Theorem 8.5 A space is T_1 <=> each point Theorem 8.7 A compact subset of a of X is closed. Hausdorff space is closed. Corollary 8.6 In a Hausdorff space, each point Poof. Let A S X where X is Housdorf is a closed subset. and) A is compact We show X-A is open. Let XEX-A. WE show I open set U with xeU and U &X-A Proof of 8.5 " is easy Supose 1-e UnA = D For each ye A we can find steh yand Wy with ye Vy xe Wy, VynW,=0 {x, {}, {x2} are closed. Take U1=X-{x2} $U_z = X - \{x_i\}$ The Vy y EA IS an open wer of A $\frac{1}{2} \sum_{i} \frac{1}{2} \frac{1}{2$ so A = Vy, 0 - Vyn (a finite subcomer) where ye Oy is an open set with X, & Oy, Now x & I Wy: - Uis open and contains no point of A. This is an intersection of dosed sets, 50 is closed. Thus X-A is open and A is a losal Proof of 8.6: Hausdorff => Ti.

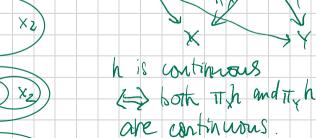
Pre-class Warm-up!!!

Can you remember what T_0, T_1, T_2 say? What about T_{-1}?

Let X = R with the finite complement topology. Does X satisfy any of these separation

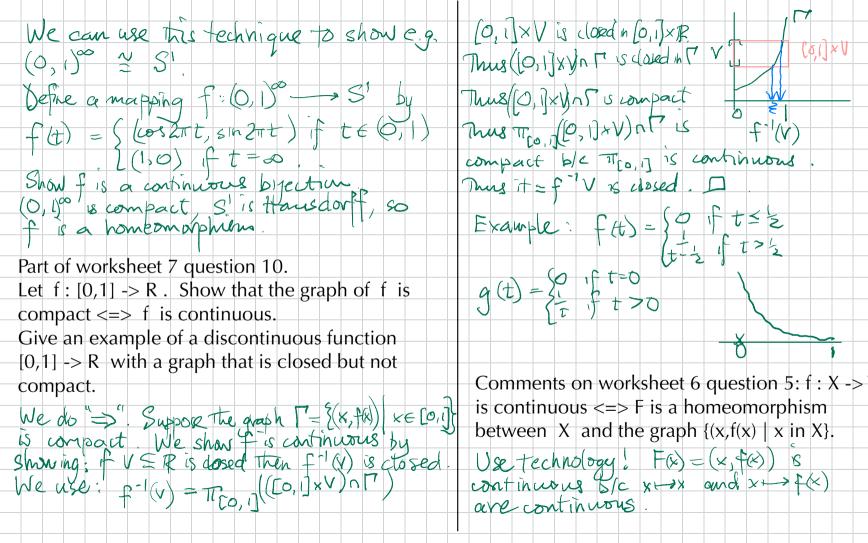
conditions? Yes No Is the function $f: R \rightarrow R^2$ defined by $f(t) = (\sin t, e^t)$ continuous?

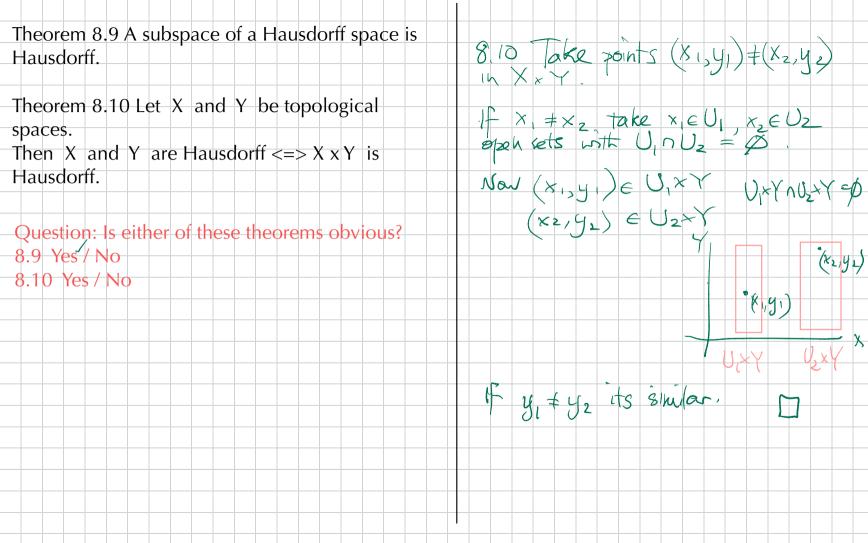
How do you know this? Have you over seen a proof of this in a calculus course?



 X_1

Applications. We show that Theorem 8.8 A continuous bijective mapping $RP^2 = S^2/N$ shere $V N \pm V S$ homeomorphic to $V = \{V \in \mathbb{R}^3 | ||V|| = 1, V_3 > 0\}$ from a compact space to a Hausdorff space is a homeomorphism. where vvv and vv-v if v3 = 0 Proof Let f: X-sY be continuous and to jective where X is compact, Y is Howedouff. Conduct. 52 f > 52/2 Inclusion () Th We show f is open Equivalently we show f is closed, because f is strective where f, g are gruthent maps, h is ironced by inclusion Let $V \subseteq X$ be a closed subset. It is compact (closed subset of compact) We see his dijective his continuous of hig is continuous of formulusion is cts merefore f(V) is compact (cts image of compact is compact which is so. There is continuous. Therefore f(V) is closed (compacts about We want to know his open. Wis consact (continuous image of N Thue f is a closed mapping, I Hausday given 3v, -v, 3 + 3v2 -v23 in 57~ 57/2 is Hansdorff: we can find open sets (a), -v E-V, v E-V, v E-V, so that the osen sets are disjoint 52/n s' tansarf 1 h is a homemorphism





Examples: $R / \sim where x \sim y <=> x-y is rational.$ Theorem 8.11 Let Y be a quotient space of X X/A where A is not closed. determined by a surjective mapping f: X -> Y. R/v has the indiscrete topology.

The gustient map R - R/v goes

from a transdorff to a non-transderff

space. X is compact Hausdorff and f is closed then is (compact) Hausdorff. We won't do this