Pre-class Warm-up!!!

Consider the following: Every subset of R that is bounded above has a least

upper bound.

Do you think this is true? Yes / No

Do you think you have seen it before? Yes / No

Do you think this is something you can prove? Yes / No

What if we replace R be the rational numbers Q? Does every subset of Q bounded above have a

least upper bound? In Q Yes / No

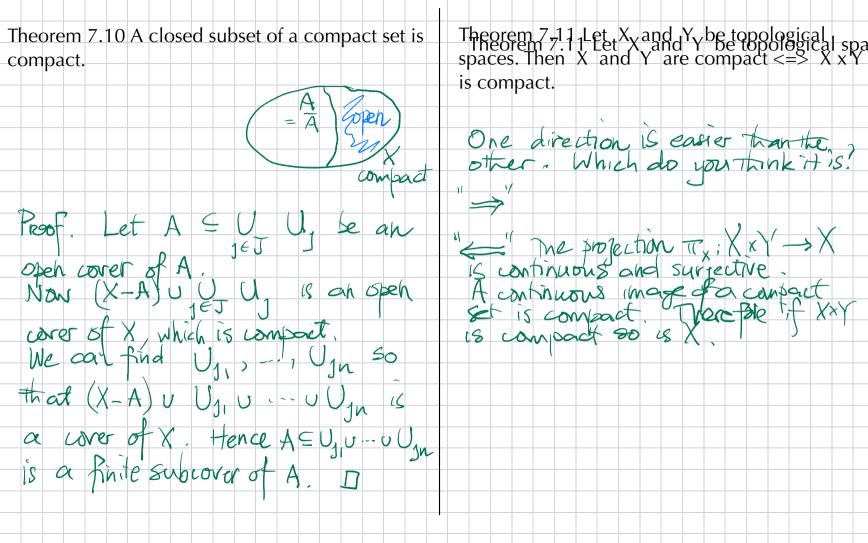
R has an open cover consisting of $\{(-\infty,5), (2,00), (n,n+3) \mid n \text{ in } Z\}.$ This infinite open cover has a finite sub cover. Does this show that R is compact?

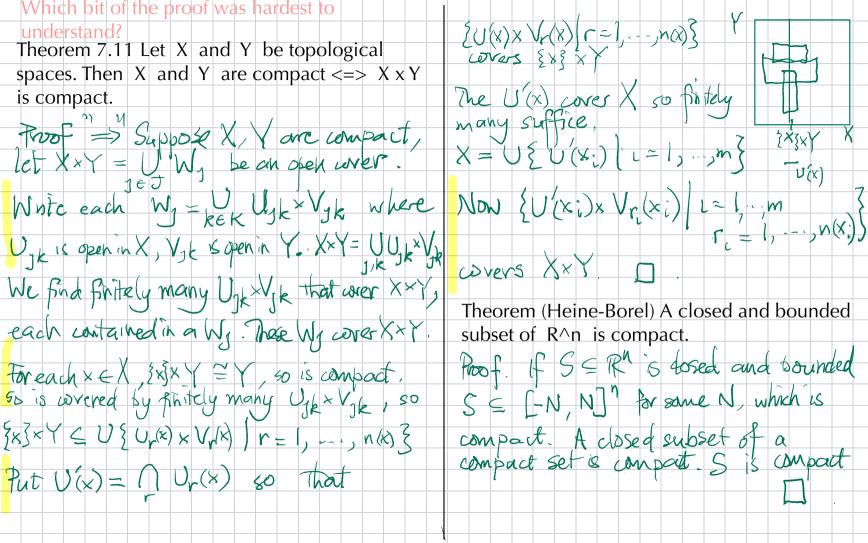
Yes / No

The open cover $\{(n,n+3) \mid n \in \mathbb{Z}\}$ of R has no finite subcover so
R is not compact.

A rather important result that motivates the by the U, Let (a, b,) be that interval. theory, but will be subsumed as part of the Divide (a, b,) in Wo. One subintered has no finite success. Let [a, b.] se this intered. Heine-Borel theorem. Theorem 7.7 The unit interval [0,1] in R is compact. Let a = b be the least upper bound of bi. Proof We argue by contradiction. Let (0,1) - 10 up be an open cover a=6 b/c b-a < = Vi, and suppose it has no finite subsover. ac U1 for some 1. There exists loba. We construct nested closed intervals $0 \le a_1 \le a_2 \le a_3 \le \cdots \le b_3 \le b_2 \le b_1 \le 1$ with $b_1 - a_1 = \frac{1}{2^4}$ €>0 so that Be (a) & U1 b/c its ofthe Choose N so that In < E, Then [an, bn] & Be(a) & U, so {U, } wers (an, bn). Contradiction to [an, by] has no finite Divide [0,1] in two: $[0,1] = [0,\frac{1}{2}] \cup [\frac{1}{2},1]$ One of $[8,\frac{1}{2}]$, $[\frac{1}{2},1]$ has no finite subscript

-(X) < V1, v ·· V1, 15 a finite sublave Some take-away results Theorem Applications: Every identification space a. (7.8) A continuous image of a compact set Corollary 7.9 is compact. is compact if X is compact b. (7.10) A closed subset of a compact set is iombact compact. c. (7.11) The product of two compact sets is and X is compact, 50 25 Y compact. Koof. The subjective map f: X - X/N is continuous I Theorem 7.8 / et $+: \times \rightarrow$ continuous mapping between topological Example. S' = [0,1] Spaces PX is Compact so is P(X) is an open cover X 15 compact





To show the topology on S'= { VER | IVI = 1} They are also a pans in the quotient as an identification space R/2 & the same at the subspace topology induced from R2. 5. The two topologies are the same, For points a, b ∈ S' let arc (a, b) be the subset of S' obtained by starting at a and going clockinse to b, omitting a and b. 1, Inese ares are the interections of disks in R2 with S, so are open subsets of S. 2. They form a basis for the howard too stight 3. They are open in the quotient topology 4. Every open set in the quotient topology can be expressed as a which of these