
Pre-class Warm-up!!!
Consider the following:
Every subset of  R  that is bounded above has a least 
upper bound.

Do you think this is true?  Yes / No

Do you think you have seen it before?  Yes / No

Do you think this is something you can prove?
Yes / No

What if we replace  R  be the rational numbers Q?
Does every subset of Q  bounded above have a 
least upper bound?
Yes / No

R  has an open cover consisting of
{ (-oo,5), (2,oo), (n,n+3) | n in Z}. This 
infinite open cover has a finite sub cover.
Does this show that R  is compact?

Yes / No

*

The open cover [4,
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of # has nofinite subsover so

#R is not compact,

in Q



Theorem 7.7 The unit interval [0,1] in  R  is 
compact.

A rather important result that motivates the 
theory, but will be subsumed as part of the 
Heine-Borel theorem.
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Some take-away results

Theorem
a. (7.8) A continuous image of a compact set 
is compact.
b. (7.10) A closed subset of a compact set is 
compact.
c. (7.11) The product of two compact sets is 
compact.

Theorem 7.8

Applications:
Corollary 7.9
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Theorem 7.10 A closed subset of a compact set is 
compact.

Theorem 7.11 Let  X  and  Y  be topological 
spaces. Then  X  and  Y  are compact <=>  X x Y  
is compact.

Theorem 7.11 Let  X  and  Y  be topological spaces. Then  X  and  Y  are compact <=>  X x Y  is compact.
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Theorem 7.11 Let  X  and  Y  be topological 
spaces. Then  X  and  Y  are compact <=>  X x Y  
is compact.

Theorem (Heine-Borel) A closed and bounded 
subset of  R^n  is compact.
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