Iseful more ayay2 >ay, c'cay2 The relation T#P = P#P#P. cy (a 42 c -> cy 1 y2 Rules for transformation of surface diagrams: CC4142 1. Each letter appears exactly twice, in the form y or $y \land \{-1\} = Y$ P#T = P#P#P 2. Relabel the words (including a <-> a $^{-1}$ PHT = ccabaib = cabmimabic = A). 3. Cyclically permute words: abc <-> bca. 4. Flip words: w = aBc <-> W = CbA. abm'c c'bqm' = abm-1bam-1 5. (Un)cancel: yaAz <-> yz 6. (Un)split words: wCcx <-> wC and cx = abn ban 7. (Un)write strings as single letters, such as: w ab x BA y <-> w c x C y8. From a word w x where the letters in w are disjoint from those in x, we get a connected sum. Worksheet 11 ga3: yoay, ay2~ yoab 12 by ay Invert 4,06, votate both parts: ~ bailo 1 by ayz ~ y=1 bq=1 Llay2 y 1 ~ yoby 2 by 1 ~ byzpy, yo

Ore-class Warm-up!!!

Which picture best describes the convex hull of the 5 points:

not convex

b.

ot in X 2 2

d.

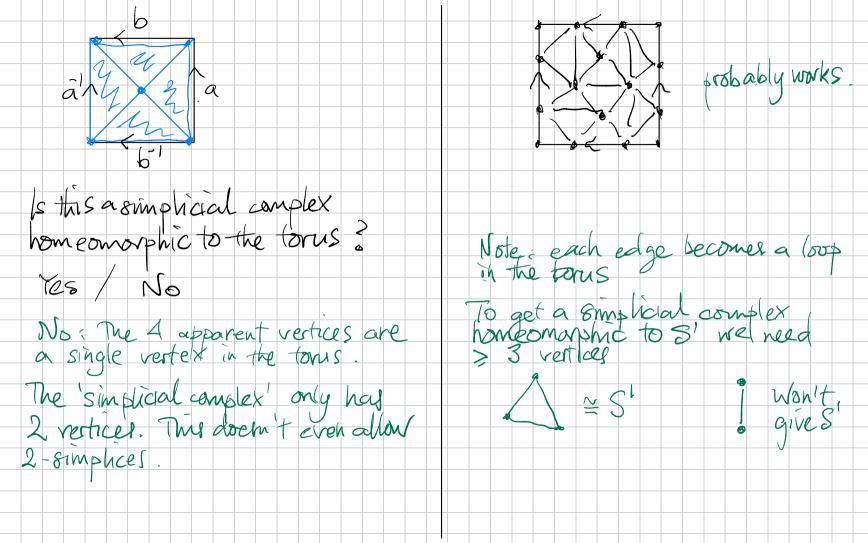
e. None of the above.

CLISE

How obvious is the following?

Theorem. Every compact surface can be made by taking a polygonal piece of paper and glueing up the edges in the kind of way we have been doing.

How many wards on this sorcen are new to you?


totally obscure

Definition A subset of RM is convex -Ex fx, y in the shoset the storight line segment griming x and y lies in the sweet.

The convex hull of a subset $S \subseteq \mathbb{R}^n$ is the smallest convex set containing those points. It consists of the points $\frac{1}{2}$ $\frac{1}{2$

Constructing surfaces: simplicial complexes Formula for the set of points in a simplex. A Useful book: simplex is determined by its vertices. Munkres: Elements of algebraic topology The subsimplices, or faces, of a simplex. Geometric simplicial complexes. Definition. A geometric n-dimensional simplex in These are the subsets that are the convex hulls of subsets of the verticel. R^m is the convex hull of n+1 points in general position. The vertices of the simplex are the my points Example What is convex? hull? general position? The Z-simplex determined by & V1, V2, V3 11+1 points are in general position of they do rot (ie in an(h-1)-dimension affine subspace = a subset w + V where w & R ... V CRM is an n-dimension vector subspace. has eres { {v, } {v, } {v₃} {v, v₂} {v₁, v₃} {\\2,\\3}, {\\1,\\2,\\3}} Examples: not general position; standard basis where e.g. Ea, b & indicated the convex hull not in general position vectors. in general position a 2-simplex

Not simplicial complexes Definition. A (geometric) simplicial complex is the union of a collection of simplices in Rn multible That (1) for every simplex, all its faces are in the collection Even pair of simplices intersects in a common Pace of those simplices Is it obvious? or is empty If we take the m vertices of a simplicial complex Its dimension is the argest n so that n-simplice to be the standard basis vectors (0, ..., 0, 1, 0, ...)appear. in R^m, then simplices only intersect in 2 smplex subsimplices? Examples. A simplicial complex D, O.

Given an abstract s.c. we can spauce Definition. An abstract simplicial complex is a geometric S.C. in R? where - A set of things called vertices {V1,..., Vn} n= no of vestices - A collection of subsets of {v,, vn} vertices = standard basis vectors els ... - seh geometric simplies are If subset S is in the collection and TSS then T is in the collection. the convex hulls of the S where A subset S in this collection of size n+1 S is an abstract symplex 15 called an n-simplex Vertices = 0-simplices. Connection between abstract simplicial complexes and geometric simplicial complexes: Given a geometric s.c. we get an abstract s.c. b m/ e 3 a, b, c, a e, ac, ab, L c ms bc, bd, cd, de, bcd?