

Pre-class Warm-up!!! How many spaces do we know are compact at this point? Yes No a. Spaces with the discrete topology? b. Finite spaces c. The circle S^1

d. The n-sphere S^n

e. Projective space RP^n

f. The open interval (0,1)

- one point compactification. Riemann

The sphere is the 1-pt

compactification of C

continuous image of a compact set is compact

[0,1] is compact. She is a closed subset of

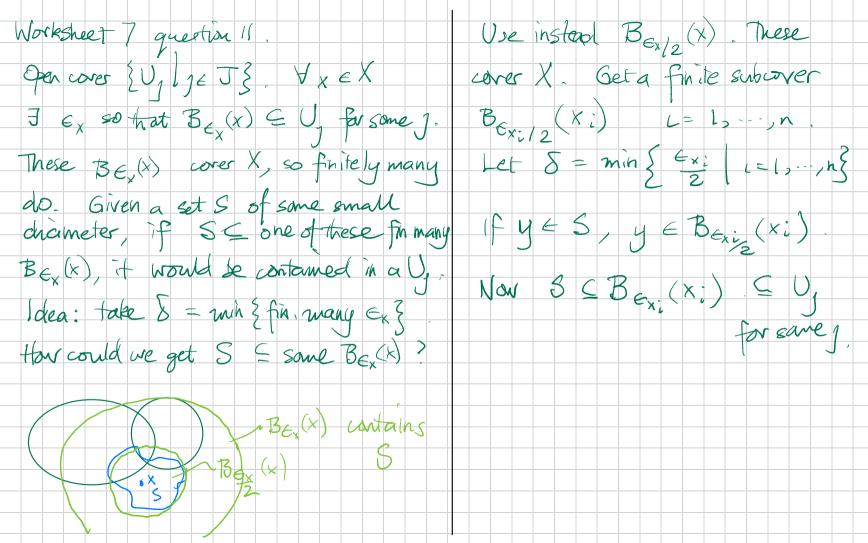
not compact (0,1) = 0 (1,1-1) (-1,1) or ...

with the fix te complement oppor

Other compact speces

g. The rational points $\{x \text{ in } Q \mid 0 < x < 1\}$ h. Other compact spaces? $\mathbb{RP}^n = \mathbb{S}^n / \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is an identification space obtained from a compact space.

and $a \leq a = b \leq b$; $\forall \iota$ (Xi) has a convergent sussequence (=) NOW tere is a convergent subsequent J $y \in \{0,1\}$, $\forall \in >0$ $B_{\epsilon}(y)$ has as ly many points of xi If not then V x 3 e, 20 so that Bex(x) contains only to the by many points of the x; over D, D. Finitely
These Bexx, over D, D. Finitely many do [O, 1] = UBExx). We deduce the segmence is finite Or: Infinitely many si lie in O, 2 or [-2, 1]. Call this interval [a, b]. Divide it in 2. Infinitely many x, lie in one half interval Call it (az, b) We get 0 = a, 4 a 2 = - 4 b 2 < 8, < 1



Chapter 8: Hausdorff spaces and separation axioms Definition. A topological space X is Hausdorff there exist open sets U_1 , U_2 with $X_1 \in U_1$, $X_2 \in U_2$, $U_1 \cap U_2 = \emptyset$. Examples Metric spaces are Housdan's Put a = a(x1,x2) Take U1 = Bd, (x1) U2 = Bd/3(x2)

More separation conditions:

T_0: For every pair of distinct points there is an

open set containing one of them but not the other. If x, \pm x_2 there might be x, \in U
x_2 \in U or x_2 \in U \times \in \text{u}, \in \text{we don't which,}

are two open sets, one containing x but not y, the other containing y but not x. $T_2 = Hausdorff$ memon ze this

subset F and every point x not in F there

T_1: for every pair x,y of distinct points there

are two disjoint open sets, one containing F and the other containing x. T 4: X satisfies T 1 and for every pair F_1,F_2 of disjoint open sets there are two

disjoint open sets, one containing F F_1 and

T_3 X satisfies T_1 and for every closed

the other containing F_2. Is there a difference between T 0 and T 13 Which of these should we memorize? T2 17,T? Is it easy to see which of these axioms imply other axioms? T2 => T => To is easy. Can we construct spaces satisfying T_i but not T {i+1}? With difficulty.

Can we construct spaces satisfying T_{i+1}

but not T_i? No

Theorem 8.5 A space is T_1 <=> each point of X is closed. Corollary 8.6 In a Hausdorff space, each point is a closed subset. Proof of 8.5 = is easy. Supose {x, \(\), \(\) Proof of 8.6: Hausdorff => Ti.

Theorem 8.7 A compact subset of a Hausdorff space is closed.