Math 5345H Worksheet 4 9/22/2025

Upload to Gradescope the starred questions 4, 6acde, 7ab from Worksheet 4 before the end of the day on Wednesday 10/1/2025

- 1. Are the following obvious?
- (a) Let X be an arbitrary set and let $\mathcal{U}, \mathcal{U}'$ be topologies on X. Prove that the identity mapping $(X, \mathcal{U}) \to (X, \mathcal{U}')$ is continuous if and only if $\mathcal{U}' \subseteq \mathcal{U}$. (Or, should it be $\mathcal{U} \subseteq \mathcal{U}'$?)
- (b) X is a topological space with the property that, for every topological space Y, every function $f: X \to Y$ is continuous. Prove that X has the discrete topology. (Hint: Let Y be the space X but with the discrete topology.)
- (c) Y is a topological space with the property that, for every topological space X, every function $f: X \to Y$ is continuous. Prove that Y has the indiscrete topology. (Hint: Let X be the space Y but with the indiscrete topology.)
- 2. A partially ordered set P (or poset) is a set with a reflexive, transitive and skew-symmetric relation, written $x \leq y$. These three conditions are
- (i) $x \le x$ for all $x \in P$,
- (ii) $x \le y$ and $y \le z$ implies $x \le z$
- (iii) $x \le y$ and $y \le x$ implies x = y.

Often we draw a picture of P as a graph with the elements of P as vertices and with x lower than y with an edge between x and y if $x \le y$. If we only draw such edges when there is no further z with x < z < y we call this picture the *Hasse diagram* of P.

- (a) Draw pictures of all the poset structures on a 2-element set $P = \{a, b\}$, up to relabeling the elements.
- (b) Draw pictures of all the poset structures on a 3-element set $P = \{a, b, c\}$, up to relabeling the elements.
- 3. Given a finite poset P, let \mathcal{U} be the collection of subsets U of P satisfying the condition $\bullet \ x \in U$ and $y \leq x$ implies $y \in U$.
- (a) Show that \mathcal{U} is a topology on P. (There are other ways to make P into a topological space that we do not study here).
- (b) For each of the poset structures on the 3-element set $P = \{a, b, c\}$ (up to relabeling the elements) find how many open sets the corresponding topology has.
- (c) Find a topology on $\{a,b,c\}$ that does not come from any poset structure on these three elements.
- 4.* A map of sets $f: P \to Q$ between posets P and Q is said to be *order preserving* if whenever $x \leq y$ in P we have $f(x) \leq f(y)$ in Q. Show that such an order preserving map gives rise to a continuous map between the topological spaces P and Q, with the same definition of f.
- 5. Let $X = \{a, b, c\}$ have the topology with open sets $\emptyset, \{a\}, \{a, b\}, \{a, b, c\}$ and let $Y = \{a, b, \}$ have the topology with open sets $\emptyset, \{a\}, \{a, b\}$.
- (a) Find the interior, closure and boundary in X of the set $\{a\}$; and also of the set $\{b\}$. Do the topologies on X and Y come from posets?

- (b) Let $f: X \to Y$ be the mapping f(a) = a, f(b) = b, f(c) = b. Find if f is continuous; open; closed.
- (c) Let $f: X \to Y$ be the mapping f(a) = a, f(b) = b, f(c) = a. Find if f is continuous; open; closed.
- 6. Let $X = \{a, b, c\}$ and consider the collection of subsets $\mathcal{B} = \{\{a\}, \{a, b\}, \{c\}\}\}$.
- (a)* Show that \mathcal{B} is a basis for a topology on X. Show that the open sets in this topology are \emptyset , $\{a\}$, $\{a,b\}$, $\{c\}$, $\{a,c\}$, $\{a,b,c\}$.
- (b) Does this topology on X come from a poset?
- (c)* Find the interior, closure and boundary in X of the set $\{b, c\}$.
- (d)* Let $Y = \{a, b, \}$ have the topology with open sets $\emptyset, \{a\}, \{a, b\}$, and let $f : X \to Y$ be the mapping f(a) = a, f(b) = b, f(c) = b. Find if f is continuous; open; closed.
- (e)* Find a continuous, surjective map between topological spaces that is open, but not closed.
- 7. (a)* For any subset W of a topological space X, show that the boundary ∂W is a closed set.
- (b)* Show that a subset U of a topological space X is open if and only if U contains no point of its boundary.
- 8. Let \mathcal{B}_1 and \mathcal{B}_2 be bases for two potentially different topologies \mathcal{U}_1 and \mathcal{U}_2 on a single set X. Show that the topologies are the same if and only if the sets in \mathcal{B}_1 are all open in \mathcal{U}_2 , and the sets in \mathcal{B}_2 are all open in \mathcal{U}_1 .