Identify the quotient topology on R/~. Is it

a. The finite complement topology ©
b. The discrete topology l

/' c.The indiscrete topology 3
d. A metrizable topology 5
e. None of the above

Let R have the usual topology and let
X ~y <=> X-y is rational.
Does the space R/ ~ have
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c. uncountably many points
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Chapter 6: Product spaces
Definition. Let X,Y be topological spaces.
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Proposntlon The collectlon of sets U xV

where U isopenin X and V isopenin Y is

a basis for a topology.
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Not all open sets in X xY have the form U xV
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Have we done the following?:

Proposition.
(a) The typical open setin X xY has the form

U UxV:  whee UgSX \/05\{4»@0}3@_

L e L
= Yes)/ No

(Yes)/ No
(c) (Theorem 6.3)

A subset W of X xY isopen <=>forall w in
W there exist sets U,V with U openin X,V
openin Y, and w in U xV which is contained

in W.
@

(b) This is a topology.




Example. Let X =

{a,b} with open sets

@, {a}, {a,b}.
How many open sets does X x X have?
a. 3
c. 5 ob bey
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Example. Let X ={a,b,c} with open sets
@, {a}, {a,b}, {a,b,c}.
How many open sets does X x X have?
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Some properties of the product topology

Let T X:XXxY->X and 1_Y :XxY ->Y be the
projection maps: Ty C(ﬂj y =X

Toe (X 4)=9 Ty ) = UsY o?eb%ufo@eq

Is it obvious that t_X and 1_Y are continuous?
Where is this on the obviousness scale? O
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| don’t think we will use the following:
Theorem 6.4
Forall y in Y the subspace X x {y} of XxY is
homeomorphic to X. i xr1y3

J
Sketch: see the book.
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The universal mapping property.
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Theorem 6.5. Let f: A->Xand g:A->Y be
mappings of sets.
(@) There is a unique mapping h: A ->XxY
sothat m_Xh=f and m_Yh=g.

(b) f and g are continuous <=> h s
continuous.



