Pre-class Warm-up!!!

Let X be the topological space $X = \{a, b\}$ with open sets \emptyset , $\{a\}$, X.

Do you think X is path connected? Yes / No Then f is continuous, so is a south

Theorem 12.6. If X is the union of path Theorem 12.4. The continuous image of a path connected spaces that overlap, then X is path connected space is path connected. connected. roof Let continuous, I where x is but connected. We show q(X) is path connected Proof Suppose X = Yi, where the Yi are wath and write u = g(a), v = g(b) for some a, b ∈ X We can find a path f: 10, T Y from a to c and Y, from C to 18 a path in X from a to b, from Corollary 12.5. If X and Y are homeomorphic Theorem 12.7. X and Y are path connected and X is path connected so is Y. $\leq > so is X x Y.$

IS b. a. so are Theorem 12.7. X and Y are path connected I because they are continuous <=> so is $X \times Y$. Same as a connectivity 3" Assume X and Y are pc Then for each aEX, be Y the spaces ¿alx Y and X x ¿b} are p.c being homeomorphic to Y and X resp Therefore {a} × Y U X × 268 is b.c XXX is the union of these connected subspaced and each pair of them has non-empty intersection. Therefore XXY is b.c

The flea and comb is a connected space Theorem 12.8. Every path connected space is that is not path connected connected. Not every connected space is path (O,1) • connected. is the union of the closed line segments that of the first sentince, shown together with Suppose X is path connected by not (0,1), 0 S R2 connected so X=AUBUSThe disjoint union of non-empty Den sets This is not path connected: there is no Hand B. south joining the fleg to the rest of the Let acA and beB. There or a path f: [O, 1] -> X with The space is connected Suppose it f(0) = a and f(1) = b is AUB, a disjoint union of open sets. Now [0,] = f-(A) L f-(The comb is contained in one of A and B because it's connected The Hea is a disjoint union of non-empty open sets, so [0,1] is not connected, which must be contained in the other. Mil means we can an open set containing is absurd. the flea, containing no point of the comb In fact every Be (O, 1) contains a point of the comp. — convadiction, Its comme de

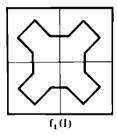
$$C = \{ (x,y); 0 < x \le 1, y = \frac{1}{2} \sin (\pi/x) \}.$$

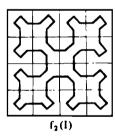
is path connected but not locally path connected.

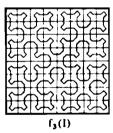
(p) Let $Z = Y \cup D \in \mathbb{R}^2$ where Y is as above in (o) and D is the circle $\{(x-1)^2 + y^2 = 1\}$. Prove that Z is path connected but not locally path connected.

We end this chapter with a strange path. This is a path $f\colon I\to I^2$ which is surjective. Such examples are referred to as 'space filling curves'. They were first invented by G. Peano in about 1890. The path f is defined as the limit of paths $f_n\colon I\to I^2$. The first three are illustrated in Figure 12.4. The reader should have no trouble in visualizing the n-th step. After n steps every point of the square I^2 lies within a distance of $(\frac{1}{2})^n$ of a point in $f_n(I)$. In the limit we get a continuous surjective map $f\colon I\to I^2$. Note that at any finite stage the continuous map $f_n\colon I\to I^2$ fails to be injective only at $\{0\}$ and $\{1\}$ in I. In fact I and I are homeomorphic. This is certainly not true in the limit.

Figure 12.4







Worksheet 10 open		
4.* (a) Let M be an n -manifold and let B be a subspace of M	which is homeomorphic	Some solutions to
to an open ball of some radius. Because $B \cong \mathbb{R}^n \cong S^n - \{(0,0,\ldots,0,1)\}$ we have a		
homeomorphism $g: B \to S^n - \{(0,0,\ldots,0,1)\}$. Define $f: M \to S^n$ by		the questions or
	*	and and the same
$f(x) = \begin{cases} g(x) & \text{if } x \in B, \\ (0, 0, \dots, 0, 1) & \text{if } x \in M - B \end{cases}$		worksheet to are
$\int (x)^{-1} (0,0,\ldots,0,1)$ if $x \in M-B$		ported online
Prove that f is continuous.		
We show that IF USS is spen then P'(U) Is spen in M.	f-1(5-18) = a15.	1 U) and tix sako
Han P-1/15 Katerian M		
	compact becaute	9 18 a homeomorphum
Pase 1. en=(0, 0,1) & O.		closed in M because
Then F-1(U) = g-1(U) which is an	M's Hausobrif	
open subset of B. Because B is open in	It follows that I'	U = M - [(S^2 U) is
M, gos (1) is spen is M.	Starting IV	
9 10) 13 3201 18 311 1	Thurs in hist cases of	(U) sopenin M, so
Case 2. en ∈ U. Consider		
On 1 1-1 a glacad - locat dette	fis continuous.	
Sh U, which is a closed subset of the		
compact space S, so it is compact.		