Math 5345H Worksheet 2 9/8/2025

Upload to Gradescope the starred questions 3, 6, 9, 12 from Worksheet 2 before the end of the day on Wednesday 9/17/2025

- 1. Consider a function $d: A \times A \to \mathbb{R}$ satisfying
- (i) d(a,b) = 0 if and only if a = b.
- (ii) $d(a,b) + d(a,c) \ge d(b,c)$ for all $a,b,c \in A$.
- (iii) $d(a,b) \ge 0$ for all $a,b \in A$.
- (iv) d(a,b) = d(b,a) for all $a,b \in A$. Consider also
- (i)' d(a, a) = 0 for all $a \in A$.

Show that (i) and (ii) taken together imply (iii) and (iv). Do conditions (i)' and (ii) taken together imply either of (iii) or (iv)?

- 2. Each of the following functions $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ satisfies (i) and (ii), so is a metric. For each of them, decide whether 'it is not difficult to see' that this is so:
- (a) the usual metric $d(x,y) = (\sum_{i=1}^{n} (x_i y_i)^2)^{\frac{1}{2}}$ is 'not difficult'? Yes
- (b) $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$ Yes No
- (c) The discrete metric: $d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$ Yes
- (d) $d(x,y) = \max_{1 \le i \le n} |x_i y_i|$. Yes
- 3.* Show that $d(x,y) = (x-y)^2$ does not define a metrix on \mathbb{R} .
- 4. Show that $d(x,y) = \min_{1 \le i \le n} |x_i y_i|$ does not define a metrix on \mathbb{R}^n .
- 5. On \mathbb{R}^2 define d(x,y) = smallest integer greater or equal to usual distance between x and y. Is d a metric for \mathbb{R}^2 ?
- 6.* Let A be a metric space with metric d. Let $y \in A$ be any point. Show that the function $f: A \to \mathbb{R}$ defined by f(x) = d(x, y) is continuous, where \mathbb{R} has the usual metric.
- 7. Let M be the metric space (\mathbb{R}, d) where d is the usual Euclidean metric. Let M_0 be the metric space (\mathbb{R}, d_0) where d_0 is the discrete metric. Show that all functions $f: M_0 \to M$ are continuous. Show that there does not exist any injective continuous function from M to M_0 .
- 8. Let A, B be metric spaces with metrics d and d_B respectively. For each number r > 0 let d_r be the metric on A given by $d_r(x, y) = rd(x, y)$. Let f be a function from A to B. Prove that f is continuous with respect to the metric d on A if and only if it is continuous with respect to the metric d_r on A.
- 9.* Show that $B_{\epsilon}(x)$ is always an open set for all x and all $\epsilon > 0$.
- 10. Which of the following subsets of \mathbb{R}^2 (with the usual topology) are open?
- a. $\{(x,y) \mid x^2 + y^2 < 1\} \cup \{(1,0)\},$
- b. $\{(x,y) \mid x^2 + y^2 \le 1\}$

c. $\{(x,y) \mid |x| < 1\},\$

d. $\{(x,y) \mid x+y < 0\},\$

e. $\{(x,y) \mid x+y \ge 0\},\$

f. $\{(x,y) \mid x+y=0\}$.

- 11(a). Show that if \mathcal{F} is the family of open sets arising from a metric space then
 - (i) The empty set \emptyset and the whole set belong to \mathcal{F} .
 - (ii) The intersection of two members of \mathcal{F} belongs to \mathcal{F} ,
 - (iii) The union of any number of members of \mathcal{F} belongs to \mathcal{F} .
- 11(b). Give an example of an infinite collection of open sets of \mathbb{R} (with the usual metric) whose intersection is not open.
- 12(a).* Let d_1 and d_2 be two metrics on the set A, giving open balls denoted $B_{1,\epsilon}(x)$ and $B_{2,\epsilon}(x)$. Show that the open sets for metric d_1 are also open for the metric d_2 if and only if the balls $B_{1,\epsilon}(x)$ are open for metric d_2 .
- 12(b).* Let $A = \mathbb{R}^2$ and let $d_0(x, y) = \max\{|x_1 y_1|, |x_2 y_2|\},\ d_1(x, y) = |x_1 y_1| + |x_2 y_2|,\ d_2 = \text{the usual metric.}$

Draw pictures of (or otherwise describe) the unit balls centered on the origin for each of the metrics.

12(c).* Decide whether or not d_1, d_2, d_3 have the same open sets on \mathbb{R}^2 .