
Pre-class Warm-up!!!
Can you remember the definition of the product 
topology?

Let the real numbers  R  have the finite complement 
topology.
Is the product topology on  R x R  also the finite 
complement topology?
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The universal mapping property.

Theorem 6.5. Let  f : A -> X and  g : A -> Y  be 
mappings of sets, where A, X, Y are topological 
spaces.
(a)  There is a unique mapping  h : A -> X x Y  so 
that  π_X h = f  and  π_Y h = g.
(b) f  and  g  are continuous <=> h  is 
continuous.

Why do we want to know this? Uniqueness of a 
product object is determined by the universal 
mapping property.
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Application: worksheet 6 question 5

The graph of  f : X -> Y  is the set of points  (x,f(x))  
in  X x Y.
Let  F : X -> X x Y be  F(x) = (x,f(x))

a. If  f  is continuous then  F  is a 
homeomorphism between  X  and the graph of  f.

b. If  F  is a homeomorphism between  X  and the 
graph of  f  then  f  is continuous.

Activity: Worksheet 6 question 7.
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Chapter 7: Compact spaces

The idea: theorems that work on some spaces 
and not on others.

Definitions: cover, open cover, finite cover, 
sub cover
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Definition: a subset  S  of a topological space  X  
is compact <=> every open cover of  S  has a 
finite sub cover.

Examples (easy ones!):

Is this an open cover?  
Yes / No

Does it have a 
finite sub cover? 
Yes / No

X=R  { (n,n+3) | n in Z}

X=R  { [n,n+3] | n in Z}

X= (0,1)  { (1/n, 1 - 1/n) | n in Z, n>0 }

X= [0,1]  { (1/n, 1 - 1/n) | n in Z, n>0 }

X= [0,1]
{ (-1/4,1/4), (3/4,5/4), (1/n, 1 - 1/n) | n in Z, n>0 }

Take X=S always,
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Theorem 7.6  A subset  S  of  X  is compact <=>
it is compact as a space given the induced topology.
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