Upload to Gradescope the starred questions 3, 11, 12 from Worksheet 7 before the end of the day on Wednesday 10/22/2025

1. Let \sim be the equivalence relation on \mathbb{R}^2 given by

$$(x_1, x_2) \sim (y_1, y_2) \Leftrightarrow x_2 = y_2.$$

Show that the identification space \mathbb{R}^2/\sim is homeomorphic to \mathbb{R} .

- 2. Let A be a subset of a topological space X, and let B be a subset of a topological space Y. Show that in the product space $X \times Y$ we have $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$.
- 3.* Suppose that X has the finite complement topology. Show that X is compact; moreover, every subset of X is compact.
- 4. Show that the following are equivalent for a topological space X:
- (a) X is compact.
- (b) Whenever $\{C_j \mid j \in J\}$ is a collection of closed sets with $\bigcap_{j \in J} C_j = \emptyset$ then there is a finite subcollection $\{C_k \mid k \in K\}$ such that $\bigcap_{k \in K} C_k = \emptyset$.
- (c) Whenever $\{C_j \mid j \in J\}$ is a collection of closed sets with the property that $\bigcap_{k \in K} C_k \neq \emptyset$ for every finite subset K of J, then $\bigcap_{j \in J} C_j \neq \emptyset$.

[A collection of sets with the property that intersections of finitely many of them are always non-empty is said to have the Finite Intersection Property. Thus (c) says that every collection of closed subsets with the FIP has non-empty intersection.]

5. Consider whether you are able to prove the following theorem by modifying the proof given in Kosniowski's book of Theorem 7.7 (it says: [0, 1] is compact).

Theorem. (a) Every infinite sequence of points in [0,1] has a convergent subsequence. (b) Every infinite subset of [0,1] has a limit point (whatever that is!).

- 6. Let \mathcal{T} be the topology on \mathbb{R} generated by the basis $\{[s,t) \mid s < t\}$. (Equivalently $U \in \mathcal{T}$ if and only if for each $s \in U$ there is a t > s such that $[s,t) \subseteq U$.) Prove that the subset [0,1] of (\mathbb{R},\mathcal{T}) is not compact.
- 7. Is it obvious that the following result in analysis is an immediate consequence of results in Ch. 7 on compact spaces?

Theorem. Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Then f is bounded and achieves its bounds.

8. Which of the following spaces are compact? Why?

$$D^{n} = \{x \in \mathbb{R}^{n} \mid ||x|| \le 1\},\$$

$$\{x \in \mathbb{R}^{n} \mid ||x|| < 1\},\$$

$$\{(s,t) \in \mathbb{R}^{2} \mid 0 \le s \le 1, \ 0 \le t \le 4\},\$$

$$\{(s,t,u) \in \mathbb{R}^{3} \mid s^{2} + t^{2} \le 1\} \cap \{(s,t,u) \in \mathbb{R}^{3} \mid t^{2} + u^{2} \le 1\}.$$

9. Prove that a compact subset of \mathbb{R}^n is bounded.

- 10. Prove that the graph of a function $f:[0,1]\to\mathbb{R}$ is compact if and only if f is continuous. Give an example of a discontinuous function $g:[0,1]\to\mathbb{R}$ with a graph that is closed but not compact.
- 11.* Let X be a compact topological space arising from some metric space with metric d. Prove that if $\{U_j \mid j \in J\}$ is an open cover of X then there exists a real number $\delta > 0$ (called the *Lebesgue number* of $\{U_j \mid j \in J\}$) such that any subset of X of diameter less than δ is contained in one of the sets U_j , $j \in J$. [Hint: create another cover using balls, and use balls half the size you might first have thought.]
- 12.* Let X be a topological space and define X^{∞} to be $X \cup \{\infty\}$ where ∞ is some new element not contained in X. If \mathcal{T} is the topology for X then define \mathcal{T}^{∞} to be \mathcal{T} together with all sets of the form $V \cup \{\infty\}$ where $V \subseteq X$ and X V is both compact and closed in X. Prove that \mathcal{T}^{∞} is a topology for X^{∞} and that X^{∞} is compact. (X^{∞} is called the one-point compactification of X.)