Upload to Gradescope the starred questions 4, 8, 13 from Worksheet 9 before the end of the day on Wednesday 11/5/2025

- 1. Prove that the set of rational numbers $\mathbb{Q} \subset \mathbb{R}$ is not a connected set. What are the connected subsets of \mathbb{Q} ?
- 2. How obvious are the following for a space X?
- (i) If X has the discrete topology then the only connected subsets of X are single point subsets.
 - (ii) If X has the indiscrete topology then every subset of X is connected.
- 3. Which of the following subsets of \mathbb{R}^2 are connected?

$$\{x \mid ||x|| < 1\}, \quad \{x \mid ||x|| > 1\}, \quad \{x \mid ||x|| \neq 1\}.$$

- 4.* Let X be a set with 3 elements: $X = \{a, b, c\}$. In each part, X is given a different topology.
 - (i) In the topology $\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\}\$, is X connected?
 - (ii) In the topology $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\}$, is X connected?
 - (iii) In the topology $\mathcal{T}_3 = \{\emptyset, X, \{a\}, \{a,b\}, \{c\}, \{a,c\}\}\}$, is X connected?
- 5. Prove that a subset of \mathbb{R} is connected if and only if it is an interval or a single point. (A subset S of \mathbb{R} is called an *interval* if S contains at least two distinct points, and if $a, b \in S$ with a < b and a < x < b then $x \in S$.)
- 6. Show that the 6 spaces that are the intervals (0,1), (0,1], [0,1], the circle S^1 , 2-dimensional space \mathbb{R}^2 , and the union of 3 copies of [0,1] all identified together at a single point 1 (forming a Y) are all non-homeomorphic.
- 7. Prove that a topological space X is connected if and only if each continuous mapping of X into a discrete space (with at least two points) is a constant mapping.
- 8.* Let A be a connected subspace of X with $A \subseteq Y \subseteq \overline{A}$. Prove that Y is connected.
- 9. Suppose that Y_0 and $\{Y_j \mid j \in J\}$ are connected subsets of a space X. Prove that if $Y_0 \cap Y_j \neq \emptyset$ for all $j \in J$ then $Y = Y_0 \cup (\bigcup_{j \in J} Y_j)$ is connected.
- 10. Prove that $\mathbb{R}^{n+1} \{0\}$ is connected if $n \ge 1$. Deduce that S^n and $\mathbb{R}P^n$ are connected for $n \ge 1$. (Hint: Assume question 8. Consider $f: (\mathbb{R}^{n+1} \{0\}) \to S^n$ given by $f(x) = x/\|x\|$.)
- 11. This space and the space in the next question are the kind of weird things that are often considered at this point in this kind of course. Let A and B be subsets of \mathbb{R}^2 defined by

$$A = \{(x,y) \mid x = 0, -1 \le y \le 1\}$$

$$B = \{(x,y) \mid 0 \le x \le 1, \ y = \cos(\pi/x)\}$$

Prove that $X = A \cup B$ is connected. (Draw a picture. Prove that A and B are connected. If $X = U \cup V$ where U, V are open and closed in X, figure out what they must be. Finally assume that some point of A is in U.)

12. Let A and B be subsets of \mathbb{R}^2 defined by

$$A = \{(x, y) \mid 1/2 \le x \le 1, \ y = 0\}$$

$$B = \{(x, y) \mid 0 \le x \le 1, \ y = x/n \text{ where } n \in \mathbb{N}\}$$

Prove that $X = A \cup B$ is connected.

- 13.* Show that if X is an infinite set, it is connected in the finite complement topology.
- 14. Define a relation on a topological space X by $x \sim y$ if and only if there is a connected subspace of X containing both x and y.
- (i) Show that \sim is an equivalence relation. (The equivalence classes are called the connected components of X.)
 - (ii) What are the connected components of the spaces listed in questions 1 and 4?
- (iii) Show that (in general, not just for those questions) the connected components are a) connected and b) closed. Show by example that the connected components need not be open.