
Pre-class Warm-up!!!
a. Have you heard of the following theorem 
before?  Yes / No

Theorem. At any given moment there is a pair of 
antipodal points on the Earth with exactly the 
same temperature.

b. What kind of definition of a manifold have you 
seen before?

 • Was the manifold always embedded in some 
space  R^n ?  Yes / No

 • Was the manifold defined as the graph of a 
function? Yes / No

 • Was the manifold described as the zero point 
set of some function?  Yes / No

 • Was it more complicated than this? Yes / No



Both Colley and Marsden-Tromba define 
parametrized manifolds.

Colley offers:
A  k-manifold in R^n is a connected subset  M  of  
R^n such that
for all  x  in  M  there is an open set  U  in  R^k  
and a continuous one-to-one map  X : U -> R^n  
with  x  in X(U) contained in  M.

That is, a k-manifold is locally a parametrized  k-
manifold about each point  x.
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Chapter 10 The Pancake Problems

Which theorem was closest to the Intermediate 
Value Theorem?

a. Theorem A continuous image of a compact 
space is compact.

b. Theorem A continuous image of a connected 
space is connected.

Particular case of the IVT, with a different proof to 
the previous one:
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Corollary 10.2. If  f : [0,1] -> [0,1]  is continuous 
then there is a point  t  in  [0,1]  such that  f(t) = t.

Corollary 10.3. Every continuous mapping
S^1 -> R
sends at least one pair of diametrically opposite 
points to the same point.

Corollary 10.4.  At any given moment, on any 
great circle, there is a pair of antipodal points on 
the Earth with exactly the same temperature.
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Pancakes

Theorem 10.5.  Let  A  and  B  be bounded 
subsets of  R^2.  There is a line in  R^2  that 
divides each region exactly in half by area.

Theorem 10.6.  If  A  is a bounded region in the 
plane then there exists a pair of perpendicular 
lines that divide  A  into four parts, each of the 
same area.
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Chapter 11. Manifolds and surfaces

Definition.  An  n-dimensional manifold is

Example: 0-dimensional manifolds

Example (not done like this in the book).
Subsets of  R^d  that are locally the graphs of 
continuous functions  R^n -> R^{d-n}  are 
manifolds.
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Example (taken from the book). Why do we need 
the Hausdorff axiom?

Questions: a. If you remove a single point from 
this space, does it necessarily disconnect it?  
Yes / No

b. Construct a space that is locally 
homeomorphic to R with 3 points that cannot be 
separated from each other by open sets.
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