Answers to Practice Exam 3

1. a even, b odd, c even, d odd, e neither.
2.

$$
(f \circ g)(x)=\sqrt{\frac{1}{1+x^{2}}-1}=\sqrt{\frac{-x^{2}}{1+x^{2}}} .
$$

However this doesn't make much sense, because this function is undefined everywhere.

$$
(g \circ f)(x)=\frac{1}{x}
$$

3. Use the relationship $4 x+3 y=200$ to substitute for x in the expression $2 x y$ for the area. This gives a quadratic expression for the area which we maximize. The maximum occurs when $x=25$ and $y=100 / 3$.
4. The equation $y=a(x-1)(x-3)$ has the correct x-intercepts for every choice of a. The vertex has x-coordinates half-way between the x-intercepts (we could also get this by completing the square for the quadratic function), which is at $x=3$. Substituting $x=3$ and $y=5$ gives $a=-5$ so $y=-5(x-1)(x-3)$ is the equation.
5. The vertex is at $(-1,-9)$ and the intercepts are $(0,-7),(1 / 2,0),(-5 / 2,0)$.

6 . It is $(-1,1) \cup(1, \infty)$.
7. (a) the range of g is $[-1,1 / 2]$.
(b) The graph of $f+g$ passes through $(0,1 / 2),(1,3 / 2),(2,3 / 4),(3,1)$ with straight lines inbetween.
(c) The graph of $f \circ g$ passes through $(0,1 / 2),(1,0),(2,0),(3,1 / 2)$ and if you plot these points you would get full credit. It also passes through $(3 / 2,1 / 2)$ and there are with straight lines joining these 5 points making a W shape.
(d) The domain of $f \circ g$ is $[1,3]$.
(e) Shift the graph of g up 3 units and to the right 1 unit.
8. 1e 2 c 3 g 4 d 5 f 6 h 7 a 8 b .
9. (a) No inverse exists by the horizontal line test: the x-axis meets the curve at 3 points. (b)

$$
f^{-1}(x)=\sqrt[3]{\frac{1-x}{x}}
$$

10. (a) $x=-4,0,2$.
(b) When x is large and positive so is $f(x)$. When x is large and negative so is $f(x)$, because the leading coefficient is >0 and the degree of f is odd.
(c) There are two turning points. Since f has degree 3 there are at most 2 . Since f has 3 zeros there are at least 2 .
