Chapter 5

Coxeter groups

Motivated by the examples of finite reflection groups (Chapter 1) and
affine Weyl groups (Chapter 4), we embark on the general study of Cox-
eter groups. After introducing the basic notions in 5.1-5.3, we examine
the ‘root system’ in 5.4-5.7, following Deodhar [4]. This leads to the
‘Strong Exchange Condition’ (5.8). Then we study the Bruhat ordering
in 5.9-5.11. Finally, we look more closely at parabolic subgroups, deriv-
ing an inductive formula to express Poincaré series as rational functions
in 5.12 and finding a fundamental domain for the action of our group in
5.13.

5.1 Coxeter systems

We define a Coxeter system to be a pair (W, S) consisting of a group
W and a set of generators S C W, subject only to relations of the form

(ssl)m(a,a') =1,

where m(s, s) = 1, m(s,s') = m(s',8) > 2for s # ¢’ in S. In case no
relation occurs for a pair s, s’, we make the convention that m(s, s') = oo.
Formally, W is the quotient F//N, where F is a free group on the set S
and N is the normal subgroup generated by all elements

[N

(s)m).

Call |S} the rank of (W, S). The canonical image of S in W is a gen-
erating set which might conceivably be smaller than S, but in fact it
will soon turn out to be in bijection with S (5.3). In the meantime, we
may allow ourselves to write s € W for the image of s € S, whenever
this creates no real ambiguity in the arguments. Moreover, we may refer
to W itself as a Coxeter group, when the presentation is understood.

ns
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Although a good part of the theory goes through for arbitrary S, we
shall always assume that S is finite.

This definition is of course motivated by the two geometric examples
studied earlier: finite groups generated by reflections (Chapter 1) and
affine Weyl groups (Chapter 4). However, the subject becomes vastly
more general when the choices of the m(s, s’} are essentially unrestricted.
As a result, the reader may well be skeptical at this point about the
depth or interest of such a generalization. It will be seen presently that
Coxeter groups do admit a sort of geometric interpretation as groups
generated by ‘reflections’ (in a weak sense), and that they share many
interesting features. The special cases just mentioned are the ones most
often encountered in applications, but there are further useful classes
of Coxeter groups (e.g., the ‘hyperbolic’ ones, and the ‘Weyl groups’
associated with Kac-Moody Lie algebras). While the general theory
may be regarded at first as mainly a nice unification of existing theories,
it also suggests new viewpoints and problems.

To specify a Coxeter system (W, S) is to specify a finite set S and a
symmetric matrix M indexed by S, with entries in Z U {oc} subject to
the conditions: m(s, s) =1, m(s,s') > 2 if s # §'. Equivalently, one can
draw an undirected graph I" with S as vertex set, joining vertices s and
s’ by an edge labelled m(s, s') whenever this number (oo allowed) is at
least 3. If distinct vertices s and s’ are not joined, it is then understood
that m(s,s’) = 2. As a simplifying convention, the label m(s,s’) = 3
may be omitted. As in 2.1, I is called a Coxeter graph.

Here are a couple of examples not previously encountered.

Ezample 1. In case all m(s, s') = 0o when s # &', we call W a universal
Coxeter group (see Dyer [2]). If |S| = 2, W is just the infinite dihedral
group D, an affine Weyl group of type A;.

Ezample 2. Let S = {s1, 82,83}, with m(s;,82) = 3, m(s1,83) = 2,
m(sz, 83) = 00, so the Coxeter graph is

o
oO—0 — O

The resulting Coxeter group W turns out to be isomorphic to PGL(2, Z)
= GL(2, Z)/{£1}. Denote the canonical map GL(2, Z) — PGL(2, Z) by

(¢a)~[2a]

Then send the generators 8;, 83, 83 to the respective elements of order 2

in PGL(2, Z):
Bt
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By checking the orders of the products, we see that this assignment in-
duces a homomorphism ¢ : W — PGL(2,Z). The image of ¢ includes
the subgroup PSL(2, Z) of index 2, since ¢(s183) and (s283) respec-
tively come from elementary matrices

01 1 1
(20)=(s1)
which are well known to generate SL(2, Z). Because PSL(2, Z) does not
contain the images of matrices of determinant —1 representing the s;,
we conclude that ¢ is surjective. To see that ¢ is injective, one can use
the standard fact that PSL(2, Z) is the free product of the groups of
orders 2 and 3 generated by (s;s3) and ¢(s182). (W is an example of
a ‘hyperbolic’ Coxeter group; see 6.8 below. It is discussed from several
perspectives in Brown [1], pp. 40-46.)

It is notoriously difficult to say much about a group given only by
generators and relations — for example, is the group trivial or not? In
our case, we can see right away that W has order at least 2. Start
with a homomorphism from the free group F onto the multiplicative
group {1, -1}, defined by sending each element of S to —1. It is obvious
that all elements (ss')™®*) lie in the kernel, so there is an induced
epimorphism ¢ : W — {1, -1} sending the image of each s € S to —1.
In particular, each of these generators of W does have order 2. The
map ¢ is the generalization for an arbitrary Coxeter group of the sign
character of the symmetric group.

Proposition There is a unique epimorphism e : W — {1, -1} sending
each generator s € S to —1. In particular, each s has order 2 in W. O

Note that when |S| = 1, W is just a group of order 2. When |S| =
2, W is dihedral, of order 2m(s,s') < oo if S = {s,8'}. So we are
already well acquainted with these types of Coxeter groups in the guise
of reflection groups.

Ezercise 1. Denote the kernel of € by W+t. If S = {s1,...,8n}, prove
that W+ is generated by the elements s;s, (1 <i<n—1).

Ezercise 2. If W has rank n and all m(s,s'), s # &', are even, then
W] > 2" *

5.2 Length function

Since the generators s € S have order 2 in W, each w # 1 in W can be
written in the form w = 8183 - - - s, for some s; (not necessarily distinct)
in S. If r is as small as possible, call it the length of w, written £(w),
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and call any expression of w as a product of r elements of S a reduced
expression. By convention, £(1) = 0. More formally, a reduced expres-
sion should be viewed as an ordered r-tuple (s;,...,s,). Note that the
lengths of partial products are predictable when w = s, - - - 8, is reduced:
£sy---8r—1) =r—1, £(s2--8,_1) = r — 2, etc. However, the length
function has its subtleties, because a typical element of W may have
numerous reduced expressions.

Ezercise. Prove that W is of ‘universal’ type (5.1) if and only if each
element has a unique reduced expression.

Here are some elementary properties of the length function:

(L1) f(w) = t(w™?). [Ifw =388, w! = 5.---8, s0f(w™!) <
{(w), and similarly for w™! in place of w.)

(L2) £(w) =1 if and only if w € S.

(L3) Yww') < (w) + £(w'). [If w=8,- -3, and w' = s} -3, then
the product ww’ = s; --- 8,8} - - - 8}, has length at most p + ¢.]

(L4) £(ww') > £(w) ~ &(w'). [Apply (L3) to the pair ww', (w’)~", then
use (L1)/]

(L5) £(w)—1 < f(ws) < €(w)+1, for s€ S and w € W. [Use (L3) and
(L4).]

Proposition The homomorphism e : W — {1, -1} of 5.1 is given by
e(w) = (—1)"®). As q result, L(ws) = L(w) £ 1, for alls € S,w e W,
and similarly for £(sw).

Proof. Write a reduced expression w = 8, --- 8,. Then
e(w) = (s1) - e(s;) = (=1)7 = (~1)4®),

as required. Now e(ws) = —e(w) implies that £(ws) # £(w). By property
(L5) above, the lengths must differ by precisely 1. O

In our study of Coxeter groups (as in the special cases treated earlier),
we shall often prove theorems by induction on ¢(w). It will therefore be
essential to understand the precise relationship between #(w) and £(ws)
(or £(sw)). For this we need a way to represent W concretely.

5.3 Geometric representation of W

Given a Coxeter system (W, .S), it is too much to expect a faithful rep-
resentation of W as a group generated by (orthogonal) reflections in a
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puclidean space. But we can get a reasonable substitute if we redefine a
reflection to be merely a linear transformation which fixes a hyperplane
pointwise and sends some nonzero vector to its negative. The idea is to
begin with a vector space V over R, having a basis {a,|s € S} in one-
to-one correspondence with S, and then to impose a geometry on V in
such a way that the ‘angle’ between a, and a, will be compatible with
the given m(s, 8'), i.e., with the previously studied geometry of dihedral
groups. Accordingly, we define a symmetric bilinear form B on V by
requiring: -

B(a,,ay) = —cos m.

(This expression is interpreted to be —1 in case m(s, s') = 00.) Evidently
B(a,, a,) = 1, while B(a,, a,) <0 if s # §'. Since a, is non-isotropic,
the subspace H, orthogonal to o, relative to B is complementary to the
line Ro,.
For each s € S we can now define a refiection o, : V — V by the
rule:
OsA = A~ 2B(0s, A as.

Clearly o,05 = —atg, while g, fixes H, pointwise. In particular, we see
that o, has order 2 in GL(V).

A quick calculation (left to the reader) shows that o, preserves the
form B, ie., B(o,\ 0,u) = B(A, ) for all \,u € V. As a result, each
element of the subgroup of GL(V') generated by the o,(s € S) will also
preserve B.

Our first task is to show that there exists a homomorphism from W
onto this linear group, sending s to o,. For this it is enough to check
that

(0,05)™®*) = 1 whenever s # 5.

Set m := m(s,s’) and consider first the two-dimensional subspace V; ¢
= Ras ® Ray. We claim that the restriction of B to V, . is positive
semidefinite, and moreover is nondegenerate precisely when m < co. To
check the first part, just take any A = aa,+boy (a,b € R), and compute

B(\, X) = a® —2abcos(r/m) +b? = (a—bcos(n/m))? +b%sin*(w/m) > 0.

In turn, the form is positive definite on V, 4 if sin (r/m) # 0, i.e.,
m < oo (whereas otherwise the nonzero vector a, i, is isotropic).

Having seen precisely how the form B behaves on‘V,,,,r, we note fur-
ther that o, and o, leave V, , stable: just look at the defining formula
for each reflection. So it makes sense to calculate the order of g,0,
viewed as an operator on V, . Two cases are possible:

(a) m < oo. Here the form is positive definite, so we find ourselves
in the familiar situation of the euclidean plane. Both o, and o, act as
orthogonal reflections. Since B(ay, oy ) = —cos(n/m) = cos(w — (7 /m)),
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the angle between the rays R*a, and Rta, is 7 — (r/m), forcing the
angle between the two reflecting lines to be =/m. From our previous
study of dihedral groups (1.1), we recognize 0,0, as a rotation through
the angle 2r/m; it therefore has order m.

(b) m = o0. Here B(as,ay) = —1. X = a; + ay, B(Aa,) =
0 = B{(\a,), so that both o, and oy fix A. In turn, o,0,00, =
os(as + 20p) = 30, + 205 = 2)\ + @, and by iteration, (0,0, )%, =
2kA +a, (k € Z). This implies that 0,0,/ has infinite order on V; .- (and
therefore also on V).

In case (a), the fact that B is nondegenerate on V , implies that
V is the orthogonal direct sum of V; ,» and its orthogonal complement;
evidently both ¢, and o, fix the latter subspace pointwise. Thus ¢,0,
also has order m on V. To summarize:

Proposition There is a unique homomorphism ¢ : W — GL(V)
sending s to a,, and the group o(W) preserves the form B on V. More-
over, for each pair 3,8’ € S, the order of ss' in W is precisely m(s,s').
o

This last observation removes any possible ambiguity in the status of
the generators s € S: if s # s’ in the subset S of the free group F, then
also s # &' in W, as promised in 5.1, and the subgroup of W generated
by 8,8’ is dihedral of order 2m(s, 8’). Now we know that W is not ‘too
small’. It remains to be seen that W is not ‘too big’, i.e., that ¢ has
trivial kernel (Corollary 5.4 below). This will require a closer study of
the action on V.

For convenience we shall refer to the homomorphism o as the geo-
metric representation of W. (However, it should be emphasized that
there may be other interesting ways to represent W as a group generated
by ‘reflections’, e.g., acting in a hyperbolic space. See Vinberg [1]-[5).)

Question. If W is an affine Weyl group, how does the geometric rep-
resentation compare with the action on euclidean space described in
Chapter 47 (This will be discussed in 6.5.)

Erercise. Prove that s, s’ € S are conjugate in W if and only if the fol-
lowing condition is satisfied: (*) There are elements s = sy, 82,...,8; =
s’ in S for which every s;s;{, has (finite) odd order.

(«=) In case w = ss’ itself has odd order 2p + 1, note that wPsw™F =
s'. Iterate!

(=) Fix s € S, and consider the set S’ of all s’ satisfying (*). It
must be shown that no element of S := S\ §’ is conjugate to s. Define
f:8 = {1,-1} by f(S') = 1, f(S”) = —1. Show that f induces a
homomorphism from W ta {1, —1}. Then all conjugates of s must lie in
Ker f.
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5.4 Positive and negative roots

A

In this section we obtain a precise criterion for #(ws) to be greater or
smaller than £(w), in terms of the action of W on V. This will be the key
0:all further combinatorial properties of W relative to the generating
gt S. To avoid cumbersome notation, we may write w(a,) in place of
o(w)(as).

*  First we introduce the root system ® of W, consisting of a set of
unit vectors in V permuted by W. Define ® to be the collection of all
rectors w(cas), where w € W and s € S. These are unit vectors, because
W preserves the form B on V. Note that ® = —®, since s(a;) = —a,.
If o is any root, we can write it uniquely in the form

o= Zc,a, (cs € R).

s€ES
7
5

Call a positive (resp. negative) and write a > 0 (resp. a < 0) if all
cy = O (resp. all ¢, < 0). For example, each a, is positive. Write &+
and @~ for the respective sets of positive and negative roots. It will be
an immediate consequence of the theorem below that these sets exhaust
.

Note that, in contrast to the situation in Chapter 1, we have in effect
specified once and for all a set of ‘simple’ roots.

We also have to introduce at this point the parabolic subgroup W;
of W, defined as in 1.10 to be the subgroup generated by a given subset
I ¢ S. (More generally, we refer to any conjugate of such a subgroup as
a parabolic subgroup.) In the following section, W; will be seen to be
a Coxeter group in its own right. For the present, we just note that it
has a length function £; relative to the generating set of involutions I.
It is clear that #(w) < £;(w) for all w € Wj. (It will be seen in 5.5 that
equality holds.)

Theorem Letw e W and s € S. If {(ws) > €(w), then w(a,) > 0.
If b(ws) < £(w), then w(a,) < 0.

Proof. Observe that the second statement follows from the first, applied
to ws in place of w: indeed, if £(ws) < #(w), then £((ws)s) > £(ws),
forcing ws(a,s) > 0, i.e., w(—~as) >0, or w(as) < 0.

To prove the first statement, we proceed by ifthiction on £(w). In
case £{(w) = 0, we have w = 1, and there is nothing to prove. If £(w) > 0,
we can find an s’ € S for which #(ws’) = £(w) — 1, say by choosing s’ to
be the last factor in a reduced expression for w. Since é(ws) > £(w) by
assumption, we see that s # s'. Set I := {3, s'}, so that Wj is dihedral.
Now we make a crucial choice within the coset wW;. Consider the set

A= {veWv'we Wy and £(v) + £1 (v 'w) = f(w)}.
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Evidently w € A. Choose v € A for which £(v) is as small as possible,
and write vy := v~'w € W;. Thus w = vvy, with &(w) = €(v) + €r(vr).
The strategy now is to analyze how each of v and vy acts on roots.

Observe that ws’ € A: Indeed, (s'w™)w = s’ lies in Wi, while
f(ws') + €1(8') = (f(w) — 1) + 1 = &(w). The choice of v therefore forces
f(v) < é(ws') = €(w) — 1. This will allow us to apply the induction
hypothesis to the pair v, s. But for this we need to compare the lengths
of v and vs. ‘

Suppose it were true that £(vs) < £(v), i.e., £(vs) = £(v) — 1. Then
we could calculate as follows:

d(w) < fws)+ £((sv1w) [use (L3) from 5.2]
< f(vs) + £y (sv™w) [since sv™'w € W; and £ < ¢]
= (f(v)—1) +£;(sv™ w)
< fv)—-1+& (v w)+1

v) + £r(v™w)
l(w).

So equality holds throughout, forcing #(w) = £(vs) + £r((sv™})w)
and therefore vs € A, contrary to £(vs) < #(v). This contradiction
shows that we must instead have £(vs) > £(v). By induction, we obtain:
v(a,) > 0. An entirely similar argument shows that £(vs’) > £(v),
whence v(a,) > 0.

Since w = vvy, we will be done if we can show that v; maps o, to a
nonnegative linear combination of o, and a,.

We claim that £;7(vrs) > €;(v). Otherwise we would have:

f(ws) = L(vv~ws) < £(v) + £(v ws) = £(v) 4 &(vrs)

< (v) + £r(vis) < £(v) + £1(vr) = L{w),

contrary to £(ws) > £(w). In turn, it follows that any reduced expression
for vy in Wy (an alternating product of factors s and s’) must end in s’
Consider the two possible cases:

(a) If m(s,s8’) = oo, an easy direct calculation shows that vs(a,) =
aas + ba,, with a,b > 0 and [a — b] = 1. Indeed, B(a,, ay) = —1, so
that 8'(as) = as + 2ay, 88'(a,) = 204 + 3a,,8'38' (0s) = 3a, + 4o,
and so on.

(b) If m := m(s,s’) < oo, notice that £7(vi) < m. Indeed, m is
clearly the maximum possible value of ¢;, and an element of length m
in W has a reduced expression ending with 8. So vy can be written as
a product of fewer than m/2 terms ss’, possibly preceded by one factor
s8'. Direct calculation will now show that v;(c;,) is a nonnegative linear
combination of @, and a,. (A rough sketch should make the argument
transparent.) Recall that we are now working in the euclidean plane,
with unit vectors o, and a, 8t an angle of m — m/m, and ss’ rotates
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o, through an angle of 27/m toward a,'. So the rotations involved
in vy move o, through at most an angle of # — 2r/m, still within the
positive cone defined by o, and a,. If vy further involves a reflection
corresponding to §', the resulting vector still lies within this positive
cone, because the angle between o, and the reflecting line is (7/2) —
(w/m). O

Corollary The representation o : W — GL(V) is faithful.

Proof. Let w € Ker 0. If w # 1, there exists s € § for which £(ws) <
£(w). The theorem says that w(a,) < 0. But w(e,) = a, > 0, which is
a contradiction. O

5.5 Parabolic subgroups

With Theorem 5.4 in hand, we can get more precise information about
the internal structure of W. First we want to clarify (as promised)
the nature of the parabolic subgroups W (I C S). The set I and the
corresponding values m(s, s') give rise to an abstractly defined Coxeter
group W7, to which our previous results apply. In particular, W; has
a geometric representation of its own. This can obviously be identified
with the action of the group generated by all o, (8 € I) on the subspace
Vi of V spanned by all o, (s € I), since the bilinear form B restricted
to V7 agrees with the form B; defined by W;. The group generated by
these o, is just the restriction to V; of the group o(Wr). On the other
hand, W; maps canonically onto W;, yielding a commutative triangle:

Wi — GL(V[)

N/
Wi

Since the map Wy — GL(V;) is injective by 5.4, we conclude that W is
isomorphic to W and is therefore itself a Coxeter group.

Theorem (a) For each subset I of S, the pair (W, I) with the given
values m(s, 8') is a Cozeter sy.stem

(by Lete ICS. Ifw=238;---8,(8;€S5)isa mduced expression, and
w€ Wi, thenalls;€l. In partzcu.lar the function £ agrees with £1 on
Wi and WinsS=1.

(c) The assignment I — W; defines a lattice isomorphism between
the collection of subsets of S and the collection of subgroups Wi of W.

(d) S is a minimal generating set for W.
Proof. We have just verified (a). For (b), use induction on £(w), noting
that £(1) = 0 = £;(1). Suppose w # 1, and set s = s,. According to
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Theorem 5.4, w(a,) < 0. Since w € Wy, we can also write w = ¢; -+ - ¢
with all ¢; € I. Therefore

q

w(a,) = as + iciati (ci € R).

i=1

Because w(a,) < 0, we must have s = {; for some i, forcing s € I.
In turn, ws = 8 ---8.—1 € Wi, and the expression is reduced. By
induction, all s; € I. The remaining assertions of (b) are clear.

To prove (c), suppose I,J C S. f Wy C Wy, then I = WiNS C
W; NS = J, thanks to (b). Thus I C J (resp. I = J) if and only
if Wi € W, (resp. Wy = Wy). It is clear that Wy, is the subgroup
of W generated by Wy and W;. On the other hand, (b) implies that
Wing = Wi N W;. This yields the desired lattice isomorphism. To
prove (d), suppose that a subset I of S generates W,so Wy = W = Wg.
According to (¢), I =S. O

Ezample. When the Coxeter group in question is an affine Weyl group
W, associated with a Weyl group W (Chapter 4), W itself is a parabolic
subgroup of W,: its Coxeter graph is obtained from that of W, by
removing a single vertex. In particular, the length functions of these
groups are compatible.

5.6 Geometric interpretation of the length
function

Our next goal is to extract from Theorem 5.4 a more precise description
of the way in which W permutes . Once we have this information in
hand, we can explore more deeply the internal structure of W itself.
Recall that P is the disjoint union of the sets &+ and ®~ of positive and
negative roots. For brevity, write I = &+

Proposition (a) Ifs € S, then s sends a, to its negative, but permutes
the remaining positive roots.

(b) For any w € W, £(w) equals the number of positive roots sent by
w to negative roots.

Proof. Note that part (a) is a special case of part (b); but it is needed
in the proof of (b).

(a) Suppose a > 0, but a # a,. Since all roots are unit vectors, «
cannot be a multiple of a,. We can therefore write

a = E Cirg,

- tes
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where all coefficients are nonnegative and some ¢; > 0, t # s. Applying

s to a only modifies this sum by adding some constant multiple of a,,
so the coefficient of o, remains strictly positive. It follows that s(ca)
cannot be a negative root, so it lies in I and is obviously distinct from

d,. Thus s(TT\ {a,}) C I\ {a,}. Apply s to both sides to get the
reverse inclusion.

(b) If w € W, define n(w) to be the number of positive roots sent by
w to negative roots, so :

n(w) = Card M(w), where II(w) := M Nw™!(-M).

(It is not instantly obvious that n(w) is finite, but this will follow from
the proof that n(w) = é(w).) Notice that part (a) implies that n(s) =1
for s€ S.

To see that n{w) behaves like the length function, we first verify that,
for s € S,w € W, the condition w(a,} > 0 implies n{(ws) = n{w) + 1,
whereas w(a,) < 0 implies n(ws) = n(w) — 1. Indeed, if w(a,) > 0,
part (a) implies that [I(ws) is the disjoint union of 3(II(w)) and {c,}.
Similarly, if w(a,) < 0, we get' [I(ws) = s(II{w) \ {a,}), with a, € II(w).

Now we proceed by induction on £(w) to prove that n(w) = £(w) for
all w € W. This is clear if £(w) = 0, and also (by part (a)) if {(w) = 1.
Theorem 5.4 says that £(ws) = £(w) + 1 (resp. £(w) — 1) just when
w(a,) > 0 (resp. < 0). Combining this with the preceding paragraph
and the induction hypothesis completes the proof. O

As in the case of finite reflection groups, part (a) of the proposition is
invoked frequently, usually as a device for recognizing that a positive root
obtained in the course of an argument is none other than a, (because s
sends it to a negative root).

Ezercise 1. Given a reduced expression w = 8, - -- 8, (8; € S), set a; :=
a,, and B; := s;8,_1 - 8it1(ey), interpreting 5, to be a,. Prove that
II(w) consists of the r distinct positive roots 8,.. ., fr.

Ezercise 2. If W is infinite, prove that the length function takes ar-
bitrarily large values, hence that ® is infinite. (Thetefore the scalar
—1 € GL(V) does not lie in o(W).) If W is finite, prove that there is
one and only one element w, € W of maximum length, and that w,
maps 11 onto —1II.

FEzercise 3. Use the fact that £(w) = n(w) to give another proof of part
(b) of Theorem 5.5. [Note that for w € Wi, n(w) > ny(w) is clear, if ny
has the obvious meaning.]
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5.7 Roots and reflections

By the way 0 : W — GL(V) was defined, each s € S acts on V as a
reflection. More generally, we can associate a reflection in GL(V') with
each root o € ®, as follows. Say o = w(a,) for some w € W,s € S.
Consider how wsw™! acts on V:

wsw™1(A) wlw™1(A) = 2B(w™1()), o) ]
A = 2B(w 1)), as) w(a,)

A = 2B(A\ w(a,)) w(o,)

A —2B() 0)a.

It follows that wsw~! depends only on «, not on the choice of w and
8. So we may denote it by s,. Moreover, s, acts on V as a reflection,
sending o to —a and fixing pointwise the hyperplane orthogonal to a. Of
course, both a and —a determine the same reflection s = 8_o. Denote
by T the set of all reflections s,, & € ®. Thus

T= U wSw™L.
weW

In order to pass back and forth freely between roots and reflections, we
should observe that the correspondence « — 3, is bijective (for o € IT).
Indeed, suppose that s, = 3g. From the above formula for s, (with
A = f3) we get B = B(8, a)a, forcing & = 3 since both are unit vectors
in I1.

One other observation is useful:

Lemma Ifa,8€ ® and 8 = w(a) for some w € W, then wsaw™! =
83.

Proof. This is immediate from the above formula for a reflection and
the fact that B is W-invariant. O

The following proposition generalizes Theorem 5.4 to arbitrary re-
flections.

Proposition Let w € W,a € I1. Then £(ws,) > €(w) if and only if
w(a) > 0.

Proof. As in the proof of Theorem 5.4, it will be enough to verify the
‘only if’ part. Proceed by induction on £(w), the case £(w) = O being
trivial. If £(w) > 0, there exists s € S such that ¢(sw) < £(w). Then
U((sw)sq) = €(s(wsa)) > l(wsy) — 1 > £(w) — 1 = £(sw). By induction,
sw(a) > 0. Suppose w(a) < 0. The only negative root made positive
by s is —a, (5.6), so w(a) = —a,. But then sw(a) = a, would imply
(sw)sa(sw)™! = s (by the above lemma), whence ws, = sw. This

contradicts £(ws,) > £(w) > £(sw). As a result, w(a) must be positive.
O
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5.8 Strong Exchange Condition

We are now able to prove a key fact about the nature of reduced ex-
pressions in W, which is at the heart of what it means to be a Coxeter
group.

Theorem Let w=38;---8,(8; € S), not necessarily a reduced ezpres-
ston. Suppose a reflection t € T satisfies £(wt) < €(w). Then there is
an index i for which wt = 81---8;--- 8, (omitting s;). If the erpression
for w is reduced, then i i3 unique.

Proof. Write t = s, (say a > 0). Since £(wt) < £(w), Proposition
5.7 forces w{a) < 0. Because @ > 0, there exists an index i < r
for which 8;41---8r(a) > 0 but 8;8,41---8,(a) < 0. According to
part (a) of Proposition 5.6, the only positive root which s; sends to
a negative root is a,,, S0 8iy1 - 8,(cx) = s,. Now Lemma 5.7 implies
(Si+1--+87)t(8r -+ 8iy1) = 8, or wt = 81 ---8; - - - 8, as required.

In case £(w) = r, consider what would happen if there were distinct
indices ¢ < j such that wt = 8;---8;---8;---8, = 81---8;-- 8- 5,.
8j—1, allowing us to write w = 8y ---8;--- & - - - 8,. This contradicts the
assumption that {(w) =r. O

Ezercise 1. Prove a version of the theorem in which the hypothesis reads:
f(tw) < €(w).

We shall refer to the main assertion of the theorem as the Strong
Exchange Condition. If ¢ is required to lie in S, the resulting weaker
statement is called the Exchange Condition, generalizing what we
proved in the case of finite reflection groups (1.7) and affine Weyl groups
(4.6):

Corollary (a) Suppose w = s1---8, (8; € S), with {(w) < r. Then
there exist indices i < j for which w = sy---8;---8j---8,. (This is
called the Deletion Condition.)

(b) If w=8y---35, (si €S), then a reduced expression for w may be
obtained by omitting certain s; (an even number, in fact).

Proof. (a) The hypothesis implies that there exists an index j for
which £(w's;) < é(w’), where w' := s;---s;—;. Applying the Ex-
change Condition to the pair w’,s;, we get w's; 2 4, .--5;---5;_1, or
w=31"'-§}"'~?j"'8r-

(b) This follows inductively from (a). O

This brings us full circle: recall that the proof in 1.9 shows that any
group generated by a set S of involutions and satisfying the Deletion
Condition must be a Coxeter group. The theory developed so far in this
chapter should, in principle, allow us to answer any reasonable question
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about Coxeter groups. In practice, some ingenuity is often required.
For example, it turns out to be true that the subset of S involved in
writing a reduced expression for an element w € W is independent of
the particular reduced expression chosen. A related fact is the equality
Wi N W; = Wyny. The reader might think about how to prove these
using the Exchange Condition (see 5.10 below for a less direct approach).

Ezercise 2. Let I C S. Prove that Wy is normal in W if and only if all
8 € S\ I commute with all 8’ € I. In terms of the Coxeter graph, this
means that I corresponds to a union of some connected components.
[Use the Exchange Condition to analyze the length of ss’s in Wr.]

Ezercise 3. Suppose w € W acts on V as a reflection, in the sense that
there exists a unit vector & € V for which w(A) = A - 2B(), a)a for all
A € V. Prove that a is a root and w = s,. [First show that, if s € §
and #(ws) < £(w), then either £(sws) = é(w) — 2 or else w(a,) = —a,,
using just the fact that w? = 1: find a reduced expression w = 8; - - - 8y
with 8, = 3, s0o w = s,---8; is also reduced, and use the Exchange
Condition together with 5.6. Now proceed by induction on £(w), to
show that w(8) = —f for some root 3, whence f = a or —, and w is
the reflection belonging to a.]

Ezercise 4. If I C S, set Tr := Uyew, wlw™" (the set of reflections
in the Coxeter group Wy). Prove that TNW; =T;. [If t € TN Wy,
write t = wsw™! = 5;,-..8,, with s € S, w € W, s; € I for all 7, and
¢(ws) > £(w). Use the Exchange Condition to show that ¢t = (w’)~!s'w’
for some s’ = 8;,w’ = 8;,1--- 8,

5.9 Bruhat ordering

Among the possible ways to partially order W in & way compatible
with the length function, the most useful has proven to be the Bruhat
ordering, defined as follows.

As before, T is the set of reflections in W with respect to roots.
Write w’ — w if w = w't for some ¢ € T with #(w) > ¢(w’). Then define
w’ < w if there is a sequence w’ = wp — w; — ... — Wy, = w. It is clear
that the resulting relation w’ < w is a partial ordering of W (reflexive,
antisymmetric, transitive), with 1 as the unique minimal element. Fol-
lowing Verma [2], we call it the Bruhat ordering. The terminology
is motivated by the way this ordering arises for Weyl groups in connec-
tion with inclusions among closures of Bruhat cells for a corresponding
semisimple algebraic group. In view of the way the ordering is defined,
it should not be surprising to find the Strong Exchange Condition used
below in investigating its properties.

&
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&1+ The definition has a one-sided appearance, since we have written
¢ on the right in defining the arrow relation. But this version could
just as well be replaced by a left-sided version. Say w = w's,, with
£(w) > B(w') Setting 8 = w'(a), we get (w') 'spw’ = s,, hence

& 8gw’. (On the other hand, if we had insisted that ¢ belong to S, the
‘resulting partial ordering, sometimes called the weak ordering, would
actually have a one-sided nature, as the reader can check for dihedral
groups. We won't pursue this possibility here, but see Bjorner [2].)
»i  One other remark about the definition: when w’ — w, the precise
length difference is not specified; it must be odd but need not be 1 (as
seen already in dihedral groups). So it is not clear at first whether two
immediately adjacent elements in the Bruhat ordering must differ in
length by just 1. This turns out to be true, but requires some delicate
arguments (5.11).

Another natural question about the ordering will also be deferred.

If I C S, the Coxeter group Wy has a Bruhat ordering of its own; does
t}us agree with the restriction to Wi of the Bruhat ordering of W? The
a.nswer will be given in 5.10.

Ezercise. Prove that v < w if and only if v=! < w1,

Example 1. If W is a dihedral group D,,, m < o0, all elements of
distinct lengths are comparable in the Bruhat ordering (but not in the
weak ordering): v < w if and only if £(v) < €(w).

Ezample 2. If W is the symmetric group S,, each element 7 can be
represented by the string of n integers (7(1),...,7(n)). Then 7 < g if
and only if ¢ is obtainable from 7 by a sequence of transpositions (ij),
where i < 7 and i occurs to the left of j in 7. For example, when n = 5,
we have 24153 — 42153 — 45123 — 54123, or more directly, 24153 —
54123. Another criterion, due to Deodhar, goes as follows. Given a
sequence of integers (ai,...,ax), denote by [ai,...,ax] the sequence
rewritten in increasing order. Order Z* by (ai,...,ax) < (by,...,by) iff
a; < b; for all i. Then 7 < o iff [w(1),...,mw(k)] < [0(1),...,0(k)] for
1<k<n.

Ezample 3. There is added symmetry in case W is finite, with longest
element w, (see Exercise 2 in 5.6). One sees easily that v < w if and
only if wow < wov. (This will be used in 7.6.) =

One rather subtle property of the Bruhat ordering is needed in 5.10:

Proposition Let w' < w and s € S. Then either w's < w or else
w's < ws (or both).



Proof. The proof reduces quickly (as the reader should check) to the
case w' — w, where w = w't (t € T) and &(w) > £(w’). If s =t, there j5
nothing to prove, so we assume 8 # . Two cases have to be analyzed:

(a) If £(w's) = £(w') — 1, then w’'s — w’ — w, forcing w's < w.

(b) If £&(w’'s) = £(w’) + 1, we shall argue that w's < ws. Since
(w’s)t’ = ws for the reflection t' = sts, it is enough to show that
f(w’'s) < £(ws). Suppose the contrary, i.e., £(ws) < &(w’s). Then the
Strong Exchange Condition (5.8) can be applied to the pair ¢ w’s as
follows. For any reduced expression w’ = 8;---8,, w's = 81 ---5,.8 is
also reduced, since £(w’s) > €(w’) by assumption. Then ws = (w’'s)t’ is
obtained from w’s by omitting one factor in this reduced decomposition.
This factor cannot be 3, since 8 # t. Thus ws = 8; - -+ §; - - - 3,.8 for some
i, or w = 8y -- - §; - - - 8, contradicting {(w) > £(w'). O

5.10 Subexpressions

There is a very simple and useful characterization of the Bruhat or-
dering in terms of subexpressions of a given reduced expression w =
8182 -- 8y, by which we mean products (not necessarily reduced, and
possibly empty) of the form s;, o8, (1 €41 <d2<...<4 <)
Formally, the given reduced expression is an ordered r-tuple of elements
of S, and a subexpression is a g-tuple obtained by discarding some or
all of these elements.

Theorem Letw = 8;---8, be a fized, but arbitrary, reduced expression
for w. Then w' < w if and only if w’ can be obtained as a subezpression
of this reduced ezpression.

Proof. Let us first show that any w’ < w occurs as a subexpression of
the given reduced expression for w. Start with the case w’ — w, say
w = w't. Since {(w') < £(w), the Strong Exchange Condition can be
applied to the pair ¢, w to yield w’ = wt = 8; --- §; - - - s, for some i. This
argument can be iterated. If in turn w’ — w’, with w’ = w’t’, apply the
Strong Exchange Condition to the pair t/,w’ = 8;---§;---s, (which is
not required to be a reduced expression!) to obtain

w :w’t’:sl...s"i...sj...sr

or else

In the other direction, we are given a subexpression s;, ---8;, and
must show it to be < w. Here we can use induction on r = {(w), the
case r = 0 being trivial. If {; < r, the induction hypothesis can be
applied to the reduced csf{xpression 81 - 8y_1 to yield:

8 -8, <8 - 81 = WS, < w.

I



