Homework Assignment 2 Due Saturday 3/5/2022, uploaded to Gradescope.
Each question part is worth 1 point. There are 12 question parts. Assume that all categories are small. We define Fun(\mathcal{C}, \mathcal{D}) to be the category whose objects are functors \mathcal{C} \to \mathcal{D} and whose morphisms are natural transformations.

1. Suppose that \(F : \mathcal{C} \to \mathcal{D} \) is an equivalence of categories.
 (a) Show that, for all objects \(x, y \in \text{Ob} \mathcal{C} \), the functor \(F \) provides a bijection
 \[
 \text{Hom}_\mathcal{C}(x, y) \leftrightarrow \text{Hom}_\mathcal{D}(F(x), F(y)),
 \]
 that preserves composition, so that \(\text{End}_\mathcal{C}(x) \cong \text{End}_\mathcal{D}(F(x)) \) as monoids.
 (b) Show that \(x \cong y \) in \(\mathcal{C} \) if and only if \(F(x) \cong F(y) \) in \(\mathcal{D} \), so that \(F \) provides a bijection between the isomorphism classes of \(\mathcal{C} \), and of \(\mathcal{D} \).
 (c) Let \(\mathcal{E} \) be a further category. Show that the functor categories Fun(\mathcal{C}, \mathcal{E}) and Fun(\mathcal{D}, \mathcal{E}) are naturally equivalent.

2. Let \(\mathcal{C} \) be a category and let \(x, y \in \text{Ob} \mathcal{C} \). Prove that if \(x \cong y \) then \(\text{Hom}_\mathcal{C}(x, -) \) and \(\text{Hom}_\mathcal{C}(y, -) \) are naturally isomorphic functors \(\mathcal{C} \to \text{Set} \).

3. Let \(F, G : \mathcal{C} \to \mathcal{D} \) be functors and \(\eta : F \to G \) a natural transformation.
 (a) Show that if, for all \(x \in \text{Ob} \mathcal{C} \), the mapping \(\eta_x : F(x) \to G(x) \) is an isomorphism in \(\mathcal{D} \), then \(\eta \) is a natural isomorphism (meaning that it has a 2-sided inverse natural transformation \(\theta : G \to F \)).
 (b) Suppose that \(F \) is an equivalence of categories and that \(F \) is naturally isomorphic to \(G \), so \(F \cong G \). Show that \(G \) is an equivalence of categories.

4. Let \(G \) be a group, which we regard as a category \(\mathcal{G} \) with a single object, and with the elements of \(G \) as morphisms. Let \(F : \mathcal{G} \to \mathcal{G} \) be a functor.
 (a) Show that \(F \) is naturally isomorphic to the identity functor \(1_\mathcal{G} : \mathcal{G} \to \mathcal{G} \) if and only if the mapping \(F : G \to G \), induced by \(F \) on the set of morphisms, is an inner automorphism; that is, an automorphism of the form \(c_g : G \to G \) for some \(g \in G \), where \(c_g(h) = ghg^{-1} \) for all \(h \in G \).
 (b) Show that self equivalences of \(\mathcal{G} \) are automorphisms of \(\mathcal{G} \).
 (c) Show that the group of natural isomorphism classes of self equivalences of \(\mathcal{G} \) is isomorphic to \(\text{Aut}(G)/\text{Inn}(G) \). (In the context of group theory, \(\text{Inn}(G) \) denotes the set of inner automorphisms of \(G \), and \(\text{Out}(G) := \text{Aut}(G)/\text{Inn}(G) \) is called the group of outer (or non-inner) automorphisms.)
5. Let I be the poset with two elements 0 and 1, and with $0 < 1$. If P and Q are posets we can regard them as categories \mathcal{P} and \mathcal{Q} whose objects are the elements of the posets, and where there is a unique morphism $x \to y$ if and only if $x \leq y$.

(a) Show that if P and Q are posets then a functor $P \to Q$ is ‘the same thing as’ an order-preserving map. (Don’t worry about any fancy interpretation of ‘the same thing as’!)

(b) Now consider two functors $F, G : \mathcal{P} \to \mathcal{Q}$, which we may regard as order-preserving maps $f, g : P \to Q$ by part (a). Show that the following three conditions are equivalent:

(i) there exists a natural transformation $F \to G$,

(ii) $f(x) \leq g(x)$ for all $x \in P$,

(iii) there is an order-preserving map $h : P \times I \to Q$ such that $h(x, 0) = f(x)$ and $h(x, 1) = g(x)$ for all $x \in \mathcal{P}$. Here $P \times I$ denotes the product poset with order relation $(a_1, b_1) \leq (a_2, b_2)$ if and only if $a_1 \leq a_2$ and $b_1 \leq b_2$, where $a_i \in P$ and $b_i \in I$.

6. Let $1_{R\text{-mod}} : R\text{-mod} \to R\text{-mod}$ denote the identity functor. Let $\text{Nat}(1_{R\text{-mod}}, 1_{R\text{-mod}})$ denote the set of natural transformations from this functor to itself, noting that this set has the structure of a ring (multiplication is composition and addition comes because we can add homomorphisms of R-modules, so that for two natural transformations θ, ψ at an object x we have $(\theta + \psi)_x = \theta_x + \psi_x$). Show that $\text{Nat}(1_{R\text{-mod}}, 1_{R\text{-mod}}) \cong \mathbb{Z}(R)$.

Extra question: do not upload to Gradescope.

7. Let \mathcal{C} be a small category and let $F, G : \mathcal{C} \to \text{Set}$ be functors. Show that a natural transformation of functors $\tau : F \to G$ is an epimorphism in $\text{Fun}(\mathcal{C}, \text{Set})$ if and only if for every object x of \mathcal{C}, $\tau_x : F(x) \to G(x)$ is a surjection; and it is a monomorphism if and only if for every object x of \mathcal{C}, $\tau_x : F(x) \to G(x)$ is a 1-1 map.

8. Write out a proof that if G is the right adjoint of a functor F with the property that F preserves monomorphisms, then G sends injective objects to injective objects.

9. Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ be functors with F left adjoint to G, and with adjunction unit η and counit ϵ. Write out a proof that the second triangular identity holds, namely the following triangle commutes:

$$
\begin{array}{ccc}
\text{G} & \xrightarrow{1_{\mathcal{C}}} & \text{G} \\
\downarrow{\eta_{\text{G}}} & & \downarrow{\text{G}\epsilon} \\
\text{GFG} & & \\
\end{array}
$$

10. Assume the axiom of choice in this question, or else make some assumption such as: everything is finite. Let \mathcal{C} be a category, and for each isomorphism class \hat{x} of objects x, choose a fixed representative $u_{\hat{x}}$. For each object x choose a fixed isomorphism $i_x : x \to u_{\hat{x}}$. Let \mathcal{D} be the full subcategory whose objects are the $u_{\hat{x}}$ where $x \in \text{Ob}\mathcal{C}$. ‘Full’ means that
for each pair of objects y, z of D we have $\text{Hom}_D(y, z) = \text{Hom}_C(y, z)$. Define $F(x) = \hat{x}$, and for each morphism $\alpha : x \to y$ define $F(\alpha) : F(x) \to F(y)$ to be $i_y \alpha i_x^{-1}$.

(a) Show that F is a functor.

(b) Show that F and the inclusion functor $\text{inc} : D \to C$ are inverse equivalences of categories $D \simeq C$. (It will help to assume that when $x = u_z$, the chosen isomorphism is the identity 1_x.)

(c) Deduce that the category Set of finite sets is equivalent to the category with objects $\mathbb{N} := \{0, 1, 2, \ldots\}$ and where $\text{Hom}(n, m)$ is the set of all mappings of sets from $\mathbf{n} := \{1, \ldots, n\}$ to $\mathbf{m} := \{1, \ldots, m\}$. We take $0 = \emptyset$.

(d) Deduce also the following: let K be a field. Show that the category Vec of finite dimensional vectors spaces over K is equivalent to the category C with objects $\mathbb{N} := \{0, 1, 2, \ldots\}$, where $\text{Hom}_C(n, m)$ is the set $M_{m,n}(K)$ of $m \times n$ matrices with entries in K, and where composition of morphisms is matrix multiplication. In case m or n is zero, give a definition of $\text{Hom}_C(n, m)$ that will make this question make sense.

11. Let C be a small category. A self-equivalence of C is an equivalence of categories $F : C \to C$. Show that the set of natural isomorphism classes of self equivalences of C is a group, with multiplication induced by composition of functors.