Chapter 5: Quotient topology (and groups acting on spaces) Definition 5.1. Let f: X -> Y be a surjective mapping from a topological space X to a set Y. The quotient topology on Y (with respect to f) is the family $\{\chi_{\Gamma} = \{ U \mid f \land \{-1\}(U) \text{ is open in } X \}$ Geta 1000094 M& bius strip que Theends WC put a open set in X f-1/set show topology on The ME SIUS 5MS Proposition. (a) If Y has the quotient topology then f is continuous. largest (b) The quotient topology is the smallest topology on Y so that f is continuous.

15 son to verfy that f is continuous.

This holds from the definition of open sets in any topology on I for which must be spen so this topologymus? centerin the quotient bookgy be contained in True or false? Let S be a subset of a topological space X. (i) The induced topology on S is the

largest topology on S so that the inclusion map g: S -> X is continuous.

(ii) The induced topology on S is the smallest topology on S so that the inclusion map g: S -> X is continuous.

Pre-class Warm-up!!!

Can you remember what the ingredients in the quotient topology are?

We have a map surjective f : X -> Y. Which (if any) is a correct description?

a. X is a topological space and U is open in X <=> f(U) is open in Y.

b. Y is a topological space and U is open in X <=> f(U) is open in Y.

c. X is a topological space and $f^{-1}(U)$ is open in X <=> U is open in Y.

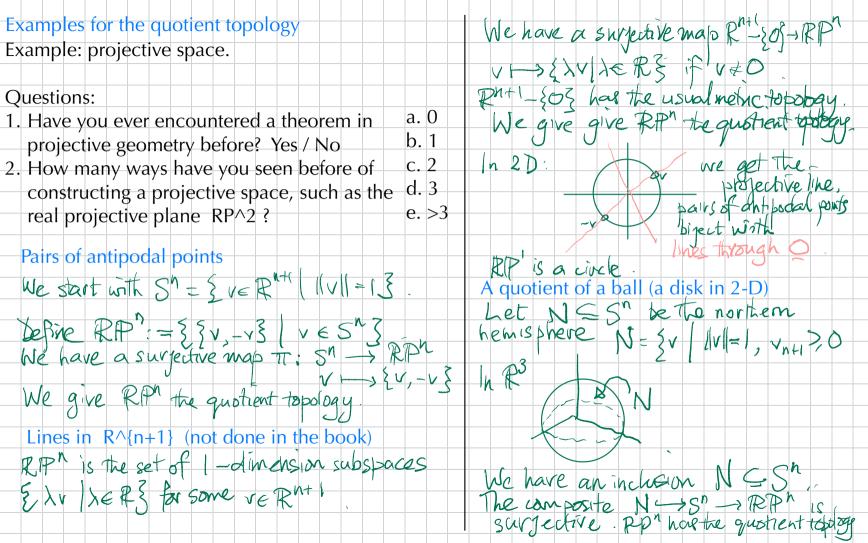
d. Y is a topological space and $f^{-1}(U)$ is open in X <=> U is open in Y.

Second question: how many ways can you think of to define the n-sphere S^n?

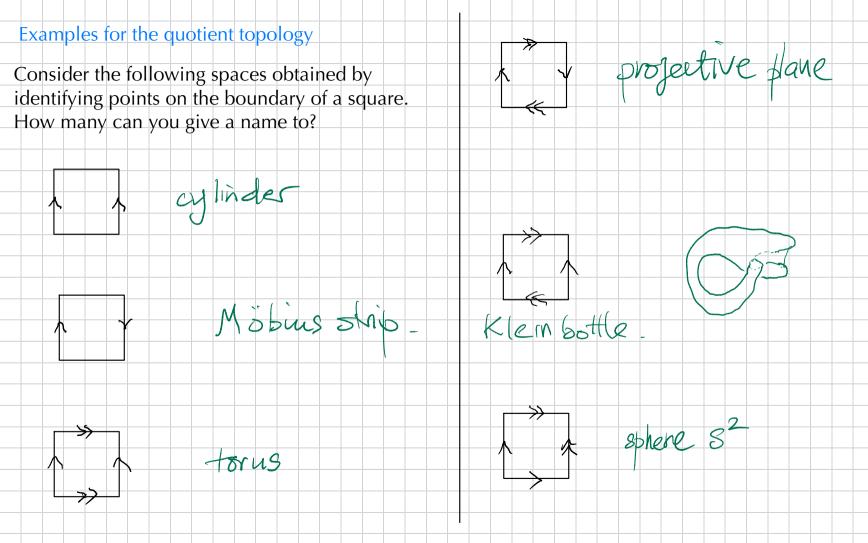
a. 0 b. 1 $S^{n} = \{ v \in \mathbb{R}^{n+1} | ||v|| = l \}$ c. 2

 $d. \geq 3$

Examon Medinesday 10/1/2025.
50 minutes. Chapters 1-4 (induced opslogy)
You can use books, notes, worksheet, quizzes



When n=2, N= disk D2/ We give Y to quotient topology Example X = D = \(\(\times \) x + y \(\) \(\) Under the map N - RIPR points on the interior of D go to distinct pairs.
Points on D go to the same pair of they are antipogal, Put v~v always, of |v| = 1 put v~ v, This defines an equiplence reatur RP2 = 5 /~ A quotient of a square A square is homeomorphic to D-We get PIP2 by glueing disquare) to the scheme shown. Examples for the quotient topology The Möbius strip or band again Take x = {(x,4) (0 = x,4 = 1 } This is a manageable picture of RP Define Var always and (0,4) ~ (6,45) Quotients given by equivalence relations we have an equivalence relation ~ on we can let Y'se the set of eguvalence Then X/N is the classes, and we get a subjective map __ Mobius strib. X > Class of x



Worksheet 3 8e $\chi - \chi^0 = \chi - \chi$ Worksheet 3 8d: Have AUB = AUB Go to the definitions Proof X-Y° = X + U(open sets = Y) Look at a particular example: you may get deal Proof. We show LHS & RHS and LHSZRHS LHBSRHS: A and B are closed cete containing A and B, so A v B is a closed set containing AUB. Therefore AUBEAUB = X-Y (2X-Y because AuB is the such closed set C 15 Losed LHS=RHS: AUB is a closed set containing A, so ADB > A Similarly AB 2BY herefore AUB 2 AUB (=) (is both open and closed

