Worksheet on the definition of a limit

The definition of $f(x) \rightarrow L$ as $x \rightarrow a$ is: for each $\epsilon>0$ there exists a number $\delta>0$ so that $|f(x)-L|<\epsilon$ for every x with $0<|x-a|<\delta$.
A. Which (if any) of the following means the same thing as $f(x)$ does not tend to L as x tends to a ?

1. For each choice of $\epsilon>0$ there exists a $\delta>0$ so that $|f(x)-L|>\epsilon$ for every x with $0<|x-a|<\delta$.
2. For each choice of $\epsilon>0$ there exists a $\delta>0$ so that $|f(x)-L|>\epsilon$ for some x with $0<|x-a|<\delta$.
3. For some choice of $\epsilon>0$ and for every choice of $\delta>0$ we have $|f(x)-L|>\epsilon$ for some x with $0<|x-a|<\delta$.
4. For some choice of $\epsilon>0$ and for every choice of $\delta>0$ we have $|f(x)-L|>\epsilon$ for every x with $0<|x-a|<\delta$.
5. For some choice of $\epsilon>0$ there exists a $\delta>0$ so that $|f(x)-L|>\epsilon$ for every x with $0<|x-a|<\delta$.
6. There exists a number $M \neq L$ so that for each choice of $\epsilon>0$ there exists a number $\delta>0$ so that $|f(x)-M|<\epsilon$ for every x with $0<|x-a|<\delta$.
7. There exists a number $\delta>0$ so that for each choice of $\epsilon>0,|f(x)-L|>\epsilon$ for every x with $0<|x-a|<\delta$.
B. Which of the following means $f(x) \rightarrow \infty$ as $x \rightarrow L$, and which means $f(x) \rightarrow L$ as $x \rightarrow \infty$?
8. For every choice of number ϵ there exists a number N so that $|f(x)-L|<\epsilon$ for every x with $x>N$.
9. For every choice of number N there exists $\delta>0$ so that $|f(x)|>N$ for every x with $0<|x-L|<\delta$.
10. For every choice of number N there exists $\delta>0$ so that $f(x)>N$ for every x with $0<|x-L|<\delta$.
11. For every choice of number N there exists $\delta>0$ so that $|f(x)-L|<\delta$ for every x with $x>N$.
