CHAPTER 4

The Sylow Theorems

p-Groups

The order of a group G has consequences for its structure. A rough rule of
thumb is that the more complicated the prime factorization of |G|, the more
complicated the group. In particular, the fewer the number of distinct prime
factors in |G|, the more tractible it is. We now study the “local” case when
only one prime divides [G]|.

Definition. If p is a prime, then a p-group is a group in which every element
has order a power of p.

Corollary 4.3 below gives a simple characterization of finite p-groups.

Lemma 4.1. If G'is a finite abelian group whose order is divisible by a prime p,
then G contains an element of order p.

Proof. Write |G| = pm, where m > 1. We proceed by induction on m after
noting that the base step is clearly true. For the inductive step, choose x € G
of order t > 1. If p|t, then Exercise 2.11 shows that x“? has order p, and the
lemma is proved. We may, therefore, assume that the order of x 1s not divisi-
ble by p. Since G is abelian, {x) is a normal subgroup of G, and G/{x) 1s an
abehan group of order |G|/t = pm/t. Since pft, we must have m/t <m an
integer. By induction, G/{x) contains an element y* of order p. But the
natural map v: G - G/{x) is a surjection, and so there is y € G with v(y) =
y*. By Exercise 2.14, the order of y is a multiple of p, and we have returned to
the first case.
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We now remove the hypothesis that G is abelian.

Theorem 4.2 (Cauchy, 1845). If G is a finite group whose order is divisible by
a prime p, then G contains an element of order p.

Proof. Recall Theorem 3.2. If x € G, then the number of conjugates of x is
[G: C4(x)], where Cg4(x) is the centralizer of x in G. If x ¢ Z(G), then its
conjugacy class has more than one element, and so |Cg4(x)| < |G|. If p||Cg(x)|
for such a noncentral x, we are done, by induction. Therefore, we may assume
that pf|Cg(x)| for all noncentral x in G. Better, since |G| = [G: Cg(x)]|Cq(x)],
we may assume that p|[G : C4(x)] (using Euclid’s lemma, which applies be-
cause p is prime).

Partition G into its conjugacy classes and count (recall that Z(G) consists
of all the elements of G whose conjugacy class has just one element):

(%) Gl =1Z(G)] + 2. [G: Cglx))],

where one x; is selected from each conjugacy class with more than one ele-
ment. Since |G| and all [G : C4(x;)| are divisible by p, 1t follows that | Z(G)| is
divisible by p. But Z(G) is abelian, and so it contains an element of order p,
by the lemma.

Definition. Equation (*) above is called the class equation of the finite
group G.

Here is a second proof of Cauchy’s theorem, due to J.H. McKay, which
avoids the class equation. Assume that p is a prime and that G 1s a finite
group. Define

X ={(@,,....,a,)eG x> x G:aa,...a,=1}.

Note that | X| = |G|P7?, for having chosen the first p — 1 coordinates arbi-
trarily, we must set a, = (a,a,...a,-,)"". Now X is a Z -set, where g Z,
acts by cyclically permuting the coordinates (since a;...a,a, ...a;_, is a con-
jugate of a,a,...a,, the product of the permuted coordinates is also equal to___
1). By Corollary 3.21, each orbit of X has either 1 or p elements. An orbit with
just one element is a p-tuple having all its coordinates equal, say,’a; = a for
all i; in other words, such orbits correspond to elements a € G with a? = 1.
Clearly (1, ..., 1) is such an orbit; were this the only such orbit, then we
would have
| X1 =1GPP™' =1+kp

for some integer k > 0; that is, |G|? ™" = 1 mod p. If p divides |G|, however,
this is a contradiction, and so we conclude that G must have an element of
order p. (As A. Mann remarked to me, if | G| is not divisible by p, then we have
proved Fermat’s theorem.)
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Corollary 4.3. A finite group G is a p-group if and only if |G| is a power of p.

Proof. If |G| = p™, then Lagrange’s theorem shows that G 1s a p-group. Con-
versely, assume that there is a prime q 5 p which divides |G|. By Cauchy’s
theorem, G contains an element of order g, and this contradicts G being a
p-group.

Theorem 4.4. If G # 1 is a finite p-group, then its center Z(G) # 1.

Proof. Consider the class equation

IGI =1Z(G)] + 3. [G: Cglx)].

Each Cg(x;) 1s a proper subgroup of G, for x; ¢ Z(G). By Corollary 4.3,
[G: Cql(x;)] 1s a power of p (since |G| 1s). Thus, p divides each [G: Cg(x;)],
and so p divides | Z(G)|. E

If G is a finite simple p-group, then G = Z(G) and G is abelian; therefore, G
must be cyclic of order p. Theorem 4.4 is false for infinite p-groups.
- N

Corollary 4.5. If p is a prime, then every group G of order p* is abelian.
Proof. If G 1s not abelian, then Z(G) < G; since 1 5 Z(G), we must have

|Z(G)| = p. The quotient group G/Z(G) 1s defined, since Z(G) < G, and it is
cyclic, because |G/Z(G)| = p; this contradicts Exercise 3.3. [

Theorem 4.6. Let G be a finite p-group.

() If H is a proper subgroup of G, then H < Ng(H).
(1) Every maximal subgroup of G is normal and has index p.

Proof. (1) If H < G, then N;(H) = G and the theorem is true. If X is the set of
all th\e conjugates of H, then we may assume that | X| = [G: N;(H)] # 1.
NoW’}%cts on X"by conjugation and, since G is a p-group, every orbit of X
has size a power of p. As {H} is an orbit of size 1, there must be at least p — 1
other orbits of size 1. Thus there is at least one conjugate gHg ™' # H with
{gHg™'} also an orbit of size 1. Now agHg 'a™' = gHg™ for all a € H, and
so g 'ag € Ng(H) for all a € H. But gHg™* # H gives at least one a € H with
g 'ag ¢ H,and so H < Ng(H).
(1) If H is a maximal subgroup of G, then H < Ng(H)implies that N4(H) =
G; that 1s, H < G. By Exercise 2.58, [G: H] = p.

Lemma 4.7. If G is a finite p-group and r, is the number of subgroups of G
having order p, then r, = 1 mod p.

Proof. Let us first count the number of elements of order p. Since Z(G) is



112 5. Normal Series

Central Series and Nilpotent Groups

The Sylow theorems show that knowledge of p-groups gives information
about arbitrary finite groups. Moreover, p-groups have a rich supply of nor-
mal subgroups, and this suggests that normal series might be a powerful tool
in their study. It turns out that the same methods giving theorems about
p-groups also apply to a larger class, the nilpotent groups, which may be
regarded as generalized p-groups.

Definition. If H, K < G, then
[H,K]=<([hk]:he Hand ke K),

where [h, k] is the commutator hkh™ k™!,

An example was given, in Exercise 2.43, showing that the set of all commu-
tators need not be a subgroup; in order that [ H, K7 be a subgroup, therefore,
we must take the subgroup generated by the indicated commutators. It is
obvious that [H, K] = [K, H], for [h k]! = [k, h]. The commutator sub-
group G’ is equal to [G, G] and, more generally, the higher commutator
subgroup GY*1 is equal to [GY, GV].

We say that a subgroup K normalizes H if K < N;(H); it is easy to see that
K normalizes H if and only if [H, K] < H.

Definition. If H < G, the centralizer of H in G is
Cg(H) = {x € G: x commutes with every h € H};
that is, C4(H) = {x € G: [x, h] = 1 forall h € H}.

We say that a subgroup K centralizes H if K < C(H); it is easy to see that
K centralizes H if and only if [H, K] = 1.

If x, ye G and [x, y] € K, where K < G, then x and y “commute mod K”;
that is, xKyK = yKxK in G/K.

Lemma 5.30.

(i) If K<Gand K < H < G, then[H, G] < K if and only if H/K < Z(G/K).
(@) If HHK<G and f:G—- L is a homomorphism, then f([H, K])=
Lf(H), f(K)]. ‘

Proof. () I h € H and g € G, then hKgK = gKhK if and only if [/, g]1K = K
if and only if [h, g] € K.
(ii) Both sides are generated by all f([A, k1) = [ f(h), f(k)].

Definition. Define characteristic subgroups y;(G) of G by induction:

11(G)=G;  y;11(G) = [(G), G].
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Notice that y,(G) = [7,(G), G] =[G, G] = G' = G'V). 1t is easy to check
that 7;+,(G) < 7,(G). Moreover, Lemma 5.30(i) shows that [7,(G), G] = 7;+,(G)
gives 7/(G)/7;+1(G) < Z(G/yi+1(G)).

Definition. The lower central series (or descending central series) of G is the
series
G =17,(G) = 7,(G) =

(this need not be a normal series because it may not reach 1).
There is another series of interest.

Definition. The higher centers {'(G) are the characteristic subgroups of G
defined by induction:

Gy =1 [TUG)LI(G) = Z(G/L(G));

that is, if v;: G — G/{'(G) is the natural map, then {*1(G) is the inverse image
of the center.

Of course, {1(G) = Z(G).

Definition. The upper central series (or ascending central series) of G is

1=0%6) < {H(G) < 1*(G) < -+

When no confusion can occur, we may abbreviate {*(G) by ¢’ and y,(G)
by ;.

Theorem 5.31. If G is a group, then there is an integer ¢ with ((G) = G if and
only if y.+1(G) = 1. Moreover, in this case,

Vw1 (G) < FTHG)  for all i,

Proof. Assume that (¢ = G, and let us prove that the inclusion holds by
induction on i. If i = 0, then y, = G = {*. If y;,, < {7, then

Yivz = i, G1 <[ G < 077,

the last inclusion following from Lemma 5.30. We have shown that the inclu-
sion always holds; in particular, if i = ¢, theny,,, < (° = L.

Assume that y,,; = 1, and let us prove that y,.,_; < {’ by induction on j
(this is the same inclusion as in the statement: set j = ¢ — i). If j = 0, then
Verr = 1 =% If y,4,-; < U, then the third isomorphism theorem gives a
surjective homomorphism G/y,4;—; = G/{%. Now [y,_j, G] = .41, so that
Lemma 5.30 gives y,—;/y.+1-; < Z(G/y.+1-;)- By Exercise 3.10 [if A < Z(G)
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and f: G — H is surjective, then f(A4) < Z(H)], we have
Ve, L0 < Z(GIEy = (ML

Therefore, y,—; < 7,-;,{ < {’*', as desired. We have shown that the inclusion
always holds; in particular, ifj = ¢, then G = 7, < (“.

The following result reflects another relationship between these two series.
Theorem 5.32 (Schur). If G is a group with G/Z(G) finite, then G' is also finite.

Proof (Ornstein). Let g,, ..., g, be representatives of the cosets of Z(G) in G;
that is, each x € G has the form x = g;z for some i and some z € Z(G). For all
x,y€G,[x,y] =19z 9;2']1 = Lg:, 9;]. Hence, every commutator has the form
[ g;, g;] for some i, j, so that G’ has a finite number (< n?) of generators.

Each element g’ € G’ can be written as a word c, ‘- ¢,, where each ¢; is a
commutator (no exponents are needed, for [x, y]™* = [y, x]). It suffices to
prove that if a factorization of g’ is chosen so that t = t(g') is minimal, then
t(g)y<n3forallg' e G.

We prove first, by induction on r > 1, that if a,b e G, then [a, b]" =
(aba™'b™'y = (ab)(a”'b~')u, where u is a product of r — 1 commutators.
This is obvious when r = 1. Note, for the inductive step, that if x, y € G, then
xy = yxx 'y Ixy = yx[x71, y17; that is, xy = yxc for some commutator c.
Thus, if r > 1, then

(aba b~y *! = gba~'b "' (aba 'Y
= ab[a™'b7 '] {(aby (@ b Y }u
= ab{(aby(a™'b™')}[a" b Jcu

for some commutator c, as desired.

Since yx = x™ 1 (xy)x, we have (yx)* = x 71 (xy)'x = (xy)", because [G : Z(G)]
=n implies (ab)" € Z(G). Therefore, (a~ b1y = ((ba) ™' )*=((ba)") "' = ((ab)") ™.
It follows that

(%) " [a, b]"is a product of n — 1 commutators.

Now xyx = (xyx~')x2, so that two x’s can be brought together at the ex-
pense of replacing y by a conjugate of y. Take an expression of an element
g' € G’ as a product of commutators c, ...c,, where t is minimal. If t > n?,
then there is some commutator ¢ occurring m times, where m > n (for there
are fewer than n? distinct commutators). By our remark above, all such fac-
tors can be brought together to c¢™ at the harmless expense of replacing
commutators by conjugates (which are still commutators); that is, the num-
ber of commutator factors in the expression is unchanged. By (), the length
of the minimal expression for g’ is shortened, and this is a contradiction.
Therefore, t < n3, and so G'is finite.
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—
Definition. A group G is nilpotent* if there is an integer ¢ such that y,,,(G) =
1; the least such c is called the class of the nilpotent group G.

Theorem 5.31 shows, for nilpotent groups, that the lower and upper cen-
tral series are normal series of the same length.

A group is nilpotent of class 1 if and only if it is abelian. By Theorem 5.31,
a nilpotent group G of class 2 is described by 7,(G) = G’ < Z(G) = (1(G).
Every nonabelian group of order p? is nilpotent of class 2, by Exercise 4.7.

Theorem 5.33. Every finite p-group is nilpotent.

Proof. Recall Theorem 4.4. Every finite p-group has a nontrivial center. If, for
some i, we have {{(G) < G, then Z(G/{'(G)) # 1 and so {'(G) < {'*1(G). Since
G is finite, there must be an integer i with {/(G) = G; that is, G is nilpotent.

This theorem is false without the finiteness hypothesis, for there exist infi-
nite p-groups that are not nilpotent (see Exercise 5.45 below); indeed, there is
an example of McLain (1954) of an infinite p-group G with Z(G) = 1, with
G' = G (so that G is not even solvable), and with no characteristic subgroups
other than G and 1.

Theorem 5.34.

(i) Ewvery nilpotent group G is solvable.
(i) If G # lis nilpotent, then Z(G) # 1.
(iii) Sj is a solvable group that is not nilpotent. [

Proof. (i) An easy induction shows that G® < y,(G) for all i. It follows that if
7.41(G) = 1, then G“*V) = 1; that is, if G is nilpotent (of class < c), then G is
solvable (with derived length < c + 1).

(i) Assume that G # 1 is nilpotent of class ¢, so that y.,,(G) =1 and
v.(G) # 1. By Theorem 5.31, 1 # y,(G) < {}(G) = Z(G).

(iii) The group G = S, is solvable and Z(S;) = 1.

Theorem 5.35. Every subgroup H of a nilpotent group G is nilpotent. M oreover,
if G is nilpotent of class c, then H is nilpotent of class < c.

Proof. 1t is easily proved by induction that H < G implies y,(H) < y,(G) for all
i. Therefore, y.,,(G) = 1 forces y,.,(H) = 1. &

% There is an analogue of the descending central series for Lie algebras, and Engel’s theorem says
that if the descending central series of a Lie algebra L reaches 0, then L is isomorphic to a Lie
algebra whose elements are nilpotent matrices. This is the reason such Lie algebras are called
nilpotent, and the term for groups is taken from Lie algebras.
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Theorem 3.36. If G is nilpotent of class ¢ and H < G, then G/H is nilpotent of
class < c. \

Proof. If {- G — L is a surjective homomorphism, then Lemma 5.30 gives
y:(L) < f(y:(G)) for all i. Therefore, y,,,(G) =1 forces Ye+1(L) = 1. The theo-
rem follows by taking f to be the natural map. £

We have proved the analogues for nilpotent groups of Theorems 5.15 and
5.16;1s the analogue of Theorem 5.17 true? If H < G and both H and G/H are
nilpotent, then is G nilpotent? The answer is “no”: we have already seen that
S, is not nilpotent, but both 4; =~ Z, and S;/A4; =~ Z, are abelian, hence
nilpotent. A positive result of this type is due to P. Hall. If H < G, then we
know that H' < G; Hall proved that if both H and G/H’ are nilpotent, then
G is nilpotent (a much simpler positive result is in Exercise 5.38 below). The
analogue of Corollary 5.18 is true, however.

Theorem 5.37. If H and K are nilpotent, then their direct product H x K is
nilpotent.

Proof. An easy induction shows that y,(H x K) <y,(H) x y,(K) for all i. If
M = max{c, d}, where 7,,,(H) =1 = v,4,(K), then y,,(H x K) =1 and
H x K is nilpotent.

Theorem 5.38. If G is nilpotent, then it satisfies the normalizer condition: if
H < G, then H < Ng4(H).

Proof. There exists an integer i with y;,,(G) < H and y,(G) £ H (this is true
for any descending series of subgroups starting at G and ending at 1). Now
[y, H] < [y5, G] = ;41 < H, so that y; normalizes H; that is, y; < Ng(H).
Therefore, H is a proper subgroup of N (H).

The converse is also true; it is Exercise 5.37 below.

Theorem 5.39. A4 finite group G is nilpotent if and only if it is the direct product
of its Sylow subgroups.

Proof. If G is the direct product of its Sylow subgroups, then it is nilpotent,
by Theorems 5.32 and 5.36.

For the converse, let P be a Sylow p-subgroup of G for some prime p. By
Exercise 4.11, Ng(P) is equal to its own normalizer. On the other hand, if
Ng(P) < G, then Theorem 5.38 shows that N;(P) is a proper subgroup of its
own normalizer. Therefore, Ng(P) = G and P < G. The result now follows
from Exercise 4.12. Hi

Of course, in any group, every subgroup of prime index is a maximal
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subgroup. The converse is false in general (S, has a maximal subgroup of
index 4, as the reader should check), but it is true for nilpotent groups.

Theorem 5.40. If G is a nilpotent group, then every maximal subgroup H is
normal and has prime index.

Proof. By Theorem 5.38, H < Ng(H); since H is maximal, N;(H) = G, and so
H <1 G. Exercise 2.58 now shows that G/H has prime order. [

Theorem 5.41. Let G be a nilpotent group.

(i) If H is a nontrivial normal subgroup, then H N Z(G) # 1.
(ii) If A is a maximal abelian normal subgroup of G, then A = Cg(A).

Proof. (i) Since {°(G) = 1 and G = (*(G) for some c, there is an integer i for
which H n {}(G) # 1; let m be the minimal such i. Now [H n{™(G), G] <
Hn[{™G), G] < HA{"YG) =1, because H <1 G, and this says that 1 #
Hn{"G) < HnZ(G).

(ii) Since A is abelian, 4 < Cg;(A). For the reverse inclusion, assume that
g€ Cgz(A4) and g ¢ A. It is easy to see, for any subgroup H (of any group G)
and for all g € G, that gC;(H)g™ = Cg(g ' Hyg). Since A < G, it follows that
gCs(A)g™' = C;(A) for all g € G, and so Cg(4) <t G. Therefore, C;(4)/A4 is
a nontrivial normal subgroup of the nilpotent group G/4; by (i), there is
Ax € (Cg4(A)/A) N Z(G/A). The correspondence theorem gives {4, x> a nor-
mal abelian subgroup of G strictly containing A, and this contradicts the
maximality of 4. [

EXERCISES

5.35. If G is nilpotent of class 2 and if a € G, then the function G — G, defined by
x — [a, x], is a homomorphism. Conclude, in this case, that Cz(a) < G.

5.36. If G is nilpotent of class ¢, then G/Z(G) is nilpotent of class ¢ — 1.

5.37. Show that the following conditions on a finite group G are equivalent:
(i) G is nilpotent;
(i) G satisfies the normalizer condition;
(iif) Every maximal subgroup of G is normal.

5.38. If H < Z(G) and if G/H is nilpotent, then G is nilpotent.

Definition. A normal series
G=G12G22"'ZG"=1

with each G; < G and G;/G; +; < Z(G/G;,,) is called a central series.

5.39. (i) If G is nilpotent, then both the upper and lower central series of G are
central series.
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551

5. Normal Series

(i) Prove that a group G is nilpotent if and only if it has a central series
G=G,>G,>"+>G,=1. Moreover, if G is nilpotent of class ¢, then
141(G) < Gyyy < {7H(G) for all i

If G is a nilpotent group and H is a minimal normal subgroup of G, then
H < Z(G).

The dihedral group D,, is nilpotent if and only if » is a power of 2.

Let G be a finite nilpotent group of order n. If m|n, then G has a subgroup of
order m.

(i) If H and K are normal nilpotent subgroups of a finite group G, then HK is
a normal nilpotent subgroup.
(i) Every finite group G has a unique maximal normal nilpotent subgroup
Z(G) (which is called the Fitting subgroup of G).
(1)) Show that #(G) char G when G is finite.

(i) Show y,(UT(n, Z,)) consists of all upper triangular matrices with 1’s on the
main diagonal and O’s on the i — 1 superdiagonals just above the main
diagonal (Hint. If A is unitriangular, consider powers of A — E, where E is
the identity matrix.)

(i) The group UT(n, Z,) of all n x n unitriangular matrices over Z, is a p-group
that is nilpotent of class n — 1.

For each n > 1, let G, be a finite p-group of class n. Define H to be the group of
all sequences (g4, g5, -..), With g, € G, for all n and with g, = 1 for all large n;
that 1s, g, # 1 for only a finite number of g,. Show that H is an infinite p-group
which is not nilpotent.

If x, y € G, denote yxy™! by x*. If x, y, z € G, prove

[X, )’Z] = [x, y] [xa Z]y and [xy, Z] = [ys Z]x[x: Z]-
(Recall that [x, y] = xyx~'y™')

(Jacobi identity). If x, y,ze€ G, denote [x,[y, z]] by [x,y,z]. Prove that
[x, y_19 Z]y[y9 Z._l, x]z[25 -x—la y]x =1

(i) Let H, K, L be subgroups of G, and let [H, K, L] = {([h, k,I]:he H, ke K,
le L) Showthatif [H,K,L]=1=[K,L,H],then[L, H, K] = 1.
(i) (Three subgroups lemma). If N < G and [H, K, L][K, L, H] < N, then
[L,H,K] < N.
@) If H,K, and L are all normal subgroups of G, then [L,H, K] <
[H,K, L1[K, L, H]. (Hint. Set N=[H, K, L][K, L, H].))

If G is a group with G = G, then G/Z(G) 1s centerless. (Hint. Use the three
subgroups lemma with H = {*(G) and K = L = G))

Prove that [y,(G), y(G)] < 7:+;(G) for all i,j. (Hint. Use the three subgroups
lemma.)

IfH < Gand Hn G =1, then H < Z(G) (and so H is abelian).
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p-Groups

There are many commutator identities that are quite useful even though they
are quite elementary.

Lemma 5.42. Let x, y € G and assume that both x and y commute with [x, y].
Then:

@) [x, yI" = [x", y]1 =[x, y"] foralln e Z; and
(i) (xy)" = Ly, x]"""V2x"y" for all n > 0.

Proof. (i) We first prove (i) for nonnegative n by induction on n > 0; of course,
it is true when n = 0. For the inductive step, note that
[x, y1"[x, y] = x[x, yI"yx"'y™!, by hypothesis
= x[x", ylyx~ty~!, by induction
= x(x"yx""y Hyx Tty
— [X"+1, y]

Now x[x, y] =[x, y]x, by hypothesis, so that xyx~'y™' = yx~1y Ix;
that is, [x, y]7' = [y, x7']7! = [x™%, y]. Therefore, if n > 0, then [x, y]™" =
[x~1, y1" =[x y], as desired.

(i) The second identity is also proved by induction on n > 0.

(xy)"(xy) = Ly, x]"""D2x"y xy
— [y’ x]n(n—1)/2xn+1[x—1, yn]yn+1
— [y’ x]n(n—l)/zxn+1[y, x]nyn+1

— [y’ x]n(n—l)/Z [y’ x]nxn+1yu+1

— [_V, x](" +1)n/2xn+1yn +1_

Theorem 5.43. If G is a p-group having a unique subgroup of order p and more
than one cyclic subgroup of index p, then G = Q, the quaternions.

Proof. If A is a subgroup of G of index p, then 4 < G, by Theorem 5.40. Thus,
if x € G, then Ax € G/A, a group of order p, and so x? € A. Let 4 = {a)
and B = {(b) be distinct subgroups of index p, and let D = 4 n B; note that
D < G, for it is the intersection of normal subgroups. Our initial remarks
show that the subset

G’ = {xP: x € G}

is contained in D. Since A and B are distinct maximal subgroups, it follows
that AB = G, and so the product formula gives [G : D] = p®. Hence, G/D is
abelian and G’ < D, by Theorem 2.23. As G = AB, each x € G is a product of
a power of a and a power of b; but every element of D is simultaneously a
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power of a and a power of b, and so it commutes with each x € G, that 1s,
D < Z(G). We have seen that

G' <D < Z(G), /

so that the hypothesis of Lemma 5.42(1) holds. Hence, for every x, y € G,
Ly, x]? =[y", x]. But y?e D < Z(G), and so [y, x]” = 1. Now Lemma 5.42(ii)
gives (xy)? = [y, x]7?"D2xPyP 1If p is odd, then p|p(p — 1)/2, and (xy)’ =
x?y?. By Exercise 2.55, if G[p] = {x € G: x? = 1} and G? = {x?: x € G} (as
defined above), then both these subsets are subgroups and [G : G[p]] = |G7|.
Thus,

|GIp)| = [G:G*]1=[G:D][D:G"] = p?,

and G[p] contains a subgroup E of order p?; but E must be elementary
abelian, so that G[ p], hence G, contains more than one subgroup of order p.
We conclude that p = 2.

When p=2 we have D =<{a*) = G* < Z(G), [G:D] =4, and since
[y, x)*=1forallx,yeG,

(xy)* = Ly, x]°x*y* = x*y*.

Hence |G[2]|=[G:G*]=[G:D][D:G*] =8, because D =<{a*) and G* =
{a*».1f G[2] had only one cyclic subgroup of order 4, then it would contain
more than one involution (for every element of G[2] has order either 1, 2,
or 4); there are thus two cyclic subgroups <u) and <{v) of order 4 in G[2].
If a* # 1, we may take (u) < (a*) < Z(G), and so <{u){v) is an abelian
subgroup of G. But (u) {(v) contains at least two involutions: either u* # v?
or u* # uv™'; this contradiction shows that a* = 1. It follows that |[D| = 2
and |G| = 8. By Exercise 4.34, G @ Q or G = Zg; but only Q has more than
one subgroup of index 2.

We do an exercise in congruences before giving the next theorem.

Theorem 5.44. Let U(Z,.) be the multiplicative group
U(Z,»)={lal € Zym:ais odd}.
If m >3, then
U(Zym) =<[—1),[5]) = Z; x Zyma.
Remark. U(Z,~) is the group of units in the ring Z ..

Proof. By Exercise 2.23, |U(Z,n)| = @(2™) = 2™1. Induction and the bino-
mial theorem show that

577 = (144" =142""1 mod 2",

Since U(Z,~) is a 2-group, [5] has order 2°, for some s > m — 2 (because
1 + 271 % 1 mod 2™). Of course, [—1] has order 2. We claim that
51> n{[—1]> =1. If not, then [5']=[—1] for some ¢; that is,
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5= —1mod 2™ Since m >3, this congruence implies 5= —1 mod 4; but
5=1 mod 4 implies 5 = 1 mod 4, a contradiction. It follows that these two
cyclic subgroups generate their direct product, which is a subgroup of order
at least 2 x 2°>2 x 2”72 = 2""1 = (2™). This subgroup is thus all of
U(Z ym).

Corollary 5.45. Let G be a group containing elements x and y such that x has
order 2™ (where m > 3), y*> = x%, and yxy™ = x*. Then

t=+1 or t=+1+42"71,

In the latter two cases, G contains at least two involutions.

Proof. Since y* = x?" commutes with x, we have

x = yzxy—z — yx‘y"l — xtl,

so that t> = 1 mod 2™, and the congruence class [¢] is an element of order 2
in U(Z,m). f m > 3, the lemma exhibits the only four such elements, and this
gives the first statement.

One involution in G is x*™". Suppose t = 1 4+ 2", For any integer k,

(xky)z — xk(yxky—l)yz — xk+kr+2’ — st’

where s = k(1 + 2™"%) 4+ 21, Since m >3, 1 + 2""2 is odd, and we can
solve the congruence
s=k(14+2""2)4+2"1=0 mod2" L.
For this choice of k, we have (x"y)*> = x* = x?" = 1, so that x*y is a second
involution (lest y € {x)).
Suppose that t= —142"7'. As above, for any integer k, (x*y)* =
ketke+2r — k271427 Rewrite the exponent

k2mt 4 2= 2 (k2m T - 1),

and choose k so that k2" ™"~! = 1 mod 2" "; that is, there is an integer [ with
k2m7r=t — 1 =127 For this choice of k, we have

X

(xky)? = x2 @20 — yi2m g

and so G contains a second involution.

Theorem 5.46. A finite p-group G having a unique subgroup of order p is either
cyclic or generalized quaternion.

Proof. The proof is by induction on n, where |G| = p”; of course, the theorem
is true when n = 0.

Assume first that p is odd. If n > 0, then G has a subgroup H of index p, by
Exercise 4.2, and H is cyclic, by induction. There can be no other subgroup
of index p, lest G be the quaternions (Theorem 5.43), which is a 2-group.
Therefore, H is the unique maximal subgroup of G, and so it contains every
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proper subgroup of G. But if G is not cyclic, then {x) is a proper subgroup of
G for every x € G, and so G < H, which is absurd.

Assume now that G is a 2-group. If G is abelian, then Theorem 2.19 shows
that G is cyclic; therefore, we may assume that G is not abelian. Let 4 be a
maximal normal abelian subgroup of G. Since 4 has a unique involution, 4
is cyclic, by Theorem 2.19, say, 4 = {a). We claim that 4 has index 2. As-
sume, on the contrary, that |G/A| > 4. If G/A does not have exponent 2, then
there is Ab € G/A with b ¢ A. Consider H = {a, b*) < {a,b) < G. If H is
abelian, then b? centralizes 4, contradicting Theorem 5.41(ii). As H is not
abelian, it must be generalized quaternion, by induction. We may thus as-
sume that b%*ab™2 = a™'. Now {(a) < G gives bab™* = a' for some i, so that

a! =b*ab™? = b(bab™')b™! = ba'b™! = ",

and i> = —1 mod 2°, where 2¢ is the order of a. Note that e > 2, for 4 prop-
erly contains Z(G). But there is no such congruence: if e > 3, then Theorem
5.44 shows that this congruence never holds; if e = 2, then — 1 is not a square
mod 4. It follows that G/4 must have exponent 2. Since |G/A| = 4, G/A
contains a copy of V. Therefore, there are elements ¢ and d with ¢, d, c™'d ¢ 4
and with {a, ¢), {(a,d), and {a, c"'d) proper subgroups of G. Now none of
these can be abelian, lest ¢, d, or ¢”'d centralize A4, so that all three are
generalized quaternion. But there are equations cac™! = a™ = dad ™!, giving
¢ 'd e C4(A), a contradiction. We conclude that 4 = {a) must have index 2
in G.

Choose b e G with b? e {(a). Replacing a by another generator of 4 if
necessary, we may assume, by Exercise 2.20, that there is some r < n — 2 with

b* = a*.

Now bab™! = a' for some t, because {(a) <1 G. Since G has only one involu-
tion, Corollary 5.45 gives t = + 1. But t = 1 says that a and b commute, so
that G is abelian, hence cyclic. Therefore, we may assume that t = —1 and
G = <a, b), where

I _ ~ )
a®"l =1, bab™ =a™!, b? = a*".

To complete the proof, we need only show that r = n — 2. This follows from
Theorem 5.44: since t = — 1, we have 2" = —2"mod 2"7!, so that 2"*! =
Omod 2" ', andr =n — 2.

It is not unusual that the prime 2 behaves differently than odd primes.

Definition. If G is a group, the its Frartini subgroup ®(G) is defined as the
intersection of all the maximal subgroups of G.

If G is finite, then G always has maximal subgroups; if G is infinite, it may
have no maximal subgroups. For example, let G = Q, the additive group of
rationals. Since G is abelian, a maximal subgroup H of G would be normal,
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and so G/H would be a simple abelian group; hence G/H would be finite and
of prime order. But it is easy to see that O has no subgroups of finite index (it
has no finite homomorphic images).

If an (infinite) group G has no maximal subgroups, one defines ®(G) =

It is clear that ®(G) char G, and so ®(G) < G.

Definition. An element x € G is called a nongenerator if it can be omitted from
any generating set: if G = (x, Y), then G = (Y.

Theorem 5.47. For every group G, the Frattini subgroup ®(G) is the set of all
nongenerators.

Proof. Let x be a nongenerator of G, and let M be a maximal subgroup of G.
If x ¢ M, then G = {x, M) = M, a contradiction. Therefore x € M, for all M,
and so x € ®(G). Conversely, if z € ®(G), assume that G = (2, Y). If (V) #
G, then there exists a maximal subgroup M with {(Y) < M. But ze M, and
so G = (z, Y) < M, a contradiction. Therefore, z is a nongenerator.

Theorem 5.48. Let G be a finite group.

(i) (Frattini, 1885). ®(G) is nilpotent.
(i) If G is a finite p-group, then ®(G) = G'GP, where G? is the subgroup of G
generated by all pth powers.
(iii) If G is a finite p-group, then G/®(G) is a vector space over Z,,.

Proof. (i) Let P be a Sylow p-subgroup of ®@(G) for some p. Since ®(G) < G,
the Frattini argument (1) gives G = ®(G)N4z(P). But ®(G) consists of non-
generators, and so G = Ng(P); thatis, P < G and hence P < ®(G). Therefore,
®(G) is the direct product of its Sylow subgroups; by Theorem 5.39, ®(G) is
nilpotent.

(i) If M is a maximal subgroup of G, where G is now a p-group, then
Theorem 5.40 gives M <1 G and [G : M] = p. Thus, G/M is abelian, so that
G’ < M; moreover, G’ has exponent p, so that x? € M for all x € G. Therefore,
G'GP < O(G).

For the reverse inclusion, observe that G/G’'GP” is an abelian group of expo-
nent p, hence is elementary abelian, and hence is a vector space over Z,,.
Clearly ®(G/G'G?) = 1. If H < G and H < ®(G), then it is easy to check that
®(G) is the inverse image (under the natural map) of ®(G/H) (for maximal
subgroups correspond). It follows that ®(G) = G'G”.

(iii) Since G'G? = @(G), the quotient group G/(D(G) is an abelian group of
exponent p; that 1s, it is a vector space over Z,. [

Theorem 5.49 (Gaschiitz, 1953). For every (possibly infinite) group G, one has
G'nZ(G) < D(G).

Proof. Denote G' n Z(G) by D. If D £ ®(G), there is a maximal subgroup M
of G with D « M. Therefore, G = MD, so that each g € G has a factorization
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g=md with me M and deD. Since de Z(G), gMg™ = mdMd™'m™ =
mMm™! = M, and so M < G. By Exercise 2.58, G/M has prime order, hence
is abelian. Therefore, G' < M. But D < G’ < M, contradicting D £ M.

Definition. A minimal generating set of a group G is a generating set X such
that no proper subset of X is a generating set of G.

There is a competing definition in a finite group: a generating set of smallest
cardinality. Notice that these two notions can be distinct. For example, let
G = {a) x (b), where a has order 2 and b has order 3. Now {a, b} is a
minimal generating set, for it generates G and no proper subset of it gener-
ates. On the other hand, G is cyclic (of order 6) with generator ab, and so {ab}
is a minimal generating set of smaller cardinality. In a finite p-group, how-
ever, there is no such problem.

Theorem 5.50 (Burnside Basis Theorem, 1912). If G is a finite p-group, then
any two minimal generating sets have the same cardinality, namely, dim G/®(G).
Moreover, every x ¢ ®(G) belongs to some minimal generating set of G.

Proof. If {x, ..., x,} is a minimal generating set, then the family of cosets
{X.,..., X,} spans G/®(G) (where X denotes the coset x®(G)). If this family is
dependent, then one of them, say X,, lies in {X,, ..., X,>. There is thus y e
(Xpy..ey Xy < G with x,y7 € ®(G). Clearly, {x,y™", x,,..., x,} generates
G, so that G = (x,,..., x,», by Theorem 5.47, and this contradicts mini-
mality. Therefore, n = dim G/®(G), and all minimal generating sets have the
same cardinality.

If x ¢ ®(G), then X # 0 in the vector space G/@(G)\and so it is part of a
basis {X, X,, ..., X, }. If x; represents the coset X;, fori > 2, then G = (®(G), x,
Xgyeeny Xp» =X, X3, ..., X, ». Moreover, {X, X,,..., x,} is a minimal gener-
ating set, for the cosets of a proper subset do not generate G/®(G).

EXERCISES

5.52. Every subgroup of Q, is either cyclic or generalized quaternion.

5.53 (Wielandt). A finite group G is nilpotent if and only if G' < ®(G).

5.54. If G is a finite p-group, then G is cyclic if and only if G/®(G) is cyclic.
Definition. A finite p-group G is extra-special if Z(G) is cyclic and ®(G) =
Z(G) =G

5.55. If G is extra-special, then G/Z(G) is an elementary abelian group.

5.56. Every nonabelian group of order p? is extra-special.

5.57. (i) If mis a power of 2, what is the class of nilpotency of D,,?
(i) What is the class of nilpotency of Q,? (Hint. Exercise 4.42.)



