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7.15. Prove that Aut(Dg) = Dg, but that Aut(D,¢) & Dy¢.
7.16. Is Aut(4,) = S,? Is Aut(4¢) = S¢?
7.17. G=B x Kand B<L < G, thenL = B x (LnK).
7.18. If H < G, prove that
{® € Aut(G): ¢ fixes H pointwise and ¢(g)H = gH for all g € G}
is an abelian subgroup of Aut(G).

7.19. (i) Prove that the alternating groups A4, are never complete.
(ii) Show that if G is a complete group with G # G, then G is not the commuta-
tor subgroup of any group containing it. Conclude that S,, for n # 2, 6, is
never a commutator subgroup.

7.20. If G is a complete group, then Hol(G) = G' x G". Conclude, for n # 2 and n # 6,
that Hol(S,) = S, x §S,.

7.21. Prove that every automorphism of a group G is the restriction of an inner
automorphism of Hol(G).

7.22. Let G be a group and let f € S;. Prove that f € Hol(G) if and only if f(xy™'z) =
S Hf(z) for all x, p, z € G.

Semidirect Products

Definition. Let K be a (not necessarily normal) subgroup of a group G. Then
a subgroup Q < G is a complement of Kin Gif KnQ =1and KQ = G.

A subgroup K of a group G need not have a complement and, even if it
does, a complement need not be unique. In S,, for example, every subgroup
of order 2 serves as a complement to A;. On the other hand, if they exist,
complements are unique to isomorphism, for

. G/K=KQ/K=Q/(KnQ)=Q/1=0.

A group G is the direct product of two normal subgroups K and Q if
KnQ=1and KQ =G.

Definition. A group G is a semidirect product of K by Q, denoted by G =
K % Q, if K <1 G and K has a complement Q, =~ Q. One also says that G
splits over K.

We do not assume that a complement Q, is a normal subgroup; indeed, if
0, is a normal subgroup, then G is the direct product K x Q.

In what follows, we denote elements of K by letters a, b, ¢ in the first half
of the alphabet, and we denote elements of Q by letters x, y, z at the end of
the alphabet.
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Before we give examples of semidirect products, let us give several different
descriptions of them.

Lemma 7.20. If K is a normal subgroup of a group G, then the following
statements are equivalent:

() G is a semidirect product of K by G/K (i.e., K has a complement in G);

(i) there is a subgroup Q < G so that every element g € G has a unique expres-
sion g = ax, where ae K and x € Q;

(iii) there exists a homomorphism s. G/K — G with vs = 15, where v: G —
G/K is the natural map; and .

(iv) there exists a homomorphism n: G — G with ker n = K and n(x) = x for
all x e im = (such a map = is called a retraction of G and im = is called a
retract of G).

Proof. (i) = (ii) Let Q be a complement of K in G. Let g € G. Since G = KQ,
there exist a € K and x € Q with g = ax. If g = by is a second such factoriza-
tion, then xy ' =a 'be KnQ =1.Hence b =aand y = x.

(i) = (ili) Each g € G has a unique expression g = ax, where a € K and
x € Q. If Kg € G/K, then Kg = Kax = Kx; define s: G/K — G by s(Kg) = x.

‘The routine verification that s is a well defined homomorphism with vs =

14k 18 left as an exercise for the reader.

(iii) = (iv) Define n: G — G by = = sv. If x = n(g), then =(x) = n(n(g)) =
svsv(g) = sv(g) = n(g) = x (because vs = lg k). If a € K, then n(a) = sv(a) =
1, for K = ker v. For the reverse inclusion, assume that 1 = n(g) = sv(g) =
s(Kg). Now s is an injection, by set theory, so that Kg = 1 and so g e K.

(iv) = (i) Define Q = im n. If g € Q, then n(g) = g; if g € K, then n(g) = 1;
a fortiori, if ge K Q, then g = 1. If g € G, then gn(9~') e K = ker =, for
n(gn(g™!)) = 1. Since n(g) € O, we have g = [gn(g~!)]n(g) € KQ. Therefore,
Q is a complement of K in G and G is a semidirect product of K by Q.

ExaMPLE 7.7. S, is a semidirect product of 4, by Z,.
Take Q = {(1 2)) to be a complement of 4,,.
ExaMPLE 7.8. D,, is a semidirect product of Z, by Z,. \

If D,, = <a, x), where {a) = Z, and {(x) = Z,, then {a) is normal and
{x) is a complement of {a).

ExaMpLE 7.9. For any group K, Hol(K) is a semidirect product of K' by
Aut(K).

This is contained in Lemma 7.16.



ExaMPLE 7.10. Let G be a solvable group of order mn, where (im, n) = 1. If G
contains a normal subgroup of order m, then G is a semidirect product of K
by a subgroup Q of order n.

This follows from P. Hall’s theorem (Theorem 5.28).
ExAMPLE 7.11. Aut(S,) is a semidirect product of Sg by Z,.
This follows from P. Hall’s theorem (Theorem 5.28).

ExAMPLE 7.12. If G = (a) is cyclic of order 4 and K = {a*), then G is not a
semidirect product of K by G/K.

Since normality is automatic in an abelian group, an abelian group G is a
semidirect product if and only if it is a direct product. But G is not a direct
product. Indeed, it is easy to see that no primary cyclic group is a semidirect
product.

ExaMPLE 7.13. Both S, and Z4 are semidirect products of Z, by Z,.

Example 7.13 is a bit jarring at first, for it says, in contrast to direct prod-
uct, that a semidirect product of K by Q is not determined to isomorphism
by the two subgroups. When we reflect on this, however, we see that a semi-
direct product should depend on “how” K is normal in G.

Lemma 7.21. If G is a semidirect product of K by Q, then there is a homomor-

phism 6. Q — Aut(K), defined by 0, = y.|K; that is, for all x e Q and a e K,
0.(a) = xax™*.

Moreover, forall x,y, 1le Qandaec K,

61 (a) =a and ex(ey(a)) = xy(a)_
Proof. Normality of K gives y,(K) = K for all x € Q. The rest is routine. &
Remark. 1t follows that K is a group with operators Q.

The object of our study is to recapture G from K and Q. It is now clear that
G also involves a homomorphism 6: Q — Aut(K).

Definition. Let Q and K be groups, and let 8: Q — Aut(K) be a homomor-
phism. A semidirect product G of K by Q realizes 6 if,forallx e Qand a € K,
0.(a) = xax™.

In this language, Lemma 7.21 says that every semidirect product G of K by
Q determines some 6 which it realizes. Intuitively, “realizing §” is a way of
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describing how K is normal in G. For example, if 6 is the trivial map, that is,
8, = 1x forevery x € G, then a = 6,(a) = xax ™ forevery ae K, and so K <

Ce(Q).

Definition. Given groups Q and K and a homomorphism 6: Q — Aut(K),
define G = K x40 to be the set of all ordered pairs (a, x) € K x O equipped
with the operation N

(aa x)(b’ y) = (aex(b)a Xy)'

Theorem 7.22. Given groups Q and K and a homomorphism 6: Q — Aut(K),
then G = K x40 is a semidirect product of K by Q that realizes 6.

Proof. We first prove that G is a group. Multiplication is associative:

L(a. x)(b, y)1(c, 2) (@, x)L(b, y)(e, 2)]
= (af(b), xy)(c, 2) = (a, x)(b8,(¢), y2)
= (ab(b)bs,(c), xy2), = (a0,(b6,(9)), xy2).

The formulas in Lemma 7.21 (K is a group with operators Q) show that the
final entries in each column are equal.
The identity element of G is (1, 1), for

(ls 1)((1, x) = (191(0), lx) = (a> x);
the inverse of (a, x) is ((6,-:(a))~%, x7*), for
(B~ (@) 7%, x7*) (@, %) = ((B5-+(@)) 0,1 (a), x %) = (1, 1)

We have shown that G is a group.

Define a function =: G — Q by (a, x) = x. Since the only “twist” occurs in
the first coordinate, it is routine to check that = is a surjective homomorphism
and that ker = = {(a, 1): a € K}; of course, ker 7 is a normal subgroup of G.
We identify K with ker n via the isomorphism a - (a, 1). It is also easy to
check that {(1, x): x € 0} is a subgroup of G isomorphic to Q (via x + (1, x)),
and we identify Q with this subgroup. Another easy calculation shows that
KQ = Gand K nQ = 1, so that G is a semidirect product of K by Q.

Finally, G does realize 0:

(L )@, (L 0™ = (0:(a), ) (1, x™) = ((a), 1).

Since K x40 realizes 0, that is, 6,(b) = xbx™", there can be no confusion if
we write b* = xbx ™! instead of 6,(b). The operation in K x,Q will henceforth
be written

(a> x)(bs y) = (abxs xy).

Theorem 7.23. If G is a semidirect product of K by Q, then there exists 6: Q —
Aut(K) with G = K x40.
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Proof. Define 0,(a) = xax™! (as in Lemma 7.21). By Lemma 7.20 (ii), each
g € G has a unique expression g = ax with a € K and x € Q. Since multiplica-
tion in G satisfies

(ax)(by) = a(xbx"")xy = ab*xy,
it is easy to see that the map K x,Q — G, defined by (a, x) — ax, is an
isomorphism.

We now illustrate how this construction can be used.

ExaMPLE 7.14. The group T of order 12 (see Theorem 4.24) is a semidirect
product of Z5 by Z,,.

Let Zy = (a),let Z, = {x), and define §: Z, — Aut(Z,) = Z, by sending a
into the generator. In more detail,

a*=a* and (@})*=gq,

while x2 acts on {a) as the identity automorphism: a** = a.
The group G = Z, x4Z, has order 12. If s = (a%, x?) and ¢ = (1, x), then
the reader may check that

=1 and £ =s%=(st)%

which are the relations in T.

ExAMPLE 7.15. Let p be a prime, let K = {a, b) be an elementary abelian
group of order p?, and let Q = (x) be a cyclic group of order p. Define
0: 0 - Aut(K) =~ GL(2, p) by ‘

x’)—»lo
i1

Thus, a* = ab and b* = b. The commutator a*a™! is seen to be b. Therefore,
G = K x,Q is a group of order p* with G = {a, b, x>, and these generators
satisfy relations

al =p? =x7 =1, b=[x,a], and [b,a]=1=[b, x].

If p is odd, then we have the nonabelian group of order p* and exponent p;
if p = 2, then G = Dy (as the reader may check). In Example 7.8, we saw that
Dy = Z, x4 Z,; we have just seen here that Dg = V x,Z,. A group may thus
have distinct factorizations into a semidirect product.

ExAMPLE 7.16. Let p be an odd prime, let K = {a) be cyclic of order p?, and
let Q = <{x) be cyclic of order p. By Theorem 7.3, Aut(K) = Z,,_y) = Z,_; X
Z,; indeed, by Theorem 6.9, the cyclic summand Z, = <{a}, where a(a) = a'*".
If one defines 6: @ — Aut(K) by 0, = o, then the group G = K x,Q has order
p?, generators x, a, and relations x? = 1,a?* = 1, and xax™' = a* = a'*?. We
have constructed the second nonabelian group of order p® (see Exercise 4.32).
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EXERCISES
7.23. Show that the group Q, of generalized quaternions is not a semidirect product.

7.24. 1f|G| = mn, where (m, n) = 1, and if K < G has order m, then a subgroup @ < G
is a complement of K if and only if |Q] = n.

7.25. If k is a field, then GL(n, k) is a semidirect product of SL(n, k) by k*, where
k* =k —{0}.

7.26. If M is the group of all motions of R", then M is a semidirect product of Tr(n, R)
by O, R).

7.27. If K and Q are solvable, then K x4 Q is also solvable.

7.28. Show that K x,Q is the direct product K x Q if and only if 8: Q — Aut(K) is
trivial (that is, 6, = 1 for all x € Q).

7.29. If p and q are distinct primes, construct all semidirect products of Z, by Z,, and
compare your results to Theorem 4.20. (The condition gfp — 1 in that theorem
should now be more understandable.)

Wreath Products

Let D and Q be groups, let Q be a finite Q-set, and let {D,: w € Q} be a family
of isomorphic copies of D indexed by Q.

Definition. Let D and Q be groups, let Q be a finite Q-set, and let K =
[Toeq Dy, where D, = D for all w € Q. Then the wreath product of D by Q,
denoted by D 2 Q (or by D wr Q), is the semidirect product of K by Q, where
Q acts on K by g-(d,) = (d,,) for ge Q and (d,) € [],cq D,- The normal
subgroup K of D 2 Q is called the base of the wreath product.

The notation D 2 Q is deficient, for it does not display the Q-set Q; perhaps
one should write D 25 Q.

If D is finite, then | K| = | D|'¥; if Q is also finite, then |[D 2 Q| = |K » Q] =
IK||Q| = |D*H|Q).

If A is a D-set, then A x Q can be made into a (D 2 Q)-set. Given d € D and
w € Q, define a permutation d* of A x Q as follows: for each (1, ') e A x Q,
set

N N Jdh o) if o =o,
doh o) = {(/1, o) if o o

It is easy to see that d¥d ¥ = (dd')}, and so D}, defined by
D} = {d¥:de D},

is a subgroup of S, , o; indeed, for each w, the map D — D¥, given by d > d%,
is an isomorphism.
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For each g € Q, define a permutation g* of A x Q by
a*(4, ©) = (4, g0,
and define
0*={q*:q€Q}.

It is easy to see that Q* is a subgroup of S, ., and that the map Q — 0%, given
by g > g%, is an isomorphism.

Theorem 7.24. Given groups D and Q, a finite Q-set Q, and a D-set A, then the
wreath product D 2 Q is isomorphic to the subgroup

W =<0* D} weQ) < S,.q,
and hence A x Qs a (D ¢ Q)-set.

Proaf. We show first that K* = | J,.q D¥ is the direct product [ ], .q D¥.
It is easy to see that D} centralizes D}. for all o’ # w, and so D} < K* for
every w. Each d} € D} fixes all (4, ') € A x Q with o’ # w, while each ele-
ment of {| ), ., D) fixes all (4, w) for all Ae A. It follows that if d% e
DX U wo DX, then df = 1.

If g € 0 and w € Q, then a routine computation gives

g diq* = df,

for each w € Q. Hence q*K*q*™! < K* for each qe Q, so that K* <« W
(because W = (K*, Q*)); it follows that W = K*Q*. To see that W is a
semidirect product of K* by Q*, it suffices to show that K* n 0* = 1. Now
kA, o'y = (dA, o) or (4, @); in either case, d} fixes the second coordinate. If
q* € 0%, then g*(4, ') = (4, qw’) and q* fixes the first coordinate. Therefore,
any g € K* n O* fixes every (4, ') and hence is the identity.

It is now a simple matter to check that the map D2Q — W, given by
d,)a+— (d¥)g*, is an isomorphism.

Call the subgroup W of S, , o the permutation version of D 2 Q; when we
wish to view D2 Q acting on A x Q, then we will think of it as W.

Theorem 7.25. Let D and Q be groups, let Q be a finite Q-set, let A be a D-set,
and let W < S, ,q be the permutation version of D Q.

@) If Q is a transitive Q-set and A is a transitive D-set, then A X Q is a
transitive (D 0 Q)-set.

(ii) If weQ, then its stabilizer Q,, acts on Q — {w}. If (1, w)e A x Q and
D(4) < D is the stabilizer of A, then the stabilizer W, , of (1, w) is isomor-
phic to D(A) x (DQ,), and [W: W, )1 = [D: D(A)I[Q: 0,1

Proof. (i) Let (4, ), (A, w') e A x Q. Since D acts transitively, there is d € D
with dA = 1’; since Q acts transitively, there is ¢ € Q with gw = ’. The reader
may now check that g*d%(4, w) = (4, ®’).
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(i) Each element of W has the form (d}¥)g* and (d})q*(A, )=
(e e dE)A, go) = df,(4 qw) = (d,, 4, qw). Tt follows that (d¥)gq* fixes
(4, w) if and only if g fixes @ and d,, fixes A. Let D¥(A) = {d*: d € D(1)}. Now
DX(%) is disjoint from <[]y, D¥, Q%> and centralizes it: if g* € O%, then
q*dig*™ = d¥, = d}); hence '

Wie) = <Da*;(/1), ml;[m D3, Z>>

= D3(%) x < [1 D, QZ‘;>

w'#w
=~ D(2) x (D2Q,).
1t follows that |W,; ,,,| = |D(})||D|*"*|Q,| and
[W: Wil = IDI®Q)/|D(A)||DI?)Q,] = [D: D(A)][Q: Q,].

Theorem 7.26. Wreath product is associative: if both Q and A are finite, if T
is a group, and if Ais a T-set, then T2(D2Q) = (T D)2 Q.

Proof. The permutation versions of both T ¢(D 2 Q) and (T ¢ D) Q are sub-
groups of S, « A xo; We claim that they coincide. The group T 2 (D 2 Q) is gener-
ated by all tf; ,, (for t € T and (1, w) e A x Q) and all f* (for f € D 2 Q). Note
that tf§ ) (&, 4, 0’y (t6, X, ') if (4, ') = (4, w), and fixes it otherwise;
also, f*: (6, X, ') > (&, f(¥, ®')). Specializing f* to d} and to g*, we see
that T 2(D 2 Q) is generated by all tf; ), df, and ¢**, where d}: (¢, X, 0')
(¢, dV, o) if 0 = o, and fixes it otherwise, and g**: (¢', 1, @') > (', A, qo’).

A similar analysis of (T 2 D)2 Q shows that it is generated by all g**, d},
and (t,)¥, where (¢,)%: (6, V, @) > (¢6', X, o) if ' = w and A’ = A, and fixes
it otherwise. Since (¢;)% = t; ), the two wreath products coincide. 2

The best way to understand wreath products is by considering graphs.

Definition. A graph I" is a nonempty set V, called vertices, together with an
adjacency relation on V, denoted by v ~ u, that is symmetric (v ~ u implies
u ~ v for all u, v € V) and irreflexive (v + v for all v € V).

One can draw pictures of finite graphs; regard the vertices as points and
join each adjacent pair of vertices with a line segment or edge. Notice that
our graphs are nondirected; that is, one can traverse an edge in either direc-
tion; moreover, there are no “loops”; every edge has two distinct endpoints.
An automorphism of a graph T" with vertices V is a bijection ¢: V — V such
that u, v € V are adjacent if and only if ¢ (1) and ¢(v) are adjacent. It is plain
that the set of all automorphisms of a graph T, denoted by Aut(I"), is a group
under composition.

For example, consider the following graph T":
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a,

a, b4

Figure 7.1

1f ¢ € Aut(T'), then ¢ fixes vertex 0 (it is the only vertex adjacent to 5 vertices),
@ permutes the “inner ring” Q = {1, 2, 3, 4, 5}, and, for each i, either ¢(a;) =
a,; and @(b;) = b,; or ¢(a;) = b,; and @(b;) = a,;. It is now easy to see that
|Aut(I")] = 2° x 5!. Regard S; as acting on Q and regard S, as acting on
A = {a, b}. 1dentify the outer ring of all vertices {a;, b;: i € Q} with A x Q by
writing a; as (a, i) and b; as (b, i). If g € S5, then g permutes the inner ring:
q*(a;) = a, and q*(b;) = b,; that is, g*(a, ) = (a, qi) and g*(b, i) = (b, qi). If
de S, and i € Q, then d¥*(a, i) = (da, i), d¥(b, i) = (db, i), while 4} fixes (a, J)
and (b, j) for j  i. For example, if d interchanges a and b, then d¥(a;) = b; and
d¥(b;) = a;, while df fixes a; and b; for all j # i. Thus, both g* and d}¥ corre-
spond to automorphisms of I". In Exercise 7.30 below, you will show that
Aut(l) = S, 2 Ss.

A special case of the wreath product construction has Q = Q regarded as a
Q-set acting on itself by left multiplication. In this case, we write W = D 2, Q,
and we call W the regular wreath product. Thus, the base is the direct product
of | Q| copies of D, indexed by the elements of Q, and q € Q sends a |Q]-tuple
(d,) € [Txe g D. into (d,,). Note that | D2, Q] = |D]*|Q]. 1t is easy to see that
the formation of regular wreath products is not associative when all groups
are finite, for | T 2, (D 2, Q)] # |(T 3, D), Q).

If Q is an infinite set and {D,,: w € Q} is a family of groups, then there are
two direct product constructions. The first, sometimes called the complete
direct product, consists of all “vectors” (d,,) in the cartesian product [[,eq D,
with “coordinatewise” multiplication: (d,)(d,) = (d,d,,). The second, called
the restricted direct product, is the subgroup of the first consisting of all those
(d,,) with only finitely many coordinates d,, # 1. Both versions coincide when
the index set Q is finite. The wreath product using the complete direct prod-
uct is called the complete wreath product; the wreath product using the re-
stricted direct product is called the restricted wreath product. We shall see
a use for the complete wreath product at the end of the next section. The
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first example of a (necessarily infinite) centerless p-group was given by D.H.
McLain (1954); it is a restricted wreath product of a group of prime order p
by Z(p™) (the latter group is discussed in Chapter 10; it is the multiplicative
group of all pth power roots of unity). McLain’s example is thus a p-group
that is not nilpotent.

What is the order of a Sylow p-subgroup of the symmetric group §,,? If
k < m are positive integers, define ¢ = [m/k], the greatest integer in m/k. Thus,
k, 2k, ..., tk < m, while (¢t + 1)k > m, so that t is the number of integers i < m
which are divisible by k. If p is a prime, what is the largest power u of p
dividing m!? Think of m! as factored: m! =2 x 3 x 4 x --- x m. By our ini-
tial remark, [in/p] factors of m! are divisible by p, [m/p*] factors are divisible
by p?, etc. Hence, if m! = p“m’, where (m’, p) = 1, then

w=[m/p] + [m/p*] + [m/p®] + .
For example, if p = 2, then [m/2] is the number of even integers < m, [m/4]
is the number of multiples of 4 < m, and so forth. (Notice, for example, that
8 = 23 is counted three times by the formula for p.) In particular, if m = p*,
then the largest power of p dividing p"! is

p=pm=p" +p" P+ p+ L
and so the order of a Sylow p-subgroup of the symmetric group S, is p*™.

Theorem 7.27 (Kaloujnine, 1948). If p is a prime, then a Sylow p-subgroup of
S, is an iterated regular wreath product W, = 7,3, Z,%,--* 3, Z,, of n copies of

Z,, where W, ., = W, Z,.

Proof. The proofis by induction on #, the case n = 1 holding because a Sylow
p-subgroup of S, has order p. Assume that n> 1. Let A be a set with p”
elements and let D be a Sylow p-subgroup of S,; thus, A is a D-set. Let
Q={0,1,...,p — 1}, and let Q = {g) be a cyclic group of order p acting on
Q by gi =i+ 1 mod p. The permutation version of the wreath product P =
D2, Z,is a subgroup of S, , ; of course, |A x Q| = p"*1. By induction, Disa
wreath product of n copies of Z,,, and so P is a wreath product of n + 1 copies
of Z,. To see that P is a Sylow p-subgroup, it suffices to see that its order is
p“" D, where u(n4 1)=p"+ p" ' +--- + p+ 1. Now |D| = p*™, so that
[Pl =D Z,| = (p"™)Pp = pPr*t = prnth),

Theorem 7.27 may be used to compute the Sylow p-subgroup of S,, for any
m (not necessarily a power of p). First write m in base p:

m=ay+a;p+a,p*+--ap, where 0<a,<p-—1

Partition X = {1, 2, ..., m} into a, singletons, a, p-subsets, a, p*-subsets, ...,
and a, p*-subsets. On each of these p'-subsets Y, construct a Sylow p-sub-
group of Sy. Since disjoint permutations commute, the direct product of all
these Sylow subgroups is a subgroup of Sy of order p", where N =a, +
a1(2) + -+ + a,u(t) (recall that u@)=p'~t+p'~2 ++-+p+ 1). But p¥ is
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the highest power of p dividing m!, for
m=a, + a;p + a;p* + - + ap’,
and so
(m/p] + [m/p*1 + [m/p°] + -+ = (ay + azp + azp* + - + ap'™)
+(@a, +aptap’++apT?)
t(as+ap+-+ap T4
=a;+a(p+D+a(p’ +p+ 1)+
=a; + au2)+ -+ au(t) = N.

Thus, the direct product has the right order, and so it must be a Sylow
p-subgroup of Sy =~ §,,.

For example, let us compute a Sylow 2-subgroup of S, (this has been done
by hand in Exercise 4.15 (ii)). In base 2, we have 6 =0 x 1 + 1 x 24+ 1 x 4.
A Sylow 2-subgroup of S, is Z,; a Sylow 2-subgroup of S, is Z,2Z,. We
conclude that a Sylow 2-subgroup P of Sg is Z, x (Z,?Z,). By Exercise 7.31
below, Z, ¢ Z, = Dg, so that P =~ Z, x Ds.

EXERCISES

7.30. Prove that Aut(I') = S, 1 S;, where I is the graph in Figure 7.1. (Hint. Every
¢ € Aut(T') is completely determined by its behavior on the outer ring consisting
of all vertices of the form a; or b;.)

7.31. Prove that Z,Z, = Dg. (Hint. Z, 2 Z, has several involutions.)
7.32. If both D and Q are solvable, then D 2 Q is solvable.

7.33. Definition. Let D be a (multiplicative) group. A monomial matrix yu over D is a
permutation matrix P whose nonzero entries have been replaced by elements of
D; we say that P is the support of p. If Q is a group of n x n permutation
matrices, then

M(D, Q) = {all monomial matrices u over D with support in Q}.

(i) Prove that M(D, Q) is a group under matrix multiplication.
(if) Prove that the subgroup Q = M(1, Q) < M(D, Q).
(iii) Prove that the diagonal M(D, 1) is isomorphic to the direct product
D x +++ x D (n times).
(iv) Prove that M (D, 1) <« M(D, Q) and that M(D, Q) is a semidirect product of
M(D, 1) by M(1, Q).
(v) Prove that M(D, Q) = D Q.

7.34. (i) Fix a group Q and a finite Q-set Q. For all groups D and 4 and all homomor-
phisms f: D — A, there is a homomorphism M(f): M(D, Q) = M(A, Q) such
that M(1p) = 1o and, whenever g: A — B, then M(gf) = M(g)M(f).
(Hint. Just replace every nonzero entry x of a monomial matrix over D by
f(x).) (In categorical language, this exercise shows that wreath product is a
functor.)
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(i) If D is abelian, show that determinant d: M(D, Q) — D is a (well defined)
homomorphism,

7.35. If (a,x)e D2 Q (so thatae K =[] D,,), then
(a, x)" = (aa*a™...a*", x").

7.36. Let X = B, U+ U B, be a partition of a set X in which each B, has k elements.
If
G = {g € Sy: for each i, there is j with g(B;) = B;},

then G = §,2 8,

Factor Sets

Since there are nonsimple groups that are not semidirect products, our sur-
vey of extensions is still incomplete. Notice the kind of survey we already
have: if we know Q, K, and 6, then we know the semidirect product K x,0
in the sense that we can write a multiplication table for it (its elements are
ordered pairs and we know how to multiply any two of them).

In discussing general extensions G of K by Q, it is convenient to use the
additive notation for G and its subgroup K (this is one of the rare instances
in which one uses additive notation for a nonabelian group). For example, if
k € K and g € G, we shall write the conjugate of k by gasg + k — g.

Definition. If K < G, then a (right) transversal of K in G (or a complete set of
right coset representatives) is a subset T of G consisting of one element from
each right coset of K in G.

If T is a right transversal, then G is the disjoint union G = ( J,.; K + t.
Thus, every element g € G has a unique factorization g = k + ¢ for k € K and
t € T. There is a similar definition of left transversal; of course, these two
notions coincide when K is normal.

If G is a semidirect product and Q is a complement of K, then Q is a
transversal of K in G.

Definition, If n: G— Q is surjective, then a lifting of x € Q is an element
I(x) e G with =(I(x)) = x.

If one chooses a lifting I(x) for each x € Q, then the set of all such is a
transversal of ker . In this case, the function [: Q — G is also called a right
transversal (thus, both [ and its image /(Q) are called right transversals).

Theorem 7.28. Let G be an extension of K by Q, and let I: Q — G be a transver-
sal.
If K is abelian, then there is a homomorphism 0: Q — Aut(K) with

0.(a) = I(x) + a — I(x)



