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and set A = kC + 1. Then if z < —A we have
p(r) =2F +ap_12" P+ agx +ag
< (A4 CAF Y 4 4 O < —AF 4 ECAFT!
= AN (kC - A) = —AF1 <.
Similarly, if x > A we have
p(z) =2 +ap_ 12"+ Farz 4 ap
> Ak —cAF - 0> AR — kAR
= AN A -kC) = A1 > 0.
Since p : [-4, A] — R is a continuous function (corollary 1.5.30) and we
have p(—A) < 0 and p(A) > 0, then by the intermediate value theorem
there exists xo € [—A, A] such that p(xo) = 0.
1.7.1 a. f(a) =0, f'(a) = cos(a) = 1 so the tangent is g(z) = =.
b. f(a) =1, f'(a) = —sin(a) = 7@ so the tangent is

c. fla)=1, f'(a) = —sin(a) = 0 so the tangent is g(x) = 1.
d. f(a) =2, f'(a) = =% = —4 so the tangent is

g(x) = —4(x —1/2) +2 = -4z + 4.

1.7.2 We need to find a such that if the graph of g is the tangent at a,
then g(0) = 0. Since the tangent is
glx)=e"*—e %z —a),
we have
g(0)=e"“4ae *=0,
SO

e “(1+a)=0, whichgives a=—1.

1.7.3 a. f'(x) = (3 sin?(2? + cos x)) (Cos(m2 + cos :c)) <2x — sin z)

2 cos((z + sin x)2)) (— sin((x + sin x)2)) <2(ac + sinz)) (1 + cos ac)

= (
( cosx)” + sin :c) <4(COS x)g) (—sin(x)) = (cosz)® — 4(sin x)?(cos x)*
3

(z +sin® z)%(1 + 4 sin® z cos )

d. f'(z)

sin® z(cosx? * 22)  sinz?(3sin®xzcosz)  (sinz?sin® x)(cos )

e. f'(z) = i + § —

2+ sin(x) 2 + sin(a) (2 + sin(z))”
1) =con () (s — )
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1.7.4 a. If f(z) = |z[?/?, then
‘ |3/2

h

/ =i = 1i 1/2:
F1(0) = lim lim |h| 0,

so the derivative does exist. But
F(O4h) = £(0) = hf'(0) = [n]*/?

is larger than h?, since the limit

Jim | > _ lim |h|~1/?
h—0 h?2 h—0
is infinite.
b. If f(z) = zIn|z|, then the limit
. hln|h| .
! pr— —
£(0) = lim — lim In |,

is infinite, and the derivative does not exist.
c. If f(x) =2/Iln|x|, then
1
"(0) = lim ——— = lim —— =0
FU0) = fim o = e =

so the derivative does exist. But

F0+1) = F0) = h'(0) =

is larger than h?, since the limit

I = i
o0 h2In |A] Ao hln |h]

is infinite: the denominator tends to 0 as h tends to 0.

1.7.5 a. Compute the partial derivatives:

le(z”) :%ﬂ and DQf(f?j) - ﬁ

This gives

o (1) - v o 2 () -

At the point (_%), we have 2 +y < 0, so the function is not defined

there, and neither are the partial derivatives.

b. Similarly, Dy f (g) = 2xy and Dy f (g) = 22 + 4y3. This gives

le(%) —4 and Dgf(%) —4t4=8;

le(_%) =4 and sz(_é) — 144 (-8) =31
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c. Compute
Dif (ayc) = —ysinzy
Dof (Zj) = —xsinxy + cosy — ysiny.
This gives
Dy f (%) =—sin2 and Dof (%) = —2sin2+4cosl —sinl
D f (_%) = —2sin2 and Dyf (_%) =sin2+4cos2 —2sin2 = cos2 — sin2
d. Since

2 4 2 3
x\ Ty +2y (x)_% y+ay
le(y) = —2(x+y2)3/2 and Dsf y) = —(o:+y2)3/27

we have
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1.7.6 a. We have

7 —sinz 7 0
()|, | (6= |
r 22 cos(z? — y) Y —cos(z? — y)
b. Similarly,
S x - y
of T z2+y? of T z2+y?
ORI R TR
oxr \Y . oy \Y .
2ysinzy cosxy 2x sinxy cosxy

1.7.7 Just pile up the partial derivative vectors side by side:

—sinx 0
a. [Df(x)} = 2zy 2% + 2y
Y | 2z cos(z? —y) —cos(z? —y)
- . y
b [DE(2)] = Vorty? Ve iy
. y y €T
| 2ysinxy cosxy 2xsinzy cosxy

1.7.8 a. Dy f; =2z cos(x? +y), Dafs = cos(z? +y), Dafo = we®?
b. 3 x 2.
1.7.9 a. The derivative is an m X n matrix

b. a1 x 3 matrix (line matrix)

c. a4 x 1 matrix (vector 4 high)
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1.7.10 a. Since f is linear, f(a + V) = f(a) + f(v). But since f is linear,
f(v) = [Df(a)]v:

lim S (f(a+h) —f(a) — f(h)) =0, so [Df(a)h = f(h).
n—o0 |h|

b. The claim that [Df(a)]v = f(a+ V) — f(a) contradicts the definition
of derivative:

1.7.11
a. [ycos(zy), zcos(zy)] b. [2:17@””2“/3, 3y2612+93]
Yy x d cosf) —rsinf
“11 1 " | sind rcosf
1.7.12

1.7.13 For the first part, |z| and ma are continuous functions, hence so is
f(O+h)— f(0) —mh = |h| — mh.
For the second, we have

\h|—mh: _h_mh:—l—m when h < 0

h h
hl| —mh  h—mh
||hm _ hm = 1—m when h > 0.

The difference between these values is always 2, and cannot be made small
by taking h small.

1.7.14 Since g is differentiable at a,

g(a+h) — g(a) - [Dg(a)h

lim — =0.
ﬁ—»O ‘h‘

This means that for every ¢ > 0, there exists § such that if 0 < |ﬁ| < 9,
then

—

g(a+h) —g(a) — [Dg(a)lh

—

L

<e

)

The triangle inequality (first inequality below) and proposition 1.4.11 (sec-
ond inequality) then give

gla+ ) ~g(a)
i

—

|:T'l

<

=

[Dg(a)] i

+e < |[Dg(a)]| | =| +e=[[Dga)]| +e

=
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1.7.15 a. There exists a linear transformation [DF(A)] such that

Solution 1.7.15, part a: The ab-
olution part a ea |F(A FH) - F(A) — [DF(A)]H|

solute value in the numerator is lim = 0.

optional (but not in the denomi- H—[0] |H|

nator: you cannot divide by ma-

trices). b. The derivative is [DF(A)]JH = AHT +HA". We found this by looking

Since H is an n X m matrix, the
[0] in lim g _,jo] is the n x m matrix

with all entries 0. F(A+H)—F(A) =(A+H)(A+H)" — AAT
=(A+H) AT +H") - AAT
=AH" + HA" + HH;

for linear terms in H of the difference

see remark 1.7.6. The linear terms AH " + HAT are the derivative. Indeed,
[(A+ H)(A+H)T — AAT — AHT — HAT|

lim
H—[0] |H|
HHT| _|H|HT|_
= lim —— < lim —— = lim |H|=0.
H—[0] |H| H—[0] |H]| Hﬁ[o]‘ |

1.7.16 a. As a mapping R* — R*, the mapping S is given by

a a® + be
g b | [ ab+bd
c ac+ cd
d be + d?

b. The derivative of S is given by the Jacobian matrix

a 2a c b 0
bl _|b atd 0 b
D§ c T le 0 a+d ¢
d 0 c b 2d
c. Let B = [“ “} Then
Tr3 T4

a bl |z 22 n T, x2| |a b

c d| |x3 x4 T3 X4 c d
_ |azi +brs azs + bxy ary + cry bxry + dxo
" lexy +drs cxo +dxa axs +cxy brs+dry
_ 2ax| + cxy + bxs bry + (a + d)xo + bxy
" lexy + (a+ d)xg + ey cxy + bxs + 2dzy '

It is indeed true that

2ax1 + cxo + bxs 2a c b 0 T
bri + (a+d)za+bxy | | b a+d 0 b T
cr1+ (a+d)xs+cry | | c 0 a+d ¢ 3

cxo + brs + 2dry 0 c b 2d Ty



a1 b1 C1
a9 b2 C2
as b3 C3
[DS(A)] =
a1 bl C1
a9 b2 Co
as b3 C3
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d. First compute the square of a 3 x 3 matrix A:

ai1by + b1by + c1b3
asby + b3 + cabs3
asby + b3by + c3b3

This can be thought of as the mapping

aici +bica + cic3
aszcy + baca + cac3
azcy + bseo + C%

a% + bias + cras
azay + baaz + c2as3
asaq + bsas + csas

aq a%+b1a2+01a3 T
by ai1by + b1by + c1b3
c1 ajcy +bica + cre3
as azai + baas + coas
S . bg = a2b1 + b% —+ Cng

C2 ascr + baca + cac3
as aszai + bzas + czas
b3 asby + bsby + c3b3

L c3 L ascy + bses + C% J

with Jacobian matrix

M 2a,q as as by 0 0 Cc1 0 0 7
by ay+ b b3 0 by 0 0 c1 0
C1 Co a) + c3 0 0 b1 0 0 C1
a 0 0 ay + bg ag as Co 0 0
0 as 0 b1 2b2 bg 0 Co 0
0 0 ao Cc1 co by +c3 0 0 Co
as 0 0 bs3 0 0 a1 + c3 a2 as
0 as 0 0 b3 0 by bas +c3 b3
0 0 as 0 0 bg C1 Co 263 .

Now compute XA + AX:

Ty T2 T3 Ty T2 T3 ap b

Ty Ts Te |+ |@Ta x5 Te| |az by co| =
xT7 Xg Ty x7 x8 w9 | |az by c3

121 +a2T2+a3r3+a121 +bixa iy by +baxa+b3r3+aire+bixs+cirs ciriFcara 3z +a1x3+biTs 419
a1x4+a2$5+a3x6—|—a2x1—|—b2x4+02x7 blx4—|—b2x5+ng6+a2x2+b2x5+02x8 01I4+02$5+Cg$6+a2$3+b2$6+62$9 .
a1T7+a2r8+a3rg+azxi +bzrst+czxrr biwr+bexg+b3vgt+azwe+birs+czry cirrtcarg+c3rg+azrs+bzre+carg

Solution 1.7.17: This is sort of
a miracle; the expressions should
not be equal, they should differ by
terms in €. The reason why they
are exactly equal here is that

o) -[ o)

Indeed, this is the same as [DS(A)]x.

1.7.17 The derivative of the squaring function is given by
[DS(A)|H = AH + HA;

substituting A = [1 1} and H = [S 8} gives

0 1
1 1{]0 O 0 01 1 e O 0 0 e O
[O 1:||:€ O}—’—[e O}[O 1:|_|:€ O}_FL e]_{% e]'
Computing (A + H)? — A% gives the same result;
e O
2 e’

2 2 1"‘6 2 B 1 2
(A+H) A[Qe 1+J {0 1]
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1.7.18 In the case of 2 x 2 matrices we have

la b a?+bc bla+d)
S(4): [c d} - [c(a—kd) be + d?
Considering the elements of a 2 x 2 matrix to form a vector in R* (ordered
a,b, c,d) we see that the Jacobian of S is:
2a c b 0
b a+d 0 b

c 0 a+d ¢
0 c b 2d

If H is a matrix whose entries are 0 except for the i*" one which is h (using
2 8}), then AH + HA is
the matrix equal to h times the ith column of the Jacobian.

the above enumeration; e.g., if ¢ = 3 we have

1.7.19 Since lim; | ﬁ‘l = 0, the derivative exists at the origin and is the
0 linear transformation, represented by the n x n matrix with all entries 0.

1

1.7.20 The derivative is
+d?> —cd —db +bc

1 —bd +4ad +b*> —ab
(ad —bc)? | —dc  +c* 4ad —ac
be —ac —ab a?

This is obtained first by computing the inverse of A:

a bl 1 d —b
c d|  ad—bc|—c al’
Then one computes

- 1 d —b r1 X2 d —b
(ad—bc)2 | —c a T3 T4 —c al’
computing the matrix multiplication part as follows:
T €To d —-b
I3 Ty —C a
[ d —b] { dry — bxs dxg — bry ] { d?x1 — dbxs — cdxs + bexy —bdx + b%x5 + adr, — abxy }

c a —cry + axs —cro + axy —dcxy + adxs + xy — acxy bex — —1 — abxs — acds + a’xy

1.7.21 We will work directly from the definition of the derivative:
det(I + H) — det(I)—(h1,1 + ho,2)
=1+h11)1+he2)—hioho1—1— (h11+ ha2)
= hi1ho2 — hi2ho .
Each h, ; satisfies |h; ;| < |H|, so we have

|det(I + H) - det(I) - (hl,l + hz,g)‘ < ‘hl’th}Q — hl,ghg’l < 2|H‘2
| H| - | H| - |H]

= o|H]|.
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Thus

lim |det(I + H) —det(I) — (h11 + ho2)]
H—0 |H |

< lim 2|H| = 0.
H—0

1.7.22

1.8.1 Three make sense:

c. gof:R? — R?; the derivative is a 2 x 2 matrix
d. fog:R? — R3; the derivative is a 3 x 3 matrix

e. fof:R? — R; the derivative is a 1 x 2 matrix

a
1.8.2 a. The derivative of f at | b | is [2a 20 4c]; the derivative [Dg] at
c
a 1
flo|=a?>+b2+221s | 2(a® + b2+ 2¢2) |, so
3(a? +b? + 2¢2)?
a [ 1
D(gof)| b = | 2(a®+ b +2¢2) | [2a,2b,4c]
c | 3(a? + b% + 2¢?)?
[ 2a 2b 4c
= | 4a(a® +0* +2¢?)  4b(a® + 1% +2¢?)  8c(a® + b + 2¢?)
| 6a(a® +b* +2¢%)?  6b(a® + b* + 2¢*)?  12¢(a® 4 b* + 2¢%)?

x
b. The derivative of f at | y | is {25 0 H, the derivative of g at

x
[a} is [2a  2b], and the derivative of g at £ | y | is [222 + 22 2yz], so

b
z
x
the derivative of gof at [ y | is
z
2¢ 0 1

222 + 22 2y2] [ 0

y} = [42® + 42z 2y2® 227 + 22+ 2y%2).

1.8.3 Yes: We have a composition of sine, the exponential function, and

the function (Z) — xy, all of which are differentiable everywhere.

1.8.4 a. The following compositions exist:
(i) fog: R? = R3; (ii) fog:R* = R; (iii) fof : R® — R? (iv) fof : R — R.

(One could make more by using three functions; for example, fof o g :
RZ — R.)



xT

(iii) (Fo f) | v

z

54  Solutions for Chapter 1

b. We have
2a + b* cos T
(i) (fog) (g) = f(2a+b%) = | da+ 202 (i) (fog) (g) =fla+ty | =cosa+t(z+y)?.
(2a + b?)? siny
2 +y? t
=f(2* +y?) = [ 2(z% +4?) (iv) (fof)(t)=f | 2t | =¢* + 4% = 5¢*.
(22 + y?)? 2
c.
2a + b*
(i) Computing the derivative directly from (f o g) (%) = | 4a+2b?
(2a + b?)?
2 2b 1
gives [D(fog)(z)} = 4 4b ; since [Df(¢)] = | 2 | and
8a + 4b*  8ab + 4b° 2t
[Dg(%)} =[2 2b], the chain rule gives
1 2 2b
a a
oe(o(9))|Pa(3)]=| 2 |12 2=| 4 4b

4a + 2b2 8a + 4b%>  8ab + 4b3

(ii) Computing the derivative directly from

(fog)(z):COS2$+(.’I,'+y)2:COS2x+x2+2xy+y2
. —2coszsinz + 2z + 2y
; D (mﬂz
gives [D(f o) (2

9% + 2y } ; since

=[2cosz 2x+2y 0],

Df<y> “pr 2 )

the chain rule gives

TS 0 [ 2cosxsinx + 2x + 2y
0 cosy

[2cosz 2z +2y O]{ 1 1 9% + 2y
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x —I—y
(iii) Computing the derivative from (fo f) ) :v +9?) | gives
(z% +y?)?
x 2z 2y 0
D(fo f) ( y) = 4z 4y 0 | ; the chain rule gives
z 423 + dxy?  4dx’y+ 4y 0
z x i 1
Df(f Y ) Df(y) = 2 22 2y 0]
z z i 222 + 212
[ 2z 2y 0
= 4x 4y 0
| 423 + dzy? A2’y +4y® 0

(iv) Computing the derivative directly from (f o f)(t) = t? + 4t?> = 5t2
gives [D((f o f))(t)] = 10¢; the chain rule gives

1
[2t 4t 0] | 2 | =2t +8t =10t
2

1.8.5 One must also show that fg is differentiable, working from the defi-
nition of the derivative.

1.8.6 a. We need to prove that
[F(a+h)-g(a+h)~f(a)-g(a)~f(a)- (De(a)]i) - (DF(@)]h) -g(a)

b0 ||

Since the term under the limit can be written
g(af% - 8@ | ¢a. (g(a +h) —g(a) - [Dg<a>1ﬁ>

N <f<a+ h) — f(a) [Df(a)]ﬁ> ,
|

(f(a+ﬁ) _f(a)) :

it is enough to prove that the three limits

)| letat h) — g(a)

lim ‘f a+h) 2

h—0 |h|

Tim [£(a)| g(a+h) —g(a) — [Dg(a)lh
B0 ||

Jim f(a+h) - f(a) - [Df(a)]h ()]
E—0 |h|

all vanish.
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The first vanishes because
lg(a+h) —g(a)|

LY

is bounded when h — 0, and the factor ‘f(a +h)— f(a)’ tends to 0. The

second vanishes because
g(a+h) — g(a) — [Dg(a)lh

||

tends to 0 when h — 0, and the factor f(a)| is constant. The third vanishes

because

|f(a +h) — f(a) ~ [Df(a))h
|
tends to 0 as h — 0, and the factor |g(a)] is constant.
b. The derivative is given by the formula
ID(f x g)(a)]k = (((DF(@)]h) x &(a)) + (f(a) x (Dg(a)]k))

The proof that this is correct is again almost identical to part a or b.

We need to prove that
(Fla+5) x gla+ () — (fla) x g(a)) — (Fla) x (IDgIK)) - ((DFIE) x ga)|

lim =
h—o0 ‘h‘

The term under the limit can be written as the sum of three cross products:

L g(a+h)—g q g(a+h) — g(a) — [Dg(a)]h
()~ ) B2 8@ g, (g(a +h) — &(a) -~ [Dg(a)] )
b |h|
f(a+h) —f(a) — [Df(a)]h
. ( (a+ k) ~ f(a) - [Df(a)] ) « E(a),
||
and, since the area of a parallelogram is at most the product of the lengths

of the sides, we have
£(x) x g(x)| < [f(x)][g(x)].

Thus it is enough to prove that the three limits

tim [f(a + 1) — F(a)| [g(a+h) — g(a)
" ]

lim [F(a)| |82 h) — g(a) — [Dg(a)lh
B 5]

f(ka+ h) — f(a) — [Df(a)]h

[

g(a)

lim
h—o0
all vanish, which again happens for the same reasons as in part a.
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1.8.7 Since [Df(z)] = [x2 @1 +x3 T2+ 24  Tp_o+ Ty Tp_1], We
have
D(f(y#)] = [t* t+3 2 +¢* - t"24¢" "], In addition,
1
2t
[DA(t)] = : . So the derivative of the function ¢t — f(y(t)) is
ntnfl

D(fo7)()] = DS((e)] D) =ﬁ+<iﬁ“%Fu#“0+m%*>

deriv. of comp. at t deriv. of f deriv. of yat ¢

Solution 1.8.9: This isn’t really
a good problem to test knowledge
of the chain rule, because it is eas-
iest to solve it without ever invok-
ing the chain rule (at least in sev-
eral variables).

at y(t)

1.8.8 True. If there were such a mapping g, then

o (3)] [ps(1)] = [ores(i)] = |1 o)
The first equality is the chain rule, the second comes from the fact that

(g) — (z) is linear, so its derivative is itself.

So let {Dg( % )} = {Z 2] ; our equation above says
1 1fja b|_ |a+c b+d| _ |0 1
1 1||e d| |a+c b+d| |1 0Of°
This equation has no solutions, since a 4 ¢ must simultaneously be 1 and 0.
1.8.9 Clearly

Dy f (f,) =2zyp' (2 —y?);  Daof (f,) = —2%¢' (2 —y®) + p(z? — 7).

%le (x) + isz (z) =2y¢'(a® — y®) — 2y¢’ (2 — ¢*) + 5@(932 -y

Y
L (x
- Ef (y)
To use the chain rule, write f = kohog, where
x\ _ (2% —1? w\ _ (p(u) s\ _
e(3)=("y") . 2()=("). k(7)==
This leads to
T\| _ ¢'(u) O] |20 —2y| _ / . ’
[Dmyﬂ—uw[ o LY | = e o), 2yt () + .
Insert the values of the variables; you find
Dif (i) = 2zy ¢'(¢? —y?) and Do f (Zj) = =209 (2® = y?) + p(a® —¢?).

Now continue as above.
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1.8.10 In the first printing, the problem was misstated. The problem

should say: “If f : R?> — R can be written ... ” (it should not be “If
f : R? — R? can be written ... 7). The function f must be scalar-valued,
since ¢ is.

(a) Let f (z) = p(2? 4+ y?). By the chain rule, we have

Dr(I)] = [ (5) 021 ()] = Dela? + 52120, 291,
So
le@) = 22[Dyp(z® +4?)] and Dﬁ(;) = 2y[Dep(z? + 2)].

The result follows immediately.

(b) Let f satisty Do f —yD;f = 0, and let us show that it is constant
on circles centered at the origin. This is the same thing as showing that for

the function
7\ def rcosf
g(@) - f(rsin@) ’
we have
Dgg = 0.

This derivative can be computed by the chain rule, to find
i (5) = (01 (3558)) o) + (s (7558)) et
—emut (7538) - uns (3538 =o.
So f(gyﬂ) =f<W), and we can take (r) :f<6).

1.8.11 Using the chain rule in one variable,

= (20) (e b o (220 (2)

and

- (22) (R0 o (220) (2

SO

pisubas = (EE) (2 ) (1) (2 ) =0

1.8.12 a. True: the chain rule tells us that
[D(g o £)(0)]h = [D(g(f(0))][Df(0)]h.

If there exists a differentiable function g such that (g o f)(x) = x, then
[D(g o f)(0)] = I which would mean that

[D(g o £)(0)]h = [D(g(£(0))][Df(0)}h = b,



