Let X be the topological space X = {a, b} with
open sets O, {a}, X.
Do you think X is path connected?

Yes / No
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Theorem 12.4. The continuous image of a path
connected space is path connected.
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Corollary 12.5. If X and Y are homeomorphlc
and X is path connected so is Y.

Theorem 12.6. If X is the union of path
connected spaces that overlap, then X is path
connected.
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Theorem 12.7. X and Y are path connected
<=> sois XxY.



Theorem 12.7. X and Y are path connected
<=> sois XxY.
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Theorem 12.8. Every path connected space is
connected. Not every connected space is path
connected.
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Paths and path-connected spaces 99

C={(xy);0<x<1l,y=%sin(n/x) }.
is path connected but not locally path connected.

(p) Let Z=Y UD€ R? where Y is as above in (0) and D is the circle
{(x-1)* +y* =1}. Prove that Z is path connected but not locally
path connected.

We end this chapter with a strange path. This is a path f: I » I* which is
surjective. Such examples are referred to as ‘space filling curves’. They were
first invented by G. Peano in about 1890. The path f is defined as the limit
of paths f,: I - I?. The first three are illustrated in Figure 12.4. The reader
should have no trouble in visualizing the n-th step. After n steps every point
of the square I? lies within a distance of (4)" of a point in f,(I). In the
limit we get a continuous surjective map f: I = I2. Note that at any finite
stage the continuous map f,: I - I? fails to be injective only at {0} and
{1} inL In fact Tand f n(I) are homeomorphic. This is certainly not true
in the limit.
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4.* (a) Let M be an n-manifold and let B be akubspace of M which is homeomorphic

,0,...,0,1)} we have a
)} ; !

to an open ball of some radius. Because B = R" = S™ — {(0,0

homeomorphism g : B — S™ — {(0,0,...,0,1)}. Define f: M — 8™ by
: \/\mfkgf\ad 0D are_
_ J g(x) if r € B,
f(#)=110,0,...,0,1) ifze M—-B fof‘reavmm .
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