Semidirect Products 167

- 7.15. Prove that $Aut(D_8) \cong D_8$, but that $Aut(D_{16}) \not\cong D_{16}$.
- 7.16. Is $\operatorname{Aut}(A_4) \cong S_4$? Is $\operatorname{Aut}(A_6) \cong S_6$?
- 7.17. If $G = B \times K$ and $B \le L \le G$, then $L = B \times (L \cap K)$.
- 7.18. If $H \triangleleft G$, prove that

 $\{\varphi \in \operatorname{Aut}(G): \varphi \text{ fixes } H \text{ pointwise and } \varphi(g)H = gH \text{ for all } g \in G\}$

is an abelian subgroup of Aut(G).

- 7.19. (i) Prove that the alternating groups A_n are never complete.
 - (ii) Show that if G is a complete group with $G \neq G'$, then G is not the commutator subgroup of any group containing it. Conclude that S_n , for $n \neq 2$, 6, is never a commutator subgroup.
- 7.20. If G is a complete group, then $\operatorname{Hol}(G) = G^l \times G^r$. Conclude, for $n \neq 2$ and $n \neq 6$, that $\operatorname{Hol}(S_n) \cong S_n \times S_n$.
- 7.21. Prove that every automorphism of a group G is the restriction of an inner automorphism of Hol(G).
- 7.22. Let G be a group and let $f \in S_G$. Prove that $f \in \text{Hol}(G)$ if and only if $f(xy^{-1}z) = f(x)f(y)^{-1}f(z)$ for all $x, y, z \in G$.

Semidirect Products

Definition. Let K be a (not necessarily normal) subgroup of a group G. Then a subgroup $Q \le G$ is a *complement* of K in G if $K \cap Q = 1$ and KQ = G.

A subgroup K of a group G need not have a complement and, even if it does, a complement need not be unique. In S_3 , for example, every subgroup of order 2 serves as a complement to A_3 . On the other hand, if they exist, complements are unique to isomorphism, for

$$G/K = KQ/K \cong Q/(K \cap Q) = Q/1 \cong Q.$$

A group G is the direct product of two normal subgroups K and Q if $K \cap Q = 1$ and KQ = G.

Definition. A group G is a *semidirect product* of K by Q, denoted by $G = K \times Q$, if $K \triangleleft G$ and K has a complement $Q_1 \cong Q$. One also says that G *splits* over K.

We do not assume that a complement Q_1 is a normal subgroup; indeed, if Q_1 is a normal subgroup, then G is the direct product $K \times Q_1$.

In what follows, we denote elements of K by letters a, b, c in the first half of the alphabet, and we denote elements of Q by letters x, y, z at the end of the alphabet.

7. Extensions and Cohomology

Before we give examples of semidirect products, let us give several different descriptions of them.

Lemma 7.20. If K is a normal subgroup of a group G, then the following statements are equivalent:

- (i) G is a semidirect product of K by G/K (i.e., K has a complement in G);
- (ii) there is a subgroup $Q \le G$ so that every element $g \in G$ has a unique expression g = ax, where $a \in K$ and $x \in Q$;
- (iii) there exists a homomorphism $s: G/K \to G$ with $vs = 1_{G/K}$, where $v: G \to G/K$ is the natural map; and
- (iv) there exists a homomorphism π : $G \to G$ with ker $\pi = K$ and $\pi(x) = x$ for all $x \in \text{im } \pi$ (such a map π is called a retraction of G and $\text{im } \pi$ is called a retract of G).

Proof. (i) \Rightarrow (ii) Let Q be a complement of K in G. Let $g \in G$. Since G = KQ, there exist $a \in K$ and $x \in Q$ with g = ax. If g = by is a second such factorization, then $xy^{-1} = a^{-1}b \in K \cap Q = 1$. Hence b = a and y = x.

(ii) \Rightarrow (iii) Each $g \in G$ has a unique expression g = ax, where $a \in K$ and $x \in Q$. If $Kg \in G/K$, then Kg = Kax = Kx; define $s \colon G/K \to G$ by s(Kg) = x. The routine verification that s is a well defined homomorphism with $vs = 1_{G/K}$ is left as an exercise for the reader.

(iii) \Rightarrow (iv) Define $\pi: G \to G$ by $\pi = sv$. If $x = \pi(g)$, then $\pi(x) = \pi(\pi(g)) = svsv(g) = sv(g) = \pi(g) = x$ (because $vs = 1_{G/K}$). If $a \in K$, then $\pi(a) = sv(a) = 1$, for $K = \ker v$. For the reverse inclusion, assume that $1 = \pi(g) = sv(g) = s(Kg)$. Now s is an injection, by set theory, so that Kg = 1 and so $g \in K$.

(iv) \Rightarrow (i) Define $Q = \text{im } \pi$. If $g \in Q$, then $\pi(g) = g$; if $g \in K$, then $\pi(g) = 1$; a fortiori, if $g \in K \cap Q$, then g = 1. If $g \in G$, then $g\pi(g^{-1}) \in K = \ker \pi$, for $\pi(g\pi(g^{-1})) = 1$. Since $\pi(g) \in Q$, we have $g = [g\pi(g^{-1})]\pi(g) \in KQ$. Therefore, Q is a complement of K in G and G is a semidirect product of K by Q.

EXAMPLE 7.7. S_n is a semidirect product of A_n by \mathbb{Z}_2 .

Take $Q = \langle (1 \ 2) \rangle$ to be a complement of A_n .

EXAMPLE 7.8. D_{2n} is a semidirect product of \mathbb{Z}_n by \mathbb{Z}_2 .

If $D_{2n} = \langle a, x \rangle$, where $\langle a \rangle \cong \mathbb{Z}_n$ and $\langle x \rangle \cong \mathbb{Z}_2$, then $\langle a \rangle$ is normal and $\langle x \rangle$ is a complement of $\langle a \rangle$.

EXAMPLE 7.9. For any group K, Hol(K) is a semidirect product of K^l by Aut(K).

This is contained in Lemma 7.16.

EXAMPLE 7.10. Let G be a solvable group of order mn, where (m, n) = 1. If G contains a normal subgroup of order m, then G is a semidirect product of K by a subgroup Q of order n.

This follows from P. Hall's theorem (Theorem 5.28).

EXAMPLE 7.11. Aut(S_6) is a semidirect product of S_6 by \mathbb{Z}_2 .

This follows from P. Hall's theorem (Theorem 5.28).

EXAMPLE 7.12. If $G = \langle a \rangle$ is cyclic of order 4 and $K = \langle a^2 \rangle$, then G is not a semidirect product of K by G/K.

Since normality is automatic in an abelian group, an abelian group G is a semidirect product if and only if it is a direct product. But G is not a direct product. Indeed, it is easy to see that no primary cyclic group is a semidirect product.

EXAMPLE 7.13. Both S_3 and \mathbb{Z}_6 are semidirect products of \mathbb{Z}_3 by \mathbb{Z}_2 .

Example 7.13 is a bit jarring at first, for it says, in contrast to direct product, that a semidirect product of K by Q is not determined to isomorphism by the two subgroups. When we reflect on this, however, we see that a semi-direct product should depend on "how" K is normal in G.

Lemma 7.21. If G is a semidirect product of K by Q, then there is a homomorphism $\theta: Q \to \operatorname{Aut}(K)$, defined by $\theta_x = \gamma_x | K$; that is, for all $x \in Q$ and $a \in K$,

$$\theta_x(a) = xax^{-1}.$$

Moreover, for all $x, y, 1 \in Q$ and $a \in K$,

$$\theta_1(a) = a$$
 and $\theta_x(\theta_y(a)) = \theta_{xy}(a)$.

Proof. Normality of K gives $\gamma_*(K) = K$ for all $x \in O$. The rest is routine.

Remark. It follows that K is a group with operators Q.

The object of our study is to recapture G from K and Q. It is now clear that G also involves a homomorphism $\theta: O \to \operatorname{Aut}(K)$.

Definition. Let Q and K be groups, and let $\theta: Q \to \operatorname{Aut}(K)$ be a homomorphism. A semidirect product G of K by Q realizes θ if, for all $x \in Q$ and $a \in K$,

$$\theta_{\mathbf{x}}(a) = xax^{-1}$$
.

In this language, Lemma 7.21 says that every semidirect product G of K by Q determines some θ which it realizes. Intuitively, "realizing θ " is a way of

7. Extensions and Cohomology

describing how K is normal in G. For example, if θ is the trivial map, that is, $\theta_x = 1_K$ for every $x \in G$, then $a = \theta_x(a) = xax^{-1}$ for every $a \in K$, and so $K \le C_G(Q)$.

Definition. Given groups Q and K and a homomorphism $\theta: Q \to \operatorname{Aut}(K)$, define $G = K \rtimes_{\theta} Q$ to be the set of all ordered pairs $(a, x) \in K \times Q$ equipped with the operation

$$(a, x)(b, y) = (a\theta_{x}(b), xy).$$

Theorem 7.22. Given groups Q and K and a homomorphism $\theta: Q \to \operatorname{Aut}(K)$, then $G = K \rtimes_{\theta} Q$ is a semidirect product of K by Q that realizes θ .

Proof. We first prove that G is a group. Multiplication is associative:

$$[(a, x)(b, y)](c, z) (a, x)[(b, y)(c, z)]$$

$$= (a\theta_x(b), xy)(c, z) = (a, x)(b\theta_y(c), yz)$$

$$= (a\theta_x(b\theta_y(c), xyz), = (a\theta_x(b\theta_y(c), xyz), z)$$

The formulas in Lemma 7.21 (K is a group with operators Q) show that the final entries in each column are equal.

The identity element of G is (1, 1), for

$$(1, 1)(a, x) = (1\theta_1(a), 1x) = (a, x);$$

the inverse of (a, x) is $((\theta_{x^{-1}}(a))^{-1}, x^{-1})$, for

$$((\theta_{r^{-1}}(a))^{-1}, x^{-1})(a, x) = ((\theta_{r^{-1}}(a))^{-1}\theta_{r^{-1}}(a), x^{-1}x) = (1, 1).$$

We have shown that G is a group.

170

Define a function $\pi\colon G\to Q$ by $(a,x)\mapsto x$. Since the only "twist" occurs in the first coordinate, it is routine to check that π is a surjective homomorphism and that $\ker \pi=\{(a,1): a\in K\}$; of course, $\ker \pi$ is a normal subgroup of G. We identify K with $\ker \pi$ via the isomorphism $a\mapsto (a,1)$. It is also easy to check that $\{(1,x): x\in Q\}$ is a subgroup of G isomorphic to G (via G), and we identify G0 with this subgroup. Another easy calculation shows that G0 and G1, so that G2 is a semidirect product of G3 by G4.

Finally, G does realize θ :

$$(1, x)(a, 1)(1, x)^{-1} = (\theta_x(a), x)(1, x^{-1}) = (\theta_x(a), 1).$$

Since $K \rtimes_{\theta} Q$ realizes θ , that is, $\theta_x(b) = xbx^{-1}$, there can be no confusion if we write $b^x = xbx^{-1}$ instead of $\theta_x(b)$. The operation in $K \rtimes_{\theta} Q$ will henceforth be written

$$(a, x)(b, y) = (ab^x, xy).$$

Theorem 7.23. If G is a semidirect product of K by Q, then there exists $\theta: Q \to \operatorname{Aut}(K)$ with $G \cong K \rtimes_{\theta} Q$.

Semidirect Products 171

Proof. Define $\theta_x(a) = xax^{-1}$ (as in Lemma 7.21). By Lemma 7.20 (ii), each $g \in G$ has a unique expression g = ax with $a \in K$ and $x \in Q$. Since multiplication in G satisfies

$$(ax)(by) = a(xbx^{-1})xy = ab^{x}xy,$$

it is easy to see that the map $K \rtimes_{\theta} Q \to G$, defined by $(a, x) \mapsto ax$, is an isomorphism.

We now illustrate how this construction can be used.

EXAMPLE 7.14. The group T of order 12 (see Theorem 4.24) is a semidirect product of \mathbb{Z}_3 by \mathbb{Z}_4 .

Let $\mathbb{Z}_3 = \langle a \rangle$, let $\mathbb{Z}_4 = \langle x \rangle$, and define $\theta \colon \mathbb{Z}_4 \to \operatorname{Aut}(\mathbb{Z}_3) \cong \mathbb{Z}_2$ by sending a into the generator. In more detail,

$$a^x = a^2 \qquad \text{and} \qquad (a^2)^x = a,$$

while x^2 acts on $\langle a \rangle$ as the identity automorphism: $a^{x^2} = a$.

The group $G = \mathbb{Z}_3 \rtimes_{\theta} \mathbb{Z}_4$ has order 12. If $s = (a^2, x^2)$ and t = (1, x), then the reader may check that

$$s^6 = 1$$
 and $t^2 = s^3 = (st)^2$,

which are the relations in T.

EXAMPLE 7.15. Let p be a prime, let $K = \langle a, b \rangle$ be an elementary abelian group of order p^2 , and let $Q = \langle x \rangle$ be a cyclic group of order p. Define $\theta: Q \to \operatorname{Aut}(K) \cong \operatorname{GL}(2, p)$ by

$$x^i \mapsto \begin{bmatrix} 1 & 0 \\ i & 1 \end{bmatrix}$$
.

Thus, $a^x = ab$ and $b^x = b$. The commutator $a^x a^{-1}$ is seen to be b. Therefore, $G = K \rtimes_{\theta} Q$ is a group of order p^3 with $G = \langle a, b, x \rangle$, and these generators satisfy relations

$$a^{p} = b^{p} = x^{p} = 1,$$
 $b = [x, a],$ and $[b, a] = 1 = [b, x].$

If p is odd, then we have the nonabelian group of order p^3 and exponent p; if p=2, then $G\cong D_8$ (as the reader may check). In Example 7.8, we saw that $D_8\cong \mathbb{Z}_4\rtimes_\theta \mathbb{Z}_2$; we have just seen here that $D_8\cong \mathbb{V}\rtimes_\theta \mathbb{Z}_2$. A group may thus have distinct factorizations into a semidirect product.

EXAMPLE 7.16. Let p be an odd prime, let $K = \langle a \rangle$ be cyclic of order p^2 , and let $Q = \langle x \rangle$ be cyclic of order p. By Theorem 7.3, $\operatorname{Aut}(K) \cong \mathbb{Z}_{p(p-1)} \cong \mathbb{Z}_{p-1} \times \mathbb{Z}_p$; indeed, by Theorem 6.9, the cyclic summand $\mathbb{Z}_p = \langle \alpha \rangle$, where $\alpha(a) = a^{1+p}$. If one defines $\theta: Q \to \operatorname{Aut}(K)$ by $\theta_x = \alpha$, then the group $G = K \rtimes_{\theta} Q$ has order p^3 , generators x, a, and relations $x^p = 1$, $a^{p^2} = 1$, and $xax^{-1} = a^x = a^{1+p}$. We have constructed the second nonabelian group of order p^3 (see Exercise 4.32).

172 /. Extensions and Cohomology

EXERCISES

- 7.23. Show that the group Q_n of generalized quaternions is not a semidirect product.
- 7.24. If |G| = mn, where (m, n) = 1, and if $K \le G$ has order m, then a subgroup $Q \le G$ is a complement of K if and only if |Q| = n.
- 7.25. If k is a field, then GL(n, k) is a semidirect product of SL(n, k) by k^* , where $k^* = k \{0\}$.
- 7.26. If M is the group of all motions of \mathbb{R}^n , then M is a semidirect product of $Tr(n, \mathbb{R})$ by $O(n, \mathbb{R})$.
- 7.27. If K and Q are solvable, then $K \rtimes_{\theta} Q$ is also solvable.
- 7.28. Show that $K \rtimes_{\theta} Q$ is the direct product $K \times Q$ if and only if $\theta: Q \to \operatorname{Aut}(K)$ is *trivial* (that is, $\theta_{\mathbf{x}} = 1$ for all $\mathbf{x} \in Q$).
- 7.29. If p and q are distinct primes, construct all semidirect products of \mathbb{Z}_p by \mathbb{Z}_q , and compare your results to Theorem 4.20. (The condition q / p 1 in that theorem should now be more understandable.)

Wreath Products

Let D and Q be groups, let Ω be a finite Q-set, and let $\{D_{\omega} : \omega \in \Omega\}$ be a family of isomorphic copies of D indexed by Ω .

Definition. Let D and Q be groups, let Ω be a finite Q-set, and let $K = \prod_{\omega \in \Omega} D_{\omega}$, where $D_{\omega} \cong D$ for all $\omega \in \Omega$. Then the **wreath product** of D by Q, denoted by $D \wr Q$ (or by D wr Q), is the semidirect product of K by Q, where Q acts on K by $q \cdot (d_{\omega}) = (d_{q\omega})$ for $q \in Q$ and $(d_{\omega}) \in \prod_{\omega \in \Omega} D_{\omega}$. The normal subgroup K of $D \wr Q$ is called the **base** of the wreath product.

The notation $D \wr Q$ is deficient, for it does not display the Q-set Ω ; perhaps one should write $D \wr_{\Omega} Q$.

If D is finite, then $|K| = |D|^{|\Omega|}$; if Q is also finite, then $|D \wr Q| = |K \rtimes Q| = |K||Q| = |D|^{|\Omega|}|Q|$.

If Λ is a D-set, then $\Lambda \times \Omega$ can be made into a $(D \wr Q)$ -set. Given $d \in D$ and $\omega \in \Omega$, define a permutation d_{ω}^* of $\Lambda \times \Omega$ as follows: for each $(\lambda, \omega') \in \Lambda \times \Omega$, set

$$d_{\omega}^{*}(\lambda, \omega') = \begin{cases} (d\lambda, \omega') & \text{if } \omega' = \omega, \\ (\lambda, \omega') & \text{if } \omega' \neq \omega. \end{cases}$$

It is easy to see that $d_{\omega}^* d_{\omega}^{\prime *} = (dd')_{\omega}^*$, and so D_{ω}^* , defined by

$$D_{\omega}^* = \{d_{\omega}^* : d \in D\},\$$

is a subgroup of $S_{\Lambda \times \Omega}$; indeed, for each ω , the map $D \to D_{\omega}^*$, given by $d \mapsto d_{\omega}^*$, is an isomorphism.

For each $q \in Q$, define a permutation q^* of $\Lambda \times \Omega$ by

$$q^*(\lambda, \omega') = (\lambda, q\omega'),$$

and define

$$Q^* = \{q^* : q \in Q\}.$$

It is easy to see that Q^* is a subgroup of $S_{\Lambda \times \Omega}$ and that the map $Q \to Q^*$, given by $q \mapsto q^*$, is an isomorphism.

Theorem 7.24. Given groups D and Q, a finite Q-set Ω , and a D-set Λ , then the wreath product $D \wr Q$ is isomorphic to the subgroup

$$W = \langle Q^*, D_{\omega}^* : \omega \in \Omega \rangle \leq S_{\Delta \times \Omega},$$

and hence $\Lambda \times \Omega$ is a $(D \wr Q)$ -set.

Proof. We show first that $K^* = \langle \bigcup_{\omega \in \Omega} D_{\omega}^* \rangle$ is the direct product $\prod_{\omega \in \Omega} D_{\omega}^*$. It is easy to see that D_{ω}^* centralizes D_{ω}^* for all $\omega' \neq \omega$, and so $D_{\omega}^* \lhd K^*$ for every ω . Each $d_{\omega}^* \in D_{\omega}^*$ fixes all $(\lambda, \omega') \in \Lambda \times \Omega$ with $\omega' \neq \omega$, while each element of $\langle \bigcup_{\omega' \neq \omega} D_{\omega'}^* \rangle$ fixes all (λ, ω) for all $\lambda \in \Lambda$. It follows that if $d_{\omega}^* \in D_{\omega}^* \cap \langle \bigcup_{\omega' \neq \omega} D_{\omega'}^* \rangle$, then $d_{\omega}^* = 1$.

If $q \in Q$ and $\omega \in \Omega$, then a routine computation gives

$$q^*d_{\omega}^*q^{*-1} = d_{a\omega}^*$$

for each $\omega \in \Omega$. Hence $q^*K^*q^{*-1} \leq K^*$ for each $q \in Q$, so that $K^* \lhd W$ (because $W = \langle K^*, Q^* \rangle$); it follows that $W = K^*Q^*$. To see that W is a semidirect product of K^* by Q^* , it suffices to show that $K^* \cap Q^* = 1$. Now $d_{\omega}^*(\lambda, \omega') = (d\lambda, \omega')$ or (λ, ω') ; in either case, d_{ω}^* fixes the second coordinate. If $q^* \in Q^*$, then $q^*(\lambda, \omega') = (\lambda, q\omega')$ and q^* fixes the first coordinate. Therefore, any $g \in K^* \cap Q^*$ fixes every (λ, ω') and hence is the identity.

It is now a simple matter to check that the map $D \wr Q \to W$, given by $(d_{\omega})q \mapsto (d_{\omega}^*)q^*$, is an isomorphism.

Call the subgroup W of $S_{\Lambda \times \Omega}$ the *permutation version* of $D \wr Q$; when we wish to view $D \wr O$ acting on $\Lambda \times \Omega$, then we will think of it as W.

Theorem 7.25. Let D and Q be groups, let Ω be a finite Q-set, let Λ be a D-set, and let $W \leq S_{\Lambda \times \Omega}$ be the permutation version of $D \wr Q$.

- (i) If Ω is a transitive Q-set and Λ is a transitive D-set, then $\Lambda \times \Omega$ is a transitive (D \(\cdot\) O)-set.
- (ii) If ω ∈ Ω, then its stabilizer Q_ω acts on Ω − {ω}. If (λ, ω) ∈ Λ × Ω and D(λ) ≤ D is the stabilizer of λ, then the stabilizer W_(λ,ω) of (λ, ω) is isomorphic to D(λ) × (D \cdot Q_ω), and [W : W_(λ,ω)] = [D : D(λ)][Q : Q_ω].

Proof. (i) Let (λ, ω) , $(\lambda', \omega') \in \Lambda \times \Omega$. Since D acts transitively, there is $d \in D$ with $d\lambda = \lambda'$; since Q acts transitively, there is $q \in Q$ with $q\omega = \omega'$. The reader may now check that $q^*d^*_{\omega}(\lambda, \omega) = (\lambda', \omega')$.

174 7. Extensions and Cohomology

(ii) Each element of W has the form $(d_{\omega}^*)q^*$, and $(d_{\omega}^*)q^*(\lambda,\omega) = (\prod_{\omega' \in \Omega} d_{\omega'}^*)(\lambda, q\omega) = d_{q\omega}^*(\lambda, q\omega) = (d_{q\omega}\lambda, q\omega)$. It follows that $(d_{\omega}^*)q^*$ fixes (λ, ω) if and only if q fixes ω and d_{ω} fixes λ . Let $D_{\omega}^*(\lambda) = \{d_{\omega}^*: d \in D(\lambda)\}$. Now $D_{\omega}^*(\lambda)$ is disjoint from $\langle \prod_{\omega' \neq \omega} D_{\omega'}^*, Q_{\omega}^* \rangle$ and centralizes it: if $q^* \in Q_{\omega}^*$, then $q^*d_{\omega}^*q^{*-1} = d_{\omega}^* = d_{\omega}^*$); hence

$$W_{(\lambda,\omega)} = \left\langle D_{\omega}^{*}(\lambda), \prod_{\omega' \neq \omega} D_{\omega'}^{*}, Q_{\omega}^{*} \right\rangle$$
$$= D_{\omega}^{*}(\lambda) \times \left\langle \prod_{\omega' \neq \omega} D_{\omega'}^{*}, Q_{\omega}^{*} \right\rangle$$
$$\cong D(\lambda) \times (D \wr Q_{\omega}).$$

It follows that $|W_{(\lambda,\omega)}| = |D(\lambda)||D|^{|\Omega|-1}|Q_{\omega}|$ and

$$[W:W_{(\lambda,\omega)}] = |D|^{|\Omega|}|Q|/|D(\lambda)||D|^{|\Omega|-1}|Q_{\omega}| = [D:D(\lambda)][Q:Q_{\omega}].$$

Theorem 7.26. Wreath product is associative: if both Ω and Λ are finite, if T is a group, and if Δ is a T-set, then $T \wr (D \wr Q) \cong (T \wr D) \wr Q$.

Proof. The permutation versions of both $T \wr (D \wr Q)$ and $(T \wr D) \wr Q$ are subgroups of $S_{\Delta \times \Lambda \times \Omega}$; we claim that they coincide. The group $T \wr (D \wr Q)$ is generated by all $t^*_{(\lambda,\omega)}$ (for $t \in T$ and $(\lambda,\omega) \in \Lambda \times \Omega$) and all f^* (for $f \in D \wr Q$). Note that $t^*_{(\lambda,\omega)}: (\delta',\lambda',\omega') \mapsto (t\delta',\lambda',\omega')$ if $(\lambda',\omega') = (\lambda,\omega)$, and fixes it otherwise; also, $f^*: (\delta',\lambda',\omega') \mapsto (\delta',f(\lambda',\omega'))$. Specializing f^* to d^*_{ω} and to q^* , we see that $T \wr (D \wr Q)$ is generated by all $t^*_{(\lambda,\omega)}, d^*_{\omega}$, and q^{**} , where $d^*_{\omega}: (\delta',\lambda',\omega') \mapsto (\delta',\lambda',q\omega')$. $(\delta',d\lambda',\omega')$ if $\omega' = \omega$, and fixes it otherwise, and $q^{**}: (\delta',\lambda',\omega') \mapsto (\delta',\lambda',q\omega')$.

A similar analysis of $(T \wr D) \wr Q$ shows that it is generated by all q^{**}, d_{ω}^* , and $(t_{\lambda})_{\omega}^*$, where $(t_{\lambda})_{\omega}^* \colon (\delta', \lambda', \omega') \mapsto (t\delta', \lambda', \omega')$ if $\omega' = \omega$ and $\lambda' = \lambda$, and fixes it otherwise. Since $(t_{\lambda})_{\omega}^* = t_{\lambda,\omega}^*$, the two wreath products coincide.

The best way to understand wreath products is by considering graphs.

Definition. A *graph* Γ is a nonempty set V, called *vertices*, together with an *adjacency* relation on V, denoted by $v \sim u$, that is symmetric $(v \sim u \text{ implies } u \sim v \text{ for all } u, v \in V)$ and irreflexive $(v \not\sim v \text{ for all } v \in V)$.

One can draw pictures of finite graphs; regard the vertices as points and join each adjacent pair of vertices with a line segment or edge. Notice that our graphs are nondirected; that is, one can traverse an edge in either direction; moreover, there are no "loops"; every edge has two distinct endpoints. An automorphism of a graph Γ with vertices V is a bijection $\varphi\colon V\to V$ such that $u,v\in V$ are adjacent if and only if $\varphi(u)$ and $\varphi(v)$ are adjacent. It is plain that the set of all automorphisms of a graph Γ , denoted by $Aut(\Gamma)$, is a group under composition.

For example, consider the following graph Γ :

175

176

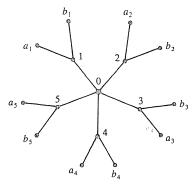


Figure 7.1

If $\varphi \in \operatorname{Aut}(\Gamma)$, then φ fixes vertex 0 (it is the only vertex adjacent to 5 vertices), φ permutes the "inner ring" $\Omega = \{1, 2, 3, 4, 5\}$, and, for each i, either $\varphi(a_i) = a_{\varphi i}$ and $\varphi(b_i) = b_{\varphi i}$ or $\varphi(a_i) = b_{\varphi i}$ and $\varphi(b_i) = a_{\varphi i}$. It is now easy to see that $|\operatorname{Aut}(\Gamma)| = 2^5 \times 5!$. Regard S_5 as acting on Ω and regard S_2 as acting on $\Lambda = \{a, b\}$. Identify the outer ring of all vertices $\{a_i, b_i \colon i \in \Omega\}$ with $\Lambda \times \Omega$ by writing a_i as (a, i) and b_i as (b, i). If $q \in S_5$, then q permutes the inner ring: $q^*(a_i) = a_{qi}$ and $q^*(b_i) = b_{qi}$; that is, $q^*(a, i) = (a, qi)$ and $q^*(b, i) = (b, qi)$. If $d \in S_2$ and $i \in \Omega$, then $d_i^*(a, i) = (da, i)$, $d_i^*(b, i) = (db, i)$, while d_i^* fixes (a, j) and (b, j) for $j \neq i$. For example, if d interchanges a and b, then $d_i^*(a_i) = b_i$ and $d_i^*(b_i) = a_i$, while d_i^* fixes a_j and b_j for all $j \neq i$. Thus, both q^* and d_i^* correspond to automorphisms of Γ . In Exercise 7.30 below, you will show that $\operatorname{Aut}(\Gamma) \cong S_2 \wr S_5$.

A special case of the wreath product construction has $\Omega = Q$ regarded as a Q-set acting on itself by left multiplication. In this case, we write $W = D \wr_r Q$, and we call W the *regular wreath product*. Thus, the base is the direct product of |Q| copies of D, indexed by the elements of Q, and $Q \in Q$ sends a |Q|-tuple $(d_X) \in \prod_{x \in Q} D_x$ into (d_{qx}) . Note that $|D \wr_r Q| = |D|^{|Q|} |Q|$. It is easy to see that the formation of regular wreath products is *not* associative when all groups are finite, for $|T \wr_r (D \wr_r Q)| \neq |(T \wr_r D) \wr_r Q|$.

If Ω is an infinite set and $\{D_{\omega}:\omega\in\Omega\}$ is a family of groups, then there are two direct product constructions. The first, sometimes called the *complete direct product*, consists of all "vectors" (d_{ω}) in the cartesian product $\prod_{\omega\in\Omega}D_{\omega}$ with "coordinatewise" multiplication: $(d_{\omega})(d'_{\omega})=(d_{\omega}d'_{\omega})$. The second, called the restricted direct product, is the subgroup of the first consisting of all those (d_{ω}) with only finitely many coordinates $d_{\omega}\neq 1$. Both versions coincide when the index set Ω is finite. The wreath product using the complete direct product is called the *complete wreath product*; the wreath product using the restricted direct product is called the *restricted wreath product*. We shall see a use for the complete wreath product at the end of the next section. The

7. Extensions and Cohomology

first example of a (necessarily infinite) centerless p-group was given by D.H. McLain (1954); it is a restricted wreath product of a group of prime order p by $\mathbb{Z}(p^{\infty})$ (the latter group is discussed in Chapter 10; it is the multiplicative group of all pth power roots of unity). McLain's example is thus a p-group that is not nilpotent.

What is the order of a Sylow p-subgroup of the symmetric group S_m ? If $k \le m$ are positive integers, define $t = \lfloor m/k \rfloor$, the greatest integer in m/k. Thus, $k, 2k, \ldots, tk \le m$, while (t+1)k > m, so that t is the number of integers $i \le m$ which are divisible by k. If p is a prime, what is the largest power μ of p dividing m!? Think of m! as factored: $m! = 2 \times 3 \times 4 \times \cdots \times m$. By our initial remark, $\lfloor m/p \rfloor$ factors of m! are divisible by p, $\lfloor m/p^2 \rfloor$ factors are divisible by p^2 , etc. Hence, if $m! = p^{\mu}m'$, where (m', p) = 1, then

$$\mu = [m/p] + [m/p^2] + [m/p^3] + \cdots$$

For example, if p = 2, then $\lfloor m/2 \rfloor$ is the number of even integers $\leq m$, $\lfloor m/4 \rfloor$ is the number of multiples of $4 \leq m$, and so forth. (Notice, for example, that $8 = 2^3$ is counted three times by the formula for μ .) In particular, if $m = p^n$, then the largest power of p dividing p^n ! is

$$\mu = \mu(n) = p^{n-1} + p^{n-2} + \dots + p + 1,$$

and so the order of a Sylow p-subgroup of the symmetric group S_{p^n} is $p^{\mu(n)}$.

Theorem 7.27 (Kaloujnine, 1948). If p is a prime, then a Sylow p-subgroup of S_{p^n} is an iterated regular wreath product $W_n = \mathbb{Z}_p \wr_r \mathbb{Z}_p \wr_r \cdots \wr_r \mathbb{Z}_p$ of n copies of \mathbb{Z}_p , where $W_{n+1} = W_n \wr_r \mathbb{Z}_p$.

Proof. The proof is by induction on n, the case n=1 holding because a Sylow p-subgroup of S_p has order p. Assume that n>1. Let Λ be a set with p^n elements and let D be a Sylow p-subgroup of S_Λ ; thus, Λ is a D-set. Let $\Omega=\{0,1,\ldots,p-1\}$, and let $Q=\langle q\rangle$ be a cyclic group of order p acting on Ω by qi=i+1 mod p. The permutation version of the wreath product $P=D\wr_{\Gamma}\mathbb{Z}_p$ is a subgroup of $S_{\Lambda\times\Omega}$; of course, $|\Lambda\times\Omega|=p^{n+1}$. By induction, D is a wreath product of n copies of \mathbb{Z}_p , and so P is a wreath product of n+1 copies of \mathbb{Z}_p . To see that P is a Sylow p-subgroup, it suffices to see that its order is $p^{\mu(n+1)}$, where $\mu(n+1)=p^n+p^{n-1}+\cdots+p+1$. Now $|D|=p^{\mu(n)}$, so that $|P|=|D\wr_{\Gamma}\mathbb{Z}_p|=(p^{\mu(n)})^pp=p^{\mu(n)+1}=p^{\mu(n+1)}$.

Theorem 7.27 may be used to compute the Sylow p-subgroup of S_m for any m (not necessarily a power of p). First write m in base p:

$$m = a_0 + a_1 p + a_2 p^2 + \cdots + a_i p^i$$
, where $0 \le a_i \le p - 1$.

Partition $X = \{1, 2, ..., m\}$ into a_0 singletons, a_1 p-subsets, a_2 p^2 -subsets, ..., and a_i p^i -subsets. On each of these p^i -subsets Y, construct a Sylow p-subgroup of S_Y . Since disjoint permutations commute, the direct product of all these Sylow subgroups is a subgroup of S_X of order p^N , where $N = a_1 + a_2\mu(2) + \cdots + a_i\mu(t)$ (recall that $\mu(i) = p^{i-1} + p^{i-2} + \cdots + p + 1$). But p^N is

$$m = a_0 + a_1 p + a_2 p^2 + \cdots + a_t p^t$$
,

and so

$$[m/p] + [m/p^2] + [m/p^3] + \dots = (a_1 + a_2p + a_3p^2 + \dots + a_tp^{t-1})$$

$$+ (a_2 + a_3p + a_4p^2 + \dots + a_tp^{t-2})$$

$$+ (a_3 + a_4p + \dots + a_tp^{t-3}) + \dots$$

$$= a_1 + a_2(p+1) + a_3(p^2 + p+1) + \dots$$

$$= a_1 + a_2\mu(2) + \dots + a_t\mu(t) = N.$$

Thus, the direct product has the right order, and so it must be a Sylow p-subgroup of $S_X \cong S_m$.

For example, let us compute a Sylow 2-subgroup of S_6 (this has been done by hand in Exercise 4.15 (ii)). In base 2, we have $6 = 0 \times 1 + 1 \times 2 + 1 \times 4$. A Sylow 2-subgroup of S_2 is \mathbb{Z}_2 ; a Sylow 2-subgroup of S_4 is $\mathbb{Z}_2 \wr \mathbb{Z}_2$. We conclude that a Sylow 2-subgroup P of S_6 is $\mathbb{Z}_2 \times (\mathbb{Z}_2 \wr \mathbb{Z}_2)$. By Exercise 7.31 below, $\mathbb{Z}_2 \wr \mathbb{Z}_2 \cong D_8$, so that $P \cong \mathbb{Z}_2 \times D_8$.

EXERCISES

- 7.30. Prove that $\operatorname{Aut}(\Gamma) \cong S_2 \wr S_5$, where Γ is the graph in Figure 7.1. (Hint. Every $\varphi \in \operatorname{Aut}(\Gamma)$ is completely determined by its behavior on the outer ring consisting of all vertices of the form a_i or b_i .)
- 7.31. Prove that $\mathbb{Z}_2 \wr \mathbb{Z}_2 \cong D_8$. (Hint. $\mathbb{Z}_2 \wr \mathbb{Z}_2$ has several involutions.)
- 7.32. If both D and O are solvable, then $D \wr O$ is solvable.
- 7.33. Definition. Let D be a (multiplicative) group. A monomial matrix μ over D is a permutation matrix P whose nonzero entries have been replaced by elements of D; we say that P is the support of μ . If Q is a group of $n \times n$ permutation matrices, then

 $M(D, Q) = \{$ all monomial matrices μ over D with support in $Q\}$.

- (i) Prove that M(D, Q) is a group under matrix multiplication.
- (ii) Prove that the subgroup $Q \cong M(1, Q) \leq M(D, Q)$.
- (iii) Prove that the diagonal M(D, 1) is isomorphic to the direct product $D \times \cdots \times D$ (n times).
- (iv) Prove that $M(D, 1) \triangleleft M(D, Q)$ and that M(D, Q) is a semidirect product of M(D, 1) by M(1, Q).
- (v) Prove that $M(D, Q) \cong D \wr Q$.
- 7.34. (i) Fix a group Q and a finite Q-set Ω. For all groups D and A and all homomorphisms f: D → A, there is a homomorphism M(f): M(D, Q) → M(A, Q) such that M(1_D) = 1_{M(D,Q)} and, whenever g: A → B, then M(gf) = M(g)M(f). (Hint. Just replace every nonzero entry x of a monomial matrix over D by f(x).) (In categorical language, this exercise shows that wreath product is a functor.)

(ii) If D is abelian, show that determinant $d: M(D, Q) \rightarrow D$ is a (well defined) homomorphism.

7.35. If $(a, x) \in D \wr Q$ (so that $a \in K = \prod D_{\omega}$), then

$$(a, x)^n = (aa^x a^{x^2} \dots a^{x^{n-1}}, x^n).$$

7.36. Let $X = B_1 \cup \cdots \cup B_m$ be a partition of a set X in which each B_t has k elements. If

 $G = \{g \in S_X : \text{ for each } i, \text{ there is } j \text{ with } g(B_i) = B_i\},$

then $G \cong S_k \wr S_m$.

Factor Sets

178

Since there are nonsimple groups that are not semidirect products, our survey of extensions is still incomplete. Notice the kind of survey we already have: if we know Q, K, and θ , then we know the semidirect product $K \rtimes_{\theta} Q$ in the sense that we can write a multiplication table for it (its elements are ordered pairs and we know how to multiply any two of them).

In discussing general extensions G of K by Q, it is convenient to use the additive notation for G and its subgroup K (this is one of the rare instances in which one uses additive notation for a nonabelian group). For example, if $k \in K$ and $g \in G$, we shall write the conjugate of k by g as g + k - g.

Definition. If $K \leq G$, then a (right) transversal of K in G (or a complete set of right coset representatives) is a subset T of G consisting of one element from each right coset of K in G.

If T is a right transversal, then G is the disjoint union $G = \bigcup_{t \in T} K + t$. Thus, every element $g \in G$ has a unique factorization g = k + t for $k \in K$ and $t \in T$. There is a similar definition of left transversal; of course, these two notions coincide when K is normal.

If G is a semidirect product and Q is a complement of K, then Q is a transversal of K in G.

Definition. If $\pi: G \to Q$ is surjective, then a *lifting* of $x \in Q$ is an element $l(x) \in G$ with $\pi(l(x)) = x$.

If one chooses a lifting l(x) for each $x \in Q$, then the set of all such is a transversal of ker π . In this case, the function $l: Q \to G$ is also called a *right transversal* (thus, both l and its image l(Q) are called right transversals).

Theorem 7.28. Let G be an extension of K by Q, and let $l: Q \to G$ be a transversal.

If K is abelian, then there is a homomorphism $\theta: Q \to Aut(K)$ with

$$\theta_{\mathbf{x}}(a) = l(\mathbf{x}) + a - l(\mathbf{x})$$