
Theorem 7.11 Let  X  and  Y  be topological 
spaces. Then  X  and  Y  are compact <=>  X x Y  
is compact.

Theorem (Heine-Borel) A closed and bounded 
subset of  R^n  is compact.
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How many spaces do we know are compact at this 
point?

a. Spaces with the discrete topology?
b. Finite spaces
c. The circle  S^1
d. The n-sphere  S^n
e. Projective space  RP^n
f. The open interval  (0,1)
g. The rational points  {x in Q | 0 < x < 1 }
h. Other compact spaces?
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Worksheet 7 question 1) .
Use instead Bexle (*) .
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Chapter 8: Hausdorff spaces and separation axioms

Definition. A topological space  X  is Hausdorff

Examples

More separation conditions:
T_0: For every pair of distinct points there is an 
open set containing one of them but not the 
other.

T_1: for every pair x,y of distinct points there 
are two open sets, one containing x but not y, 
the other containing y but not x.

T_2 = Hausdorff

T_3 X satisfies  T_1 and for every closed 
subset  F  and every point  x  not in  F  there 
are two disjoint open sets, one containing  F  
and the other containing  x.
T_4: X satisfies  T_1  and for every pair  
F_1,F_2 of disjoint open sets there are two 
disjoint open sets, one containing F F_1  and 
the other containing  F_2.

Is there a difference between  T_0  and  T_1?
Which of these should we memorize?
Is it easy to see which of these axioms imply 
other axioms?
Can we construct spaces satisfying  T_i but 
not  T_{i+1}?
Can we construct spaces satisfying  T_{i+1} 
but not  T_i?
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Metric spaces are Hansdorff
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Theorem 8.5  A space is  T_1  <=> each point 
of  X  is closed.
Corollary 8.6  In a Hausdorff space, each point 
is a closed subset.

Theorem 8.7  A compact subset of a 
Hausdorff space is closed.
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