Math 8246Homework 1Date due: Wednesday February 27, 2019.

- 1. (Like D&F 17.1, 8) Prove that if $0 \to L \to M \to N \to 0$ is a split short exact sequence of *R*-modules, then for every $n \ge 0$ the sequence $0 \to \operatorname{Ext}_R^n(D,L) \to \operatorname{Ext}_R^n(D,M) \to \operatorname{Ext}_R^n(D,N) \to 0$ is also short exact and split. [Use a splitting homomorphism and the fact that Ext is functorial in each variable.]
- 2. (a) Let M and N be ZG-modules and suppose that N has the trivial G-action. Show that Hom_{ZG}(M, N) ≈ Hom_{ZG}(M/(IG · M), N).
 (b) Show that for all groups G, Hom_{ZG}(Z, IG) = 0; and that if we suppose that G is finite then Hom_{ZG}(IG, Z) = 0.
 (c) By applying the functor Hom_{ZG}(IG,) to the short exact sequence 0 → IG → ZG → Z → 0 show that for all finite groups G, if f : IG → ZG is any ZG-module homomorphism then f(IG) ⊆ IG.
 (d) Show that if G is finite and d : G → ZG is any derivation then d(G) ⊆ IG. Is the same true for arbitrary groups G?
- 3. Let G be a finite group. Show that the endomorphism ring $\operatorname{Hom}_{\mathbb{Z}G}(IG, IG)$ is isomorphic to $\mathbb{Z}G/(N)$ where $N = \sum_{g \in G} g$ is the norm element which generates $(N) = (\mathbb{Z}G)^G$.

[You may assume that every $\mathbb{Z}G$ -module homomorphism $IG \to \mathbb{Z}G$ has image contained in IG. Apply the functor $\operatorname{Hom}_{\mathbb{Z}G}(-,\mathbb{Z}G)$ to the short exact sequence $0 \to IG \to \mathbb{Z}G \to \mathbb{Z} \to 0$. You may assume for a finite group G that $\operatorname{Ext}^{1}_{\mathbb{Z}G}(\mathbb{Z},\mathbb{Z}G) = 0$.]

- 4. Show that for every group G:
 - (a) all derivations $d: G \to M$ satisfy d(1) = 0, and
 - (b) the mapping $d: G \to \mathbb{Z}G$ given by d(g) = g 1 is a derivation.
- 5. (a) Show that the short exact sequence $0 \to IG \to \mathbb{Z}G \to \mathbb{Z} \to 0$ is split as a sequence of $\mathbb{Z}G$ -modules if and only if G = 1. Deduce that the identity group is the only group of cohomological dimension 0.
 - (b) Show that if G is a free group then $\operatorname{Ext}^{1}_{\mathbb{Z}G}(\mathbb{Z},\mathbb{Z}G) \neq 0$.
- 6. If N is a right $\mathbb{Z}G$ -module and M is a left $\mathbb{Z}G$ -module we may make $N \otimes_{\mathbb{Z}} M$ into a left $\mathbb{Z}G$ -module via $g(n \otimes m) = ng^{-1} \otimes gm$, extended linearly to the whole of $N \otimes_{\mathbb{Z}} M$. Show that $N \otimes_{\mathbb{Z}G} M \cong (N \otimes_{\mathbb{Z}} M)_G$.

[Not part of the question, just information: if N and M are two left modules we make $N \otimes_{\mathbb{Z}} M$ into a left $\mathbb{Z}G$ -module via $g(n \otimes m) = gn \otimes gm$. This is called the *diagonal* action on the tensor product.]