CHAPTER 11

Free Groups and Free Products

Generators and Relations

The notion of generators and relations can be extended from abelian groups
to arbitrary groups once we have a nonabelian analogue of free abelian
groups. We use the property appearing in Theorem 10.11 as our starting
point.

Definition. If X is a subset of a group F, then F is a free group with basis X
if, for every group G and every function f: X — G, there exists a unique
homomorphism ¢: F — G extending f

N
N
N e
N
N
N

X—f—»G.

We shall see later that X must generate F.

Observe that a basis in a free group behaves precisely as does a basis
B = {vy,..., v,} of a finite-dimensional vector space V. The theorem of linear
algebra showing that matrices correspond to linear transformations rests on
the fact that if W is any vector space and wy, ..., w, € W, then there exists a
unique linear transformation T: V — W with T(v;) = w; for all i.

The following construction will be used in proving that free groups exist.
Let X be a set and let X~ be a set, disjoint from X, for which there is a
bijection X — X!, which we denote by x> x!. Let X’ be a singleton set
disjoint from X U X~ whose only element is denoted by 1. If x € X, then x*
may denote x and x° may denote 1.
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Definition. A word on X is a sequence w = (ay,a,,...), where
a;e X u X~1 U {1} for all §, such that all @, = 1 from some point omn; that is,
there is an integer n > 0 with g; = 1 for all i > n. In particular, the constant
sequence i

1,1,1,...)

is a word, called the empty word, and it is also denoted by 1.

Since words contain only a finite number of letters before they become
constant, we use the more suggestive notation for nonempty words:

w=x{'x5...x"

e Xyl

where x;€ X, ;= +1, —1,0r0,and ¢, = + 1. Observe that this spelling of a
word is unique: two sequences (g;) and (b;) are equal if and only if a; = b, for
all i. The length of the empty word is defined to be 0; the length of w =
x§1x52... xt is defined to be n.

Definition. If w=x§...x"is a WOl'd, then its énverse is the word w™
1 n
—tn —e;
Xyt Xy

1

Definition. A word w on X is reduced if either w is empty or w = x§{'x5... xn,
where all x; € X, allg; = +1, and x and x™! are never adjacent.

The empty word is reduced, and the inverse of a reduced word is reduced.

Definition. A subword of w = x§'x%... x/ is either the empty word or a word
of the form v = xfi... x/%, where 1 <i<j<n

. Thus, v is a subword of w if there are (possibly empty) subwords w' and w”
with w = w'vw”. A nonempty word w is reduced if and only if it contains no
subwords of the form x*x™* or x°.

There is a multiplication of words: if w = x1x%... x2and u = y31 yg2... yom,
then wu = x§'x%...xgy$1ys2... yim This multiplication does not define a
product on the set of all reduced words on X because wu need not be reduced
(even when both w and u are). One can define a new multiplication of reduced
words w and u as the reduced word obtained from wu after cancellations.
More precisely, there is a (possibly empty) subword v of w with w=w'p
such that v~ is a subword of u with u = v u” and such that w'u” is reduced.
Define a product of reduced words, called juxtaposition, by

wu = wu".
Theorem 11.1. Given a set X, there exists a free group F with basis X.

Proof. Let F be the set of all the reduced words on X. One can show that F
is a group under juxtaposition, but verifying associativity involves tedious
case analyses. Instead, we use the van der Waerden trick (1945).
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For each x € X, consider the functions |x|: F — F and |x~!|: F — F, defined
as follows: for e = +1,

xEx{xgr. L xin if x££ x7H,

£ & &y En) —
[%°] (x21x2... x5n) {x?...x,ﬁ" i xt = xoe,

Since |x?| o |x 7| and |x7¢| o | x*| are both equal to the identity 15: F — F, it
follows that | x| is a permutation of F with inverse |x7¢|. Let Sy be the sym-
metric group on F, and let & be the subgroup of S generated by [X] =
{Ix|: x € X}. We claim that & is a free group with basis [X]. Note that there
is a bijection {: [X] — X, namely, | x| x.

An arbitrary element g € & (other than the identity) has a factorization

(%) g=Ixple|xglo- o lxr,

where ¢; = 11 and |x®| and |x~¢| are never adjacent (or we can cancel). Such
a factorization of g is unique, for g(1) = x§'x%... x%, and we have already
noted that the spelling of a (reduced) word is unique.

To see that & is free with basis [X], assume that G is a group and that
f:[X]— G is a function. Since the factorization (#) is unique, the function
@: F — G, given by o(|x{!] o [x5| o+ o [xpr]) = fUxTNA(Ux])... [ x57)), is
well defined and extends f. Since [ X] generates %, it suffices to show that ¢
is a homomorphism, for uniqueness of ¢ would then follow from the fact that
two homomorphisms agreeing on a generating set must be equal.

Let w and u be reduced words on [X]. It is obvious that @(wou) =
@W)e(u) whenever the word wu (obtained from w o u by deleting vertical
bars) is reduced. Write w=w'ov and u=v"'ou", as in the defini-
tion of juxtaposition. Now ¢(w) = o(W)e() and o) = @ !)eu") =
o) o(u") (because w’ o v and v™! o u” are reduced). Therefore, p(w)p(u) =
e(W)o®)ev) teu”)=p(w)eu"). On the other hand, p(w o W)= (w' o u")
= @(w)o(u") (because w' o u” is reduced), and so ¢ is a homomorphism.

We have shown that & is a free group with basis [X]. Since ;ﬁ — F,
defined by |x5!| o [ x| o - -+ o |xZ| > x5 x52... x}n, is a bijection with {([X]) =
{([X]) = X, Exercise 1.44 shows that we may regard F as a group isomor-
phic to &; thus, F is a free group with basis X (moreover, X generates F
because [ X] generates #). H

Corollary 11.2. Every group G is a quotient of a free group.

Proof. Construct a set X = {x,: g € G} so that f: x,1—g is a bijection X — G.
If F is free with basis X, then there is a homomorphism ¢: F — G extending
f,and ¢ is a surjection because f is. Therefore, G = F/ker ¢. B

Befinition. Let X be a set and let A be a family of words on X. A group G has
generators X and relations A if G = F/R, where F is the free group with basis
X and R is the normal subgroup of F generated by A. The ordered pair (X|A)
is called a presentation of G.
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A relation® r € A is often written as » = 1 to convey its significance in the
quotient group G being presented.

There are two reasons forcing us to define R as the normal subgroup of F
generated by A: if re A and w e F, then r = 1 in G implies wrw™ = 1in G;
we wish to form a quotient group.

EXaMPLE 11.1. G = Z has generator x and relation x% = 1.

A free group F = (x) on one generator is infinite cyclic, and {(x)/{x%) ~
Zg. A presentation of G is (x| x®).

ExampLE 11.2. Another presentation of G = Z is

Zg=(xylx*=1y" =1, xyx7 'yt =1).

When we described a presentation of Z4 as an abelian group in Example
10.2 (i.e., when we viewed Z4 as a quotient of a free abelian group), the only
relations were x> and y%. Now we must also have the commutator as a
relation to force the images of x and y to commute in F/R.

ExampLE 11.3. The dihedral group D,, has a presentation

Dy ={x,y|x"=1,y* = 1, yxy = x7%).

It is acceptable to write a relation as yxy = x™! instead of xyxy = 1. In
particular, compare the presentation of Dg with that of Z, in Example 11.2.
~ We have passed over a point needing more discussion. By definition, D,, is
a group of order 2n having generators S and T satisfying the given relations.
If G = F/R, where F is the free group with basis {x, y} and R is the normal
subgroup generated by {x", y", xyxy}, does G have order 2n? We have seen
various concrete versions of D,,; for example, Theorem 3.31 displays it as the
symmetry group of a. regular n-gon. The definition of free group gives a
surjective homomorphism ¢: F — D,, with ¢{x) = § and ¢(y) = T. More-
over, R < ker ¢, because S and T satisfy the relations, so that the third
isomorphism theorem gives a surjection F/R — F/ker ¢; that is, there is a
surjection? G = F/R — D,,. Hence, |G| = 2n. The reverse inequality also

! Many authors use the words “relation” and “relator” interchangeably.

2 W. von Dyck (1882) invented free groups and used them to give the first precise definition of
presentations. The version of the third isomorphism theorem used here is often called von Dyck’s
Theorem: Let G have a presentation

G=(xy,..., X[y oo X, jE€T)

so that G = F/R, where F is the free group with basis {x,, ..., x,} and R is the normal subgroup
generated by the ;. If H is a group with H = (y,, ..., Yy and if ry(y;, ..., y,) = 1 for all j, then
there is a surjective homomorphism G — H with x;+— y, for all i,
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holds, for each element in G has a factorization x’y’R with 0 < i <n and
0 <j <2 Thus, |G| = 2n, and we are now entitled to write G = D,,.

A description of a group by generators and relations is flawed in that the
order of the presented group is difficult to determine. This is not a minor
difficulty, for we shall see in the next chapter that it is even an unsolvable
problem (in the logicians’ precise sense) to determine, from an arbitrary
presentation, the order of the presented group. Indeed, it is an unsolvable
problem to determine whether a presentation defines a group of order 1. The
reader should also see the next section on coset enumeration.

Let us continue the list of examples.

ExaMPLE 11.4. The group of quaternions has presentations
Q=(abla*=1,b*=a%bab™ =a™)
and
Q =(x ylxyx =y, x* =y?).

In each case, an argument is needed to show that the presented group has
order 8.
ExampLE 11.5. Given positive integers [, m, and n, define
P(l,m,n) = (s, t|s' = t™ = (st)" = 1).

Example 11.3 shows that P(n, 2,2) = D,, and, using Exercise 3.52, one can
show that P(2, 3,3)  A,, P(2,3,4) = §,, and P(2, 3, 5) @ As. These groups
are called polyhedral groups, and they are finite only in the cases just listed
(see Coxeter—Moser).

ExampLE 11.6. The draid group B,, has the presentation
(615 2> Omlloi, Uj] =1#j#it1, 001410 = 0;410i0;44).

Braid groups were introduced by E. Artin (1925) and are related to knot
theory.

ExampLE 11.7. A free abelian group G with basis X has presentation
G =(X|xyxty~t=1forall x,y € X);
a free group F with basis X has presentation
F = (X2).

Having proved that free groups exist, let us now consider their uniqueness;
that is, when are two free groups isomorphic.

Lemima 11.3. If F is a free group with basis X, then F/F' is a free abelian group
with basis X, = {xF": x e X}.
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Proof. Assume that A is an abelian group and that f: X, — A4 is a function.
Define f,: X - A by x> f(xF'). Since F is free with basis X, there is a
homomorphism ¢: F — A extending f,. But F’ < ker ¢, because 4 is abelian,
so that there is a homomorphism @: F/F' — A, defined by wF +— p(w),
extending f.

We claim that the extension @ is unique. Suppose that 6: F/F' — A and
O(xF') = f(xF'). If v: F —> F/F' is the natural map, then 6v:F > A4 is a
homomorphism with 8v(x) = 8(xF') = f(xF') = @(x)for all x € X. Since X is
a basis of F, 8v = ¢ = @v; since v is surjective, @ = @. Therefore, F/F' is free
abelian with basis X ,. &

Theorem 11.4. Let F and G be free groups with bases X and Y, respectively.
Then F = G if and only if | X| = |Y|.

Proof. If ¢: F — G is an isomorphism, then F/F’ = G/G'. By the lemma, F/F’
is free abelian with basis X, = {xF': xe X}. As |X,| =|X], it follows that
| X| = rank(F/F’). Similarly, | Y| = rank(G/G'), and so | X | = | Y|, by Theorem
10.14.

If | X| = | Y|, there is a bijection f: X — Y which, upon composing with the
inclusion Y =» G, may be regarded as a function X — G. Since F is free with
basis X, there is a unique homomorphism ¢: F — G extending f. Similarly,
there is a unique homomorphism y: G — F extending f!: Y — X. The com-
posite Y¢: F — F is a homomorphism which fixes X pointwise; that is, Y ¢
extends the inclusion function 7: X <» F. But the identity 1;-also extends
and so uniqueness of extension gives Y = 1. Similarly, ¢y = 15, so that
@: F — G is an isomorphism. &

Definition. The rani of a free group F is the number of elements in a basis
of F.

Theorem 11.4 says that rank(F) does not depend on the choice of basis
of F.

Corollary 11.5. If F is free with basis X, then F is generated by X.

Proof. Choose a set Y with |Y| =|X| and a bijection f: Y — X. The free
group G with basis Y constructed in Theorem 11.1 (as the set of all reduced
words on Y) is generated by Y. As in the proof of Theorem 11.4, the
homomorphism y: G — F extending f is an isomorphism, so that G = (Y
implies F = (Y(Y)) =<f(¥)) =<X). &

Theorem 11.6 (Projective Property). Let f: B — C be a surjective homomor-
phism. If F is free and if a: F — C is a homomorphism, then there exists a
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homomorphism y: F — B making the diagram below commute (i.e., fy = o).

B — C.
Proof. The proof is identical to that given for free abelian groups in Theorem
10.15.

We shall see in Exercise 11.46 below that the converse of Theorem 11.6 is
also true: a group G is free if and only if it has the projective property.

Semigroup Interlude

We are now going to construct free semigroups; the formal definition is no
surprise.

Definition. If X is a subset of a semigroup X, then X is a free semigroup with
basis X if, for every semigroup S and every function f: X — §, there exists a
unique homomorphism ¢: X — § extending f.

X — S.
Definition. A word w on X is positive if either w =1 or w = x{'x5*...x:",
where all exponents ¢; > 0.

The set  of all positive words on X is a free semigroup with basis X (the
product of positive words is positive and, with no cancellation possible, it is
easy to prove that multiplication is associative). It follows that every semi-
group is a homomorphic image of a free semigroup. Before defining presenta-
tions of semigroups, however, we first define quotients.

Definition. A congruence on a semigroup § is an equivalence relation = on §
such that
a=ad and b=b" imply ab=a'b’
_If = is a congruence on a semigroup S, then the guotient semigroup is the
set of all equivalence classes, denoted by S/=, with the operation

[al[b] = [ab],
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where [a] denotes the equivalence class of a € § (this operation is well defined
because = is a congruence).

There are two general constructions of congruences. The first arises from a
homomorphism ¢: S — T of semigroups; define a = b if ¢(a) = ¢(b). This
congruence is called ker g, and it is straightforward to prove the first isomor-
phism theorem:

S/ker ¢ =~ im ¢

(if S and T are groups and K = {s € S: ¢(s) = 1}, then ker ¢ is the equiva-
lence relation on S whose equivalence classes are the cosets of K). Here is a
second construction. As any relation on S, a congruence is a subset of S x .
It is easy to see that any intersection of congruences is itself a congruence.
Since S x § is a congruence, one may thus define the congruence generated
by any subset £ of § x S as the intersection of all the congruences containing
E.If X is the free semigroup with basis X and if {w; = ;: i € I} is a family of
equations, where w;, y; € Z, then define = to be the congruence generated by
{(w, w;xiel} = X x Z. The quotient semigroup X/= is said to have the
presentation
(X|w; = u; for all i € I).

EXERCISES

11.1. Use presentations to prove the existence of the nonabelian groups of order p®,
where p is prime. (See Exercise 4.32.) )

11.2. Prove that a free group of rank > 2 is a centerless torsion-free group.

11.3. Prove that the group G = (x, y|x™, y") is infinite when m, n > 2.

11.4 (Baer). Prove that a group E has the injective property if and only if E = 1.
(Hint. D.L. Johnson). Let A be free with basis {x, y} and let B be the semidirect
product B = A x{z), where z is an involution acting by zxz = y and zyz = x.)

11.5. Let X be the disjoint union X = Y U Z. If F'is free with basis X and N is the
normal subgroup generated by ¥, then F/N is free with basis {zN:z € Z}.

11.6. Show that a free group F of rank > 2 has an automorphism ¢ with @(p(w)) =
w for all w e F and with no fixed points (¢(w) = w implies w = 1). (Compare
Exercise 1.50.)

11.7. If H < G and G/H is free, then G is a semidirect product of H by G/H. (Hint.
Corollary 10.16 and Lemma 7.20.)

11.8. Let G be a group, let {t;;iel} = G,and let S = (t:iel) < G. If there is a
homomorphism ¢: G — F (where F is the free group with basis X = {x;: i e I})
with (t;) = x; for all 4, then S is a free group with basis {t;: i e I}.

11.9. The binary tetrahedral group B is the group having the presentation

B=(r,s tlr* =s>=t> =rst).
(i) Prove that rst € Z(B) and that B/{rst) = A, (the tetrahedral group).
(ii) Prove that B has order 24.
(ili) Prove that B has no subgroup of order 12.
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11.10. The dicyclic group DC,, is the group having the presentation
DC, = (r, 5, t|r* = s* = " = rst).
(i) Ifn = 2™ 2, then DC, = Q,,, the generalized quaternion group (see Exercise
4.40).
(i) Show that DC, has order 4n.

11.11. Show that (oy0;...0,)" € Z(B,,), where B,, is the braid group (see Example
11.6). Tt is known that Z(B,) is the infinite cyclic group generated by this
element.

11.12. (i) Show that a free semigroup with a basis having at least two elements is not

commutative.

(ii) Show that a subsemigroup of a free semigroup need not be free. (Hint. Find
an appropriate subsemigroup of the multiplicative semigroup of positive
integers.)

Coset Enumeration

The method of coset enumeration, distilled by Todd and Coxeter (1936) from
earlier particular cases, is a mechanical way to find the order of a given group
from a presentation. It does not always work (nor can any such algorithm
always work, as we shall see in the next chapter), but it does work whenever
the presented group is finite. The method rests on the following elementary
lemma.

Lemma 11.7. Let G be a finite group, X a set of generators of G,H < G
a subgroup, and Hw,, ..., Hw, some distinct cosets of H. If \Jiy Hw, is
closed under right multiplication by every a€ X U X™*, then G = (Jiuy Hw,,
[G:H] =n,and |G| = n|H|.

Prooj. If Y is any nonempty subset of G with Yac Y for allae X u X7},
then ¥ = G (because X generates G and w € Y for every word w on X). In
particular, G = | J7-, Hw;, so that every coset of H must appear as Hw, for
some i; thatis, [G:H]=n &

We illustrate the method in a specific case before describing it in general.
Let G be the group having the presentation
G=(s,t|s> =1t> = 1,tst = §?).
Write each of the relations as a word with all exponents +1:
sss; tt; tsts~ts7l.
For each of these relation words, begin making a relation table by putting a
vertical line under each of its letters.

st s s t ot t s..t st's
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If a word has [ letters, there are thus / vertical lines. We regard these lines as
being the dividing lines forming [ + 1 columns, and we now proceed to create
rows. In each of the three tables, put 1 at the beginning and at the end of the
first row. Draw row 2 (in each table), beginning and ending with 2, and put 2
next to 1 in the first table.

5 s s t ot t s t st's
112 1 1 1 1 1
2 2 2 2 2 2

Build an auxiliary table containing entries
s st
1}2 and 21

Now scan each of the tables to see whether there are any empty squares of
either of the two forms

s s s t ot t s t sts
112 1 1 1.1 201
2 2 2 2 2 2

Having filled all such squares, now draw row 3 (in each table), beginning and
ending with 3, and put 3 in the first available square in the first table (next
to 2).

s s s t ot t s t s's
1121311 1 1 1 211
2 2 2 2 2 2
3 3 3 3 3 3

The auxiliary table receives new entries

s s71

2|3 and 3|2
and, because the first row of table one has been completed, there are bonus
entries: the auxiliary table also receives

s 57!

311 and 1] 3.
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Now fill more squares using the (enlarged) auxiliary table to obtain

s s s t ot t s t sty
112131 1 1 1 31211
213112 2 2 2 1132
3111213 3 3 3 21113

The first table is complete, but we will continue until all the relation tables
are complete (if possible). The next step draws row 4 (in all three tables) with
4 in the first row of the second table, yielding auxiliary table entries
t !
1{4 and 4|1
as well as bonus entries
t !
411 and 1]4.

Fill in more square using the auxiliary table and obtain

s s s t t t S t s° s
1121311 11471 114 3121
2131112 2 2 2 411132
3111213 3 3 3 2113
4 4 41114 41142 4

Continue adding rows 5 and 6, filling in squares using all the entries in the
auxiliary table.

S S N t 13 t N 13 S N
1231 1141 145|321
24312 21612 2|6|4|1]|3]2
30123 3|53 3|s5|6f2{1]3
415 4 4ltl4 4|1]2]6]5]|4
5 415 5[(315 5{3|1]|4 5
6 6 6216 6[2]3]5]4]6

When we try to add row 7, a new feature appears. In row 4 of the first table,
the new 7 after 5 gives the auxiliary table entry

s
507
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but the auxiliary table already contains
s
516.

This is an instance of coset collapse; delete row 7 and replace all other occur-
rences of 7 by the smaller number 6, including the entries in the auxiliary
table. Continuing this procedure ultimately leads to the completed tables

s s s t ot t s t stst
112131 1141 1{4 53|21
213 11]2 21612 216 |4 11]3])2
3111213 31573 31516121} 3
4151614- 41114 4111216|5]| 4
S161415 50315 S5{3|1(4]61{5
6456 6216 6|2]3]1]3]6

The procedure now stops because all the relation tables are complete.
According to the next theorem, the conclusion is that the presented group G
has order 6 (of course, G = S,).

Theorem 11.8 (Coset Enumeration). Let G have a presentation with a finite
number of generators and relations. Set up one table for each relation as above,
add new integer entries and enlarge the auxiliary table as above whenever
possible, and delete any larger numbers involved in coset collapse. If the proce-
dure ends with all relation tables complete and having n rows, then the presented
group G has order n.

Proof. Let 1 denote the identity element of G, and assume that the other
integers i in the tables, where 1 < i < n, denote other elements of G. The entry

a
il

in any relation table is interpreted as the equation ia = j in G. This explains
the twin entries in the auxiliary table: if ia = j, then ja™! = i. The construction
of the relation tables is a naming of elements of G. If there is a blank square
to the right of i, with line labeled a between, then j is the element ia; if the
blank square is to the left, then j is the element ia~*. Coset collapse occurs
when ia = j and ia = k, in which case j = k.

Let Y be the set of elements in G that have been denoted by some i with
1 <i < n That all the tables are complete says that right multiplication by
any a € X U X! produces only elements of Y. Therefore, Lemma 11.7 applies
to Y (with H taken to be the trivial subgroup), and so |G| = n.
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Notice the hypothesis “If the procedure ends”; one does not know in ad-
vance whether the procedure wiil end.

There is a generalization of the algorithm from which the name “coset
enumeration” arises. Consider the binary tetrahedral group (of order 24)
given in Exercise 11.9:

B=(r,s,tlr* =5>=t>=rst).
First rewrite the presentation to display relations equal to 1:
B=(,s tlrist =r"2s> = 1715712 = 1).

One could use Theorem 11.8 to show that B has order 24, but tables with 24
rows are tedious to do. Instead, let us choose a subgroup H < G for which
generators are known. For example, we might choose H = {s) in this exam-
ple (cyclic subgroups are simplest). The idea is to use a slight variant of
Theorem 11.8 to enumerate the cosets of H in G (instead of the elements of G).
This is done as follows. In addition to relation tables, draw subgroup genera-
tor tables, one for each generator of H. For example, there are two such tables
if we choose H = {rst, 5); there is just one such table if we choose H = {s).
New tables consist of one row, and they are called complete once all their
squares are filled without drawing any new rows under them. In our example,
there is just one subgroup generator table, and it is already complete.

S

T

In the general case, the rows of the subgroup generator tables are completed
first, giving pairs of entries to the auxiliary table (in our example, the entries
in the auxiliary table arising from the subgroup generator table are

s st

1|1 and 1]1)

After completing these one-rowed tables, the relation tables are completed as
before. The numbers i now denote right cosets of H in G, with 1 denoting H.
The entry ‘
a
il

in a table means that if i = Hw, then j = Hwa. When all the tables are com-
pleted, Lemma 11.7 applies to calculate [G : H], and hence |G| is known if | H|
is. This version actually does enumerate the cosets of H.

In Exercise 11.13 below, the reader is asked to use coset enumeration to
show that the order of the binary tetrahedral group B is 24. One must com-
pute |H|; that is, one must compute the order of s (it is 6) and then see that
the relation tables are complete with 4 rows.

There are two unexpected consequences of coset enumeration. When H =
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1, the completed relation tables can be used to construct the regular represen-
tation of G. For example, we saw above that the presentation of G = S5,

G={(st|ls®=1t>=1,tst = 5%),

has relation tables:

s s s t ot t s t stst
11213¢f1 11411 1141513121
213112 21612 2161411132
3111213 31513 315162113
4151614 41114 4111216154
S161415 51315 S{13)1]4]6]5
614|516 6126 6123|1316

The first column of the first table displays the values of right multiplication
by s (as a permutation of {1, ..., 6}), and the first column of the second table
does this for . Right multiplication by s and ¢ are:

s>123)@ 56 and (1 HE2 63 5),

so that the right regular representation has R, =(1 3 2)(4 6 5) (because
Ry i is™) and R, = (1 4)(2 6)(3 5). More generally, when one enumer-
ates the cosets of a subgroup H of G, then one obtains the representation of
G on the cosets of H (the construction above differs from that of Theorem
3.14 only in giving the representation on the right cosets of H instead of on
the left cosets as in that theorem).

The information contained in completed relation tables can also be used to
draw a directed graph.

Definition. A directed graph T is a set V, called vertices, together with a subset
E c V x V; ordered pairs (u, v) € E are called directed edges. A directed
graph yields an associated graph I": both I and I" have the same vertices,
and u and v are called adjacent in I'" if u + v and either (u, v) or (v, u) is a
directed edge in T'.

One can picture a finite directed graph I' by drawing V as points and
drawing an arrow from u to v if (1, v) € E. In contrast to graphs, which have
at most one edge between any pair of vertices, a directed graph may have two
edges between a pair of vertices, one in each direction (given u, v € V, it may
happen that both (u, v) and (v, u) € E). However, even if both (u, v) and (v, u)
are directed edges in T, there is only edge between them in the associated
graph I". (There is a notion of multigraph, directed or nondirected, which
allows many edges between a given pair of vertices, but we do not need
them here.)
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Definition. Let G be a group and let X be a set of generators of G. The
Cayley graph T =T(G, X) is the directed graph with vertices the elements
of G and with a directed edge from g to hif h = gx for some x € X.

If coset enumeration of a presentation (X|A) of a group G yields complete
relation tables, then one can record the information in these tables as the
Cayley graph I'(G, X). For example, here is the Cayley graph of S; obtained
from the presentation above.

Figure 11.1

The Cayley graph of a group and a generating set is always defined, wheth-
er or not coset enumeration can be completed. Notice that the Cayley graph
does depend on the choice of generating set. For example, a loop is an edge of
the form (v, v). If we take G itself as a generating set, then I'(G, G) contains
the loop (1, 1), while T'(G, X) has no loops if 1 ¢ X. The Cayley graph is
the beginning of a rich and fruitful geometric way of viewing presentations
(see Burnside (1911), Dicks and Dunwoody (1989), Gersten (1987), Lyndon
and Schupp (1977), and Serre (1980)).

EXERCISES

11.13. (i) In the presentation of the binary tetrahedral group B given above, show
that s has order 6 in B.
(i) Use coset enumeration relative to the subgroup H = {s) to compute the
order of B.
(iii) Find the representation of B on the (right) cosets of H.

11.14. Describe the group G to isomorphism if G has the presentation

(@rstrg =gt = s s =14t = st =tr).

11.15. Let (X|A) be a presentation of a group G. Show that the Cayley graph I'(G, X)
has no loops if and only if 1 ¢ X.

358 11. Free Groups and Free Products

Definition. The degree of a vertex v in a graph I' is the number of verticeg
adjacent to it; the degree of a vertex v in a directed graph I' is its degree in the
associated graph I". A graph or directed graph is regular of degree k if every
vertex has the same degree, namely, k.

11.16. If X is a finite generating set of a group G with 1 ¢ X, then the Cayley graph
['(G, X) is regular of degree 2|X|. (Hint. If g € G and x € X, then (gx™*, g) and
(g, gx) are directed edges.)

11.17. Draw the Cayley graph I'(G, X) if G is a free abelian group of rank 2 and X is
a basis.

11.18. Draw the Cayley graph I'(G, X) if G is a free group of rank 2 and X is a basis.

Presentations and the Schur Multiplier

The Schur multiplier M(Q) of a group Q is discussed in Chapter 7 (the reader
is advised to reread the appropriate section); it is related to presentations of
@ because of the following isomorphism.

Hopf’s Formula. If Q = F/R is a finite® group, where F is free, then
M(Q) = (Rn F)/[F,R].

Remark. Aun “aspherical” topological space X has the property that its
homology groups are completely determined by its fundamental group
7, (X). Hopf (1942) proved that H,(X) = (R n F')/[F, R], where F is free and
F/R = m,(X). Schur (1907) proved that M(Q) = (R n F')/[F, R] when Q is
finite (i.e., Schur proved Hopf’s formula in this case!). Comparison of Hopf’s
formula to Schur’s theorem led Eilenberg and Mac Lane to their creation of
Cohomology of Groups; the homology group H,(X) of the aspherical space
X is the homology group H,(m;(X), Z) of the fundamental group =,(X).
When 7,(X) is finite, H,(n,(X), Z) is isomorphic to the second cohomology
group H2(n(X), C*) = M(n,(X)).

We will prove Hopf’s formula for all finite groups Q, but we first consider
a special class of groups.

Definition. A group Q is perfectif 0 = Q'.

Every simple group is perfect. The proofs of Theorems 8.13 and 8.23 show
that the groups SL(n, g) are perfect unless (1, q) = (2, 2) or (2, 3).

3 Let us explain the finiteness hypothesis in Hopf’s formula. In Chapter 7, we defined M(Q) as
the cohomology group H%(Q, C*). Nowadays, after defining homology groups of Q, one defines
M(Q) as the second homology group H,(Q, Z). There is always an isomorphism H,(Q, Z) =
(H?*(Q, C*))*, where * denotes character group. When Q is finite, the abelian group H? is also
finite, and hence it is isomorphic to its own character group, by Theorem 10.54.



