Pre-clags Warm-up!!!

We can construct the circle SA1 as [0,1]/~

where ~ is the equivalence relation on the unit
interval [0,1] given by x ~y <=>x-y is an
integer.

Is the quotient map [0,1] -> [0,1]/~

A a. open

/b. closed
c. neither
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How to prove that different descriptions by
quotient topologies give homeomorphic spaces
Theorem 5.2 Suppose we have topological
spaces and mappings of sets

£
X -> Y\j> /

where f is surjective, Y has the quotient
topology, and g is some mapping of sets.

Then g is continuous <=> gf is continuous.
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Theorem.

Let N = northern hemisphere of SA2.
RPA2 constructed as a quotient of SA2 s
homeomorphic to RPA2 constructed as a
quotient of N.

RPA2 is constructed as the set

Pairs = { {v,-v} | v in SA2}

with topology coming as a quotient of either
SA2 or N. Why are these topologies the same?



Theorem.

Let N = northern hemisphere of SA2.
RPA2 constructed as a quotient of SA2 is
homeomorphic to RPA2 Constructed as a

quotient of N. ‘gvéﬁﬂ =1, w2 O

RPA2 is constructed as the set ‘ ‘
Pairs = { {v,-v} | v in SA2} w
with topology coming as a quotient of

either SN2 or N. Why are these topologies
the same?
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Worksheet 4, 7b
Show that a subset U of a topological space X is
open <=> U contains no point of its boundary.

Worksheet 4, 6a Show that a B = {{a},{a,b},{c}}
is a basis for a topology on X = {a,b,c}. Show
that the open sets are:
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