
Math 8245 Homework 5 PJW

Date due: December 14, 2015. We will go over these questions in class on Dec.

16.

1. By drawing 3 planes cutting a regular cube so that the reflections in these planes

generate the group of all isometries of the cube, identify this group of isometries as a

Coxeter group. Draw the Coxeter diagram of the group. How big is the group?

2. By considering the effect of the element s1s2s1s3 on the geometric representation show

that in the group

〈s1, s2, s3
∣∣ s21, s21, s23, (s1s2)3, (s1s3)3, (s2s3)3〉

this element has infinite order.

3. Let ei be the ith unit coordinate vector in Rn.

(a) Show that the root system for the Coxeter group W whose diagram has n−1 nodes

◦ ◦· · ·◦ ◦ in a line may be identified with the n(n−1) vectors ei−ej with i 6= j

in such a way that the simple roots (the vectors αs) are the e2−e1, e3−e2, . . . , en−en−1
in the hyperplane of vectors with coordinate sum zero.

(b) Identify which of the vectors ei − ej are positive roots and which are negative

roots.

(c) By considering the action of W on the standard n− 1-simplex which is the convex

hull of e1, . . . , en in Rn, show that W ∼= Sn.

(d) Letting Sn act on {1, . . . , n} in the usual way, show that if g ∈ Sn then `(g) equals

the number of pairs i < j for which gi > gj.

4. (Exercise 1 on p. 115 of Humphreys) Given a reduced expression w = s1 · · · sr (si ∈ S),

set αi := αsi and βi := srsr−1 · · · si+1(αi), interpreting βr to be αr. Prove that Π(w)

(i.e. the set of positive roots sent to negative roots by w) consists of the r distinct

positive roots β1, . . . , βr.

5. (Exercise 2 on p. 115 of Humphreys) (a) If W is infinite, prove that the length

function takes arbitrarily large values, hence that Φ is infinite. Show that the scalar

−1 ∈ GL(V ) does not lie in σ(W ).

(b) If W is finite, prove that there is one and only one element w◦ ∈ W of maximal

length, and that w◦ maps Π onto −Π.

(c) Let Sn act on {1, . . . , n} in the usual way. Show that

w◦ = (1, n)(2, n− 1)(3, n− 2) · · · .

6. (Exercise on p. 127 of Humphreys) If the Tits cone U is equal to V ∗, prove that W

is finite. [Find w ∈ W for which w(C̄) meets −C. Then show that w−1(αs) < 0 for

all s ∈ S, and deduce that W is finite.]
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7. The Coxeter complex of a Coxeter system (W,S) is a ‘simplicial complex’ whose

simplices are the regions wCI where w ∈W and I ranges over the subsets of S which

are not equal to the whole of S. Here

CI = {f ∈ V ∗
∣∣ 〈f, αsi〉 = 0 for all i ∈ I, 〈f, αsi〉 ≥ 0 for all i 6∈ I}.

The subsimplices of wCI are the w′CI where w′CI ⊆ wCI .

[This construction really constructs the Coxeter complex in a way similar to an abstract

simplicial complex. The set of simplices in each dimension is an abstract set, and face

relationships are understood between simplices of different dimensions. Here the set

of vertices, for instance, is a set of lines in V ∗. ]

(a) Show that w′CJ ⊆ wCI if and only if J ⊃ I and w′CJ = wCJ . [Assume the

theorem in section 5.13 of Humphreys. In particular, note that CI is the fixed point

set DWI .]

(b) Show that the Coxeter complex may also be constructed in the following way: we

take the simplices to be in bijection with all cosets wWI where w ∈ W and I ⊂ S is

not equal to the whole of S. The subsimplices of wWI are the cosets w′WJ for which

w′WJ ⊇ wWI .

(c) With this description of the Coxeter complex, show that two simplices wWI and

w′WJ meet in a (non-empty) Simlex if and only if there is a third coset w′′WK which

contains them both. Show that in this case I ∪ J ⊆ K and w′′WK = wWK = w′WK .

Identify which cosets are the vertices of the Coxeter complex, and also which cosets

are the simplices of maximal dimension.

(d) Assume without proof that the maximal dimension of a simplex in the Coxeter

complex is |S|−1, and that every simplex is contained in a simplex of this dimension.

How many simplices of dimension |S| − 1 contain each simplex of dimension |S| − 2?
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