Theorem 8.5 A space is T_1 <=> each point
of X is closed.

Corollary 8.6 In a Hausdorff space, each point
is a closed subset.
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Theorem 8.7 A compact subset of a
Hausdorff space is closed.
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Pre-clagg Warm-up!!!

Can you remember what T_0, T_1, T_2 say?
What about T_{-1}?

Let X =R with the finite complement topology.
Does X satisfy any of these separation
conditions?

Yes No
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Is the function f: R -> Redefined by
f(t) = (sin t, eAt) continuous?

Yes / Na

How do you know this?
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Theorem 8.8 A continuous bijective mapping

from a compact space to a Hausdorff space is a
homeomorphism.
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Part of worksheet 7 questlon 10.
Let f:[0,1] -> R . Show that the graph of f is
compact <=> f is continuous.
Give an example of a discontinuous function
[0,1] -> R with a graph that is closed but not
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Comments on worksheet 6 question 5: f : X ->
is continuous <=> F is a homeomorphism
between X and the graph {(x,f(x) | x in X}.
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Theorem 8.9 A subspace of a Hausdorff space is
Hausdorff.

Theorem 8.10 Let X and Y be topological
spaces.

Then X and Y are Hausdorff <=> X xY is
Hausdorff.

Questio/n: Is either of these theorems obvious?
8.9 Yes/ No

8.10 Yes/ No
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Examples: R/~ where x ~y <=> x-y is rational.

Theorem 8.11 Let Y be a quotient space of X
X/A where A is not closed.

determined by a surjective mapping f: X ->Y.
EL/(\; hed ke Ind screfe 4-5?‘))% \ X is compact Hausdorff and f is closed then

is (compact) Hausdorff.
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