
G-sets and Stabilizer Chains

Let G be a group. A G-set is a set Ω with an action of G by permutations. Distin-

guishing between right and left G-sets, by a right G set we mean that there is a mapping

Ω×G → Ω so that ω(gh) = (ωg)h and ω ·1 = ω always hold. It is equivalent to require that

there be a homomorphism G → SΩ, the symmetric group on Ω (with functions applied

from the right).

A homomorphism f : Ω → Ψ of G-sets is a mapping with f(ωg) = (f(ω))g always.

Such a homomorphism is an isomorphism if and only if it is bijective, if and only if there

is a G-set homomorphism f1 : Ψ → Ω with 1Ψ = ff1 and 1Ω = f1f .

If ω ∈ Ω the set ωG = {ωg
∣

∣ g ∈ G} is the orbit of Ω which contains ω. We say that

G acts transitively on Ω if there is only one orbit. We put

StabG(ω) = Gω = {g ∈ G
∣

∣ ωg = ω}

and this is the stabilizer of ω in G. For example:

• if G permutes the set of its subgroups by conjugation then StabG(H) = NG(H),

• if G permutes the set of its elements by conjugation then StabG(x) = CG(x),

• if G permutes the right cosets H\G = {Hg
∣

∣ g ∈ G} by right multiplication then

StabG(Hg) = Hg.

PROPOSITION.

(1) Every G-set Ω has a unique decomposition Ω =
⋃

i∈I Ωi where I is some indexing set

and the Ωi are orbits of Ω.

(2) If Ω is transitive and ω ∈ Ω then Ω ∼= StabG(ω)\G as G-sets. Consequently, if Ω is

finite then |Ω| = |G : StabG(ω)|.

(3) If H, K ≤ G then H\G ∼= K\G as G-sets if and only if K and H are conjugate

subgroups of G.

PROPOSITION.

(1) Every map between transitive G-sets is an epimorphism.

(2) AutG−set(H\G) ∼= NG(H)/H.

(3) Every homomorphism H\G → K\G has the form H\G → J\G → K\G where H ≤ J ,

H\G → J\G is the morphism Hx 7→ Jx, and J is conjugate to K.

Let H be a subgroup of a group G. A right transversal to H in G is the same thing

as a set of right coset representatives for H in G, that is a set of elements g1, . . . , gt of G

so that G = Hg1 ∪ · · · ∪ Hgt.
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PROPOSITION. Let G act transitively on a set Ω and let ω ∈ Ω be an element with

stabilizer Gω. Then elements {gi

∣

∣ i ∈ I} of G form a right transversal to Gω in G if and

only if Ω = {ωgi

∣

∣ i ∈ I} and the ωgi are all distinct.

Proof. This comes from the isomorphism of G-sets Ω ∼= Gω\G under which ωg ↔

Gωg.

This observation provides a way to compute a transversal for StabG(ω) in G. Take

the generators of G and repeatedly apply them to ω, obtaining various elements of the

form ωgi1gi2 · · · gir
where the gij

are generators of G. Each time we get an element we

have seen previously, we discard it. Eventually we obtain the orbit ωG, and the various

elements gi1gi2 · · · gir
are a right transversal to StabG(ω) in G.

This is what GAP does, except that it does the above with the inverses of the gen-

erators of G. If an inverse generator g−1 sends an already-computed element u to a new

element v, the generator g is stored in position v in a list. This means that applying g to

v gives u. By repeating this we eventually get back to the first element of the orbit. It

is this list of generators that GAP stores in the field ‘transversal’ of a stabilizer chain.

Elements of a right transversal are obtained by multiplying the inverses of the generators

in reverse sequence.

Computing chains of stabilizers is the most important technique available in com-

putations with permutation groups. It is necessary to compute generators for stabilizer

subgroups and this is done by the following theorem.

THEOREM (Schreier). Let X be a set of generators for a group G, H ≤ G a

subgroup, and T a right transversal for H in G such that the identity element of G

represents the coset H. For each g ∈ G let g ∈ T be such that Hg = Hg. Then

{tg(tg)−1
∣

∣ t ∈ T, g ∈ X}

is a set of generators for H.

Note that since Htg = Htg, the elements tg(tg)−1 lie in H always. Also a = a and

ab = ab. The generators in the set are called Schreier generators.

Proof. Suppose that g1 · · · gn ∈ H where the gi lie in X . Then

g1 · · · gn = (g1g1
−1)(g1g2g1g2

−1)(g1g2g3g1g2g3
−1 · · · (g1 · · · gn−1gn)

is a product of the Schreier generators. Note that g1 · · · gn ∈ H so that g1 · · · gn = 1.
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If G permutes Ω, a base for G on Ω is a list of elements ω1, ω2, . . . , ωs of Ω so that

the stabilizer Gω1,ω2,...,ωs
equals 1. Here Gω1,ω2,...,ωr

is the stabilizer inside the subgroup

Gω1,ω2,...,ωr−1
of ωr, for each r. Let us write Gr instead of Gω1,ω2,...,ωr

and G0 = G. In

this situation the chain of subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gs = 1

is called a stabilizer chain (for G, with respect to the given base). We will consider for

each r the subset Ωr of Ω which is defined to be the Gr-orbit containing ωr+1. Thus

Ω0 = ω1G, Ω1 = ω2G1 etc. A strong generating set for G (with respect to the base) is a

set of generators for G which includes generators for each of the subgroups Gr. Thus in

a strong generating set, Gr is generated by those generators which happen to fix each of

ω1, . . . , ωr.

PROPOSITION. Each Ωi is acted on transitively by Gi. As Gi-sets, Ωi
∼= Gi+1\Gi.

Hence |G| = |Ω0| · · · |Ωs−1|.

Proof. We have ωi+1 ∈ Ωi and StabGi
(ωi+1) = Gi+1.

Given a stabilizer chain we obtain an algorithm to test whether a given permutation

π of Ω is an element of G. We compute (ω1)π. If π ∈ G this must equal (ω1)g for some

unique g in a right transversal for G1 in G0 and so πg−1 ∈ G1. In fact, π ∈ G if and only

if (ω1)π = (ω1)g for some g in the transversal and πg−1 ∈ G1. We now continue to test

whether πg−1 ∈ G1 by repeating the algorithm.

Given a set of generators G = 〈g1, . . . , gd〉 and a subgroup H ≤ G a right Schreier

transversal for H in G is a right transversal with elements expressed as words in the

generators, as suggested by the following 1, gi1, gi1gi2 , gi3 , . . . so that each initial segment

of a word appears (earlier) in the list. Schreier transversals correspond to rooted trees.

THEOREM. (Schreier) Let G have d generators and let H ≤ G have finite index.

Then H can be generated by e elements, where (e − 1) ≤ |G : H|(d − 1).

Proof. Consider the generators tg(tg)−1 for H, and write n = |G : H|. The number

of edges in the Schreier tree is n− 1. Each gives an entry 1 in the table of generators. The

number of table entries which are not 1 is at most dn − n + 1 = n(d − 1) + 1.

When G is a free group the bound on d(H) is always achieved.
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