Pre-clags Warm-up!!

Let A be a subset of a space X, and let A have
the induced topology. Let B be a subset of A.

True or false?

a.If A isclosedin X and B is closed in A,
then B is closed in X. E
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b.If A isclosedin X and IS open{Slﬁw then
B is open in X. 'T —
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. If As open in X and B is closed in A, then

B is closed in X. »lf @

d.If A isopenin X and B isopenin A, then

B isopenin X. @ =

Another question:

Let A be an abstract simplicial complex with
vertices {a, b, c} and other simplices

{{a,b}, {b,c}, {c,a}l }.

What does the geometric realization of this
simplicial complex look like?

a. a closed disk in RA2.

b. the closed interval [0,1]

c. a circle SA1

d. something else A
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Another question:

Let A be an abstract simplicial complex
with vertices {a, b, c} and other simplices
{{a,b}, {b,c}, {c,al }.

What does the geometric realization of this
simplicial complex look like?

a. a closed disk in RA2.

b. the closed interval [0,1]
c. a circle SA1

d. something else
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Triangulations of manifolds

Definition. A manifold is triangulable <=> itis
homeomorphic to a simplicial complex.
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Theorem. Every compact surface is triangulable
by a finite simplicial complex.
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How obvious is the following?

Theorem. Every compact triangulable surface
can be made by taking a polygonal piece of
paper and glueing up the edges in some way.

What if we have 53 triangles all meeting at a
ingl tex? 1

single vertex ) Simmplices
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Multiplication of paths and the inverse of a path

Glueing lemma for continuous functions:
Lemma 12.2.
Suppose the space W is the union of two closed

subsets A and B and

f:A->X, g:B->X are two continuous
functions that agree on A intersect B.
Then h : W -> X defined by
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Lemma 12.1. -~
(@) If £:[0,11->X is a path, sois J;

definedy ey = £ (-1).

(b) If f is a path from x to
from y to z, then {V
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and g is a path
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