at a particular example : you mayget ideas.

= n( - u) = n(x - u)
Proof . We show LHS [RHS and LHSIRHS opensets
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Worksheet 3 8a

Worksheet 3 8b
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