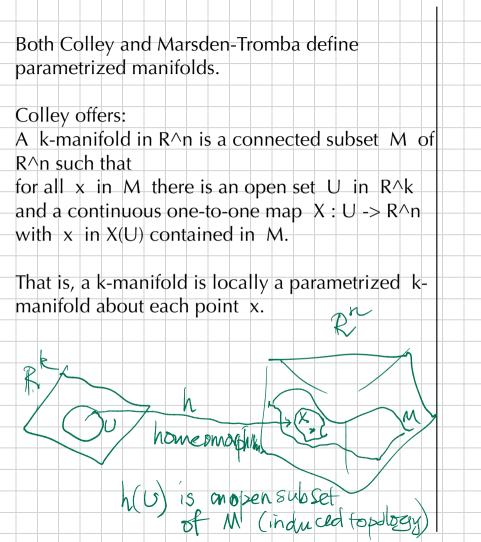
Pre-class Warm-up!!!

a. Have you heard of the following theorem before? Yes / No

Theorem. At any given moment there is a pair of antipodal points on the Earth with exactly the same temperature.

- b. What kind of definition of a manifold have you seen before?
 - Was the manifold always embedded in some space R^n? Yes / No
 - Was the manifold defined as the graph of a function? Yes / No
- Was the manifold described as the zero point set of some function? Yes / No
- Was it more complicated than this? Yes / No



Chapter 10 The Pancake Problems	Particular case of the IVT, with a different proof to the previous one:
Which theorem was closest to the Intermediate Value Theorem?	Lemma 10.1 If $f: (0,1) \rightarrow \mathbb{R}$ Is continuous, so that either $f(0) \ge 0$, $f(1) \le 0$
a. Theorem A continuous image of a compact space is compact.	3 + (0) (0) (10) (10) (10)
b. Theorem A continuous image of a connected space is connected.	Proof. Argue by contradition, Suppose $f(t) \neq 0$ \forall $t \in [0,1]$. Consider $g(t)$: $[0,1]$ = $\xi \neq 1\xi$ = S^0
	Then g is continuous and surjective (b/c g(o) and g(1) take opposite signs) [(0,1)] is connected but the Image of g is not connected, contradiction.

Let S' = {zec |z|=1} Corollary 10.2. If $f: [0,1] \rightarrow [0,1]$ is continuous then there is a point t in [0,1] such that f(t) = t. and let h: [O] i] - S be f: S > R be a continuous Consider h(t) = q(z) = f(z) - f(-z), zes h (t) and consider ah: [O] -> P Then gh (0) = 29(1)= gh(1) = g(-1) = f(1) - f(1)so gh(1) = -gh(0). There is some Corollary 10.3. Every continuous mapping $S \land 1 \rightarrow R$ t & (0, 1) so that gh(t) = 0, so sends at least one pair of diametrically opposite points to the same point. Corollary 10.4. At any given moment, on any great circle, there is a pair of antipodal points on [0,1 the Earth with exactly the same temperature.

find this line Pancakes Circle radius N. Theorem 10.5. Let A and B be bounded Scale to have subsets of R^2 . There is a line in R^2 that dameter divides each region exactly in half by area. Theorem 10.6. If A is a bounded region in the plane then there exists a pair of perpendicular q.(t) = avea on other side lines that divide A into four parts, each of the $g(t) - g_{\delta}(t) : [0,1] \longrightarrow \mathbb{R}$ same area. has a zero for some te Oil A is cut in half like this. For each x we get such t; u(x) Do the same for panake Bgiving VX Scine and we cut both A and B in half at the same time. Find x so that y(x) - u(x) = 0.

If $U \subseteq \mathbb{R}^n$ is open and $f: U \to \mathbb{R}^{d-n}$ is continuous then the graph of fChapter 11. Manifolds and surfaces Definition. An n-dimensional manifold is $\{(x,f(x))\mid x\in U\}=\Gamma\subseteq \mathbb{R}^n \times \mathbb{R}^{n-1}$ a Hausdorff space, M such that for every x & M there is an open is homeomorphic to 1) heighborhood Ux with x e Ux and In U, x had an open neighborhood

The so (x, f(x)) also had such a
heighborhood in T. Ux = Rn The open diek (Dn) is homeour. Locally ... means that I m & M Example: 0-dimensional manifolds Rous a single point, If M is a O-manifold 3 on neighborhood meV SM SD that V = the graph of a continuous hal: Y & EM, EX3 is open. M how the discrete topology Example S1 = [(x,4) + R2 | x2+y2=18 Example (not done like this in the book). Is a (-manifold Subsets of R^d that are locally the graphs of continuous functions $R^n \rightarrow R^{d-n}$ are manifolds.

Example S1 = {(x,y) + R2 | x+y2=1} If 4<0 we can use t Fx20 we use gt 18 a (-manifold. Consider the Functions F(x) = +/1-x2 F=-/1-x2 Higher dimensional spheres are 9ty = +/ 1-1/2 9ty = 1/2 $f(x,y) = 1 - (x^2 + y^2)$ etc gives $S^2 \subseteq \mathbb{R}^3$ (x,4)45 then around S' in that und is the graph of ft on some open subset of PR.

Every point in the space has an open Example (taken from the book). Why do we need neighborhood homes to R(or (0,1)) the Hausdorff axiom? Consider the space with basis for a topology consisting of Questions: a. If you remove a single point from this space, does it necessarily disconnect it? Yes/No) remove la 2 open intervals (a,b) -15966 2 b. Construct a space that is locally homeomorphic to R with 3 points that cannot be separated from each other by open sets. the blue open set the pink open set o Den This space is not Housdorf : all osen sets curtaining I contain (1-E, 1) for open some e ar do all open sets containing.
2. We can't separate i and 2 by osen