10.4 TENSOR PRODUCTS OF MODULES

In this section we study the tensor product of two modules M and N over a ring (not
necessarily commutative) containing 1. Formation of the tensor product is a general
construction that, loosely speaking, enables one to form another module in which one
can take “products” mn of elements m € M and n € N. The general construction
involves various left- and right- module actions, and it is instructive, by way of moti-
vation, to first consider an important special case: the question of “extending scalars”
or “changing the base.”

Suppose that the ring R is a subring of the ring S. Throughout this section, we
always assume that 1z = 1 (this ensures that S is a unital R-module).

If N is aleft S-module, then N can also be naturally considered as a left R-module
since the elements of R (being elements of S) act on N by assumption. The S-module
axioms for N include the relations

(s1+s)n=sin+sn and s(ny+ny) =sny+sny 10.1)
for all s, 51, 5, € S and all n, ny, n, € N, and the relation
(s182)n = s1(son) forallsy,sp € S,andalln € N. 10.2)
A particular case of the latter relation is
(sr)n =s@n) forallse S,r € Randn € N. (10.2)

More generally, if f : R — S is aring homomorphism from R into S with f(1z) = 1g
(for example the injection map if R is a subring of S as above) then it is easy to see that
N can be considered as an R-module withrn = f(r)nforr € Rand n € N. In this
situation S can be considered as an extension of the ring R and the resulting R-module
is said to be obtained from N by restriction of scalars from S to R.

Suppose now that R is a subring of S and we try to reverse this, namely we start
with an R-module N and attempt to define an S-module structure on N that extends
the action of R on N to an action of S on N (hence “extending the scalars” from R
to §). In general this is impossible, even in the simplest situation: the ring R itself is
an R-module but is usually not an S-module for the larger ring S. For example, Z is
a Z-module but it cannot be made into a Q-module (if it could, then % o1l =z would
be an element of Z with z + z = 1, which is impossible). Although Z itself cannot be
made into a Q-module it is contained in a Q-module, namely Q itself. Put another way,
there is an injection (also called an embedding) of the Z-module Z into the Q-module
(and similarly the ring R can always be embedded as an R-submodule of the S-module
S). This raises the question of whether an arbitrary R-module N can be embedded as
an R-submodule of some S-module, or more generally, the question of what R-module
homomorphisms exist from N to S-modules. For example, suppose N is a nontrivial
finite abelian group, say N = Z /27, and consider possible Z-module homomorphisms
(i.e., abelian group homomorphisms) of N into some Q-module. A Q-module is just
a vector space over (Q and every nonzero element in a vector space over Q has infinite
(additive) order. Since every element of N has finite order, every element of N must
map to 0 under such a homomorphism. In other words there are no nonzero Z-module
homomorphisms from this N to any -module, much less embeddings of N identifying
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N as a submodule of a Q-module. The two Z-modules Z and Z /27 exhibit extremely
different behaviors when we try to “‘extend scalars” from Z to Q: the first module maps
injectively into some QQ-module, the second always maps to 0 in a Q-module.

We now construct for a general R-module N an S-module that is the “best possible”
target in which to try to embed N. We shall also see that this module determines all of
the possible R-module homomorphisms of N into S-modules, in particular determining
when N is contained in some S-module (cf. Corollary 9). In the case of R = Z and
S = Q this construction will give us Q when applied to the module N = Z, and will give
us 0 when applied to the module N = Z/27Z (Examples 2 and 3 following Corollary 9).

If the R-module N were already an S-module then of course there is no difficulty
in “extending” the scalars from R to S, so we begin the construction by returning to
the basic module axioms in order to examine whether we can define “products” of the
form sn, for s € S and n € N. These axioms start with an abelian group N together
with amap from S x N to N, where the image of the pair (s, n) is denoted by sn. Itis
therefore natural to consider the free Z-module (i.e., , the free abelian group) on the set
S x N, i.e., the collection of all finite commuting sums of elements of the form (s;, n;)
where s; € S andn; € N. This is an abelian group where there are no relations between
any distinct pairs (s, n) and (s’, n’), i.e., no relations between the “formal products”
sn, and in this abelian group the original module N has been thoroughly distinguished
from the new “coefficients” from S. To satisfy the relations necessary for an S-module
structure imposed in equation (1) and the compatibility relation with the action of R on
N in (2'), we must take the quotient of this abelian group by the subgroup H generated
by all elements of the form

(51 + 52, n) — (81, n) — (52, n),
(s, n1 +nz) — (s, ny) — (s, ny), and (10.3)
(sr,n) — (s, rn),
for s,s1,8, € S,n,n;,n; € N and r € R, where rr in the last element refers to the
R-module structure already defined on N.
The resulting quotient group is denoted by S®x N (or just S® N if R is clear from
the context) and is called the tensor product of S and N over R. If s ® n denotes the

coset containing (s, n) in S @ N then by definition of the quotient we have forced the

relations
G1+49)Q@n=510n+s Qn,

SQ(ni+n)=s@n; +sQny, and (10.4)
Sr®n=sQ@rn.

The elements of S®y N are called tensors and can be written (non-uniquely in general)
as finite sums of “simple tensors” of the form s ® n withs € S,n € N.
We now show that the tensor product § ®g N is naturally a left S-module under

the action defined by
S(ZS,' ® ni) = Z(Ssi) ® n;. (10.5)

finite finite
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We first check this is well defined, i.e., independent of the representation of the
element of S ®g N as a sum of simple tensors. Note first that if s’ is any element of §
then

(s'(s1+ 82),m) — (s"s1, ) — (552, n) (= (s"s1+ 8"s2,n) — (s's1,n) — (s's2, 1)),
(s's,n1 +ny) — (s's.ny) — (s’s, ny), and

(s'(sr), n) — (s's, rn) (= (s's)r,n) — (s's, rn))

each belongs to the set of generators in (3), so in particular each lies in the subgroup
H. This shows that multiplying the first entries of the generators in (3) on the left by s’
gives another element of H (in fact another generator). Since any element of H is a sum
of elements as in (3), it follows that for any element ) (s;, n;) in H also )_(s's;, n;)
lies in H. Suppose now that )_s; ® n; = )_s; ® n} are two representations for the
same element in S @ N. Then )_(si, n;) — )_(s;, n}) is an element of H, and by what
we have just seen, for any s € S also )_(ss;, n;) — D_(ss;, n}) is an element of H. But
this means that )_ ss; @ n; = )_ss; ® n; in S ® N, so the expression in (5) is indeed
well defined.

It is now straightforward using the relations in (4) to check that the action defined
in (5) makes S ®x N into a left S-module. For example, on the simple tensor s; ® n;,

S+ ®n)= s +5)8)Qn; by definition (5)
= (s8; + 5'8;) @ n;
=55 Qn; +5's; @n; by the first relation in (4)

=s(s; ®n;) + 5 (si ®n;) by definition (5) .

The module S ®x N is called the (left) S-module obtained by extension of scalars
from the (left) R-module N.

There is anatural map ¢t : N — S ®x N defined by n — 1 ® n (i.e., first map
n € N to the element (1, n) in the free abelian group and then pass to the quotient
group). Since 1 @ rn = r @ n = r(1 ® n) by (4) and (5), it is easy to check that ¢ is
an R-module homomorphism from N to S @g N. Since we have passed to a quotient
group, however, ¢ is not injective in general. Hence, while there is a natural R-module
homomorphism from the original left R-module N to the left S-module S ®x N, in
general S ®x N need not contain (an isomorphic copy of) N. On the other hand, the
relations in equation (3) were the minimal relations that we had to impose in order to
obtain an S-module, so it is reasonable to expect that the tensor product S ®z N is
the “best possible” S-module to serve as target for an R-module homomorphism from
N. The next theorem makes this more precise by showing that any other R-module
homomorphism from N factors through this one, and is referred to as the universal
property for the tensor product S ® g N. The analogous result for the general tensor
product is given in Theorem 10.
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Theorem 8. Let R be a subring of S, let N be aleft R-module andlett: N - S®zr N
be the R-module homomorphism defined by ((n) = 1 ®n. Suppose that L is any left S-
module (hence also an R-module) and that ¢ : N — L is an R-module homomorphism
from N to L. Then there is a unique S-module homomorphism @ : S®x N — L such
that ¢ factors through @, i.e., ¢ = & o and the diagram

N——l—> S®r N

N

commutes, Conversely, if & : § Q¢ N — L is an S-module homomorphism then
¢ = & o is an R-module homomorphism from N to L.

Proof: Suppose ¢ : N — L is an R-module homomorphism to the S-module L.
By the universal property of free modules (Theorem 6 in Section 3) there is a Z-module
homomorphism from the free Z-module F ontheset S X N to L that sends each generator
(s, n) to sp(n). Since ¢ is an R-module homomorphism, the generators of the subgroup
H in equation (3) all map to zero in L. Hence this Z-module homomorphism factors
through H, i.e., there is a well defined Z-module homomorphism ¢ from F/H =
S ®g N to L satisfying @ (s ® n) = sp(n). Moreover, on simple tensors we have

sS'P(s ®n) =s'(spn)) = (')p(n) = S((s's) @ n) = S(s'(s @ n)).

for any s’ € S. Since @ is additive it follows that @ is an S-module homomorphism,
which proves the existence statement of the theorem. The module S ®z N is generated
as an S-module by elements of the form 1 ® n, so any S-module homomorphism is
uniquely determined by its values on these elements. Since @ (1 ®n) = p(n), it follows
that the S-module homomorphism ¢ is uniquely determined by ¢, which proves the
uniqueness statement of the theorem. The converse statement is immediate.

The universal property of S ® N in Theorem 8 shows that R-module homomor-
phisms of N into S-modules arise from S-module homomorphisms from S @ N. In
particular this determines when it is possible to map N injectively into some S-module:

Corollary 9. Let: : N — S ®g N be the R-module homomorphism in Theorem 8.
Then N /ker  is the unique largest quotient of N that can be embeddedin any S-module.
In particular, N can be embedded as an R-submodule of some left S-module if and only
if t is injective (in which case N is isomorphic to the R-submodule ((N) of the S-module
S ®g N).

Proof: The quotient N/ ker ¢ is mapped injectively (by ¢) into the S-module S®z N.
Suppose now that ¢ is an R-module homomorphism injecting the quotient N/ ker ¢
of N into an S-module L. Then, by Theorem 8, ker: is mapped to 0 by ¢, ie.,
kert C kerp. Hence N/kerg is a quotient of N/ker: (namely, the quotient by
the submodule ker ¢/ kert). It follows that N/ker: is the unique largest quotient of
N that can be embedded in any S-module. The last statement in the corollary follows
immediately.
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Examples

@

@

©)

For any ring R and any left R-module N we have R ®g N = N (so “extending scalars
from R to R” does not change the module). This follows by taking ¢ to be the identity
map from N to itself (and § = R) in Theorem 8: ¢ is then an isomorphism with inverse
isomorphism given by @. In particular, if A is any abelian group (i.e., a Z-module),
then Z ®z A = A.

Let R =7Z, S = Q and let A be a finite abelian group of order n. In this case the
Q-module Q ®z A obtained by extension of scalars from the Z-module A is 0. To see
this, observe first that in any tensor product 1 0=1® (0+0) =10+ 1®0, by
the second relation in (4), so

I1®0=0.

Now, for any simple tensor ¢ ® @ we can write the rational number g as (¢/n)n. Then
since na = 0 in A by Lagrange’s Theorem, we have

q®a=(%-n)®a=%®(na)=(q/n)®0=(q/n)(1®0)=0.

It follows that Q ®z A = 0. In particular, the map ¢ : A — S ®p A is the zero map.
By Theorem 8, we see again that any homomorphism of a finite abelian group into a
rational vector space is the zero map. In particular, if A is nontrivial, then the original
Z-module A is not contained in the Q-module obtained by extension of scalars.
Extension of scalars for free modules: If N = R" is afree module of rank » over R then
S®gr N = S is a free module of rank n over S. We shall prove this shortly (Corollary
18) when we discuss tensor products of direct sums. For example, Q ®z Z" = Q".
In this case the module obtained by extension of scalars contains (an isomorphic copy
of) the original R-module N. For example, Q ®z Z" = Q" and Z" is a subgroup of
the abelian group Q".

(4) Extension of scalars for vector spaces: As a special case of the previous example, let

)

F be a subfield of the field K and let V be an n-dimensional vector space over F (i.c.,
V = F"). Then K ®fr V = K" is a vector space over the larger field K of the same
dimension, and the original vector space V is contained in K ®  V as an F-vector
subspace.

Induced modules for finite groups: Let R be a commutative ring with 1, let G be a
finite group and let H be a subgroup of G. Asin Section 7.2 we may form the group
ring RG and its subring RH. For any RH-module N define the induced module
RG ®gp N. In this way we obtain an RG-module for each RH-module N. We shall
study properties of induced modules and some of their important applications to group
theory in Chapters 17 and 19.

The general tensor product construction follows along the same lines as the ex-
tension of scalars above, but before describing it we make two observations from this
special case. The first is that the construction of S ®x N as an abelian group involved
only the elements in equation (3), which in turn only required S to be a right R-module
and N to be a left R-module. In a similar way we shall construct an abelian group
M ®g N for any right R-module M and any left R-module N. The second observation
is that the S-module structure on S @ N defined by equation (5) required only a left
S-module structure on § together with a “compatibility relation”

s'(sr) = (s's)r fors,s’ € S,r € R,
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between this left S-module structure and the right R-module structure on § (this was
needed in order to deduce that (5) was well defined). We first consider the general
construction of M ®x N as an abelian group, after which we shall return to the question
of when this abelian group can be given a module structure.

Suppose then that N is a left R-module and that M is a right R-module. The
quotient of the free Z-module on the set M x N by the subgroup generated by all
elements of the form

(my+mz,n) — (my,n) — (m2,n),
(m,ny +ny) — (m.ny) — (m, nz), and (10.6)
(mr,n) — (m, rn),

form,my,my; € M,n,ny,ny € N andr € R is an abelian group, denoted by M @z N,
or simply M ® N if the ring R is clear from the context, and is called the tensor product
of M and N over R. The elements of M @y N are called tensors, and the coset, m @n,
of (m,n) in M ®z N is called a simple tensor. We have the relations

Mmi4+m))®@n=m@n+my; Qn,
mn+n)=m@n;+mn;, and (10.7)
mr@@n=mQrn.

Every tensor can be written (non-uniquely in general) as a finite sum of simple tensors.

Remark: We emphasize that care must be taken when working with tensors, since each
m ® n represents a coset in some quotient group, and so we may have m @ n =m’ @ n’
where m % m’ or n # n’. More generally, an element of M ® N may be expressible in
many different ways as a sum of simple tensors. In particular, care must be taken when
defining maps from M ® N to another group or module, since a map from M @ N
which is described on the generators m ® n in terms of m and » is not well defined unless
it is shown to be independent of the particular choice of m @ n as a coset representative.

Another point where care must be exercised is in reference to the element m @ n
when the modules M and N or the ring R are not clear from the context. The first two
examples of extension of scalars give an instance where M is a submodule of a larger
module M’, and for somem € M andn € N wehavem®@n =0in M’ Qg N butm®n
isnonzeroin M @z N. This is possible because the symbol “m @ n” represents different
cosets, hence possibly different elements, in the two tensor products. In particular, these
two examples show that M ® N need not be a subgroup of M’ ® N even when M
is a submodule of M’ (cf. also Exercise 2).

Mapping M x N to the free Z-module on M x N and then passing to the quotient
definesamapt: M x N - M ®g N with «(m, n) = m ® n. This map is in general
not a group homomorphism, but it is additive in both m and n separately and satisfies
timr,n) =mr ® n = m @ rn = «(m, rn). Such maps are given a name:
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Definition. Let M be a right R-module, let N be a left R-module and let L be an
abelian group (written additively). A map ¢ : M x N — L is called R-balanced or
middle linear with respect to R if

@(m1+ my,n) = @(my, n) + ¢(mz,n)
@(m, ny +n2) = p(m, n1) + ¢(m,ny)
@(m, rn) = o(mr, n)
forallm,mi,m; € M,n,n1,n, € N,andr € R.

With this terminology, it follows immediately from the relations in (7) that the map
t: M x N— MQ®g N is R-balanced. The next theorem proves the extremely useful
universal property of the tensor product with respect to balanced maps.

Theorem 10. Suppose R is a ring with 1, M is a right R-module, and N is a left
R-module. Let M ®z N be the tensor product of M and N over R andleti : M x N —
M ®pg N be the R-balanced map defined above.

(1) Ifd : M®k N — L is any group homomorphism from M ®z N to an abelian
group L then the composite map ¢ = @ ot is an R-balanced map from M x N
to L.

(2) Conversely, suppose L is an abelian group and ¢ : M X N — L is any R-
balanced map. Then there is a unique group homomorphism® : M@zgN —> L
such that ¢ factors through ¢, i.e., ¢ = @ ot as in(1).

Equivalently, the correspondence ¢ < & in the commutative diagram

MxN—>M®N
N 14’
L
establishes a bijection

R-balanced maps group homomorphisms
¢o:MxXN-—>L P MR N—>L )

Proof: The proof of (1) is immediate from the properties of ¢ above. For (2), the
map ¢ defines a unique Z-module homomorphism ¢ from the free group on M x N to
L (Theorem 6 in Section 3) such that ¢(m, n) = ¢(m, n) € L. Since ¢ is R-balanced,
@ maps each of the elements in equation (6) to 0; for example

@ (mr,n) — (m,rn)) = p(mr,n) — p(m,rn) = 0.

It follows that the kernel of ¢ contains the subgroup generated by these elements, hence
@ induces a homomorphism & on the quotient group M ®x N to L. By definition we
then have

@(m @ n) = ¢(m,n) = ¢(m,n),

i.e., 9 = & o 1. The homomorphism & is uniquely determined by this equation since
the elements m ® n generate M @z N as an abelian group. This completes the proof.
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Theorem 10 is extremely useful in defining homomorphisms on M ®g N since it
replaces the often tedious check that maps defined on simple tensors m ® » are well
defined with a check that a related map defined on ordered pairs (i, n) is balanced.

The first consequence of the universal property in Theorem 10 is a characterization
of the tensor product M ®g N as an abelian group:

Corollary 11. Suppose D is an abelian group and ' : M x N — D is an R-balanced
map such that

(i) the image of ¢’ generates D as an abelian group, and
(ii) every R-balanced map defined on M x N factors through ¢’ as in Theorem 10.

Then there is an isomorphism f : M @g N = D of abelian groups with ¢’ = f o ¢.

Proof: Since ' : M x N — D is a balanced map, the universal property in (2)
of Theorem 10 implies there is a (unique) homomorphism f : M ®g N — D with
' = f o Inparticular '(m,n) = f(m @ n) foreverym € M, n € N. By the first
assumption on ¢/, these elements generate D as an abelian group, so f is a surjective
map. Now, the balanced map ¢t : M x N - M Qg N together with the second
assumption on ¢’ implies there is a (unique) homomorphism g : D —> M Qg N with
t=got. Thenm @ n = (g o f)(m ® n). Since the simple tensors m ® n generate
M ®g N, it follows that g o f is the identity map on M ®g N and so f is injective,
hence an isomorphism. This establishes the corollary.

We now return to the question of giving the abelian group M ®g N a module
structure. As we observed in the special case of extending scalars from R to S for the
R-module N, the S-module structure on S ® g N required only a left S-module structure
on S together with the compatibility relation s'(sr) = (s's)r for s, s’ € Sandr € R.
In this special case this relation was simply a consequence of the associative law in
the ring S. To obtain an S-module structure on M ®g N more generally we impose a
similar structure on M:

Definition. Let R and S be any rings with 1. An abelian group M is called an (S, R)-
bimodule if M is a left S-module, a right R-module, and s(nr) = (sm)r forall s € S,
r€ Randm € M.

Examples

(1) Anyring Sisan (S, R)-bimodule for any subring R with 1z = 1 by the associativity
of the multiplication in S. More generally, if f : R — S is any ring homomorphism
with f(1g) = lg then S can be considered as a right R-module with the action
s - r = sf(r), and with respect to this action S becomes an (S, R)-bimodule.

(2) Let be anideal (two-sided) in the ring R. Then the quotientring R/ is an (R/I, R)-
bimodule. This is easy to see directly and is also a special case of the previous example
(with respect to the canonical projection homomorphism R — R/I).

(3) Suppose that R is a commutative ring. Then a left (respectively, right) R-module M
can always be given the structure of a right (respectively, left) R-module by defining
mr = rm (respectively, rm = mr), forallm € M and r € R, and this makes M into
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an (R, R)-bimodule. Hence every module (right or left) over a commutative ring R
has at least one natural (R, R)-bimodule structure.

(4) Suppose that M is a left S-module and R is a subring contained in the center of S (for
example, if S is commutative). Then in particular R is commutative so M can be given
aright R-module structure as in the previous example. Then forany s € §, r € R and
m € M by definition of the right action of R we have

(sm)r =r(sm) = (rs)m = (srym = s(rm) = s(mr)

(note that we have used the fact that  commutes with s in the middle equality). Hence
M is an (S, R)-bimodule with respect to this definition of the right action of R.

Since the situation in Example 3 occurs so frequently, we give this bimodule struc-
ture a name:

Definition. Suppose M is a left (or right) R-module over the commutative ring R.
Then the (R, R)-bimodule structure on M defined by letting the left and right R-actions
coincide, i.e.,mr = rmforallm € M andr € R, will be called the standard R-module
structure on M.

Suppose now that N is aleft R-module and M is an (S, R)-bimodule. Then just as
in the example of extension of scalars the (S, R)-bimodule structure on M implies that

S(Zm,- ®n,~) = Z(sm,-) Rn; (10.8)
finite finite
gives a well defined action of S under which M ®g N is a left S-module. Note that
Theorem 10 may be used to give an alternate proof that (8) is well defined, replacing
the direct calculations on the relations defining the tensor product with the easier check
that a map is R-balanced, as follows. It is very easy to see that for each fixed s € §
the map (m,n) +— sm @ n is an R-balanced map from M x N to M ®g N. By
Theorem 10 there is a well defined group homomorphism A; from M ®g N to itself
such that A;(m ® n) = sm @ n. Since the right side of (8) is then A,(}_m; ® n;),
the fact that A, is well defined shows that this expression is indeed independent of
the representation of the tensor Y m; ® n; as a sum of simple tensors. Because A, is
additive, equation (8) holds.

By a completely parallel argument, if M is a right R-module and N is an (R, S)-
bimodule then the tensor product M ®p N has the structure of a right S-module, where
OCm;@n)s =) m; ® (n;s).

Before giving some more examples of tensor products it is worthwhile to highlight
one frequently encountered special case of the previous discussion, namely the case
when M and N are two left modules over a commutative ring R and S = R (in some
works on tensor products this is the only case considered). Then the standard R-module
structure on M defined previously gives M the structure of an (R, R)-bimodule, so in
this case the tensor product M ®g N always has the structure of a left R-module.

The corresponding map: : M X N - M ®g N maps M x N into an R-module
and is additive in each factor. Since r(im @ n) = rm @n =mr @ n = m Q@ rn it also
satisfies

ri(m,n) = «(rm, n) = 1(n, rn).
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Such maps are given a name:

Definition. Let R be acommutative ring with 1 andlet M, N, and L be left R-modules.
The map ¢ : M x N — L is called R-bilinear if it is R-linear in each factor, i.e., if

@(rimy + romy, n) = rip(my, n) + ra9(mz, n), and
(m, riny + ranz) = rip(m, n1) + rap(m, ny)

for allm,ml, my € M, n,ny, ny € N andrl, r € R.
With this terminology Theorem 10 gives

Corollary 12. Suppose R is a commutative ring. Let M and N be two left R-modules
and let M ® g N be the tensor product of M and N over R, where M is given the standard
R-module structure. Then M ®g N is a left R-module with

rm@n)=(m)@n=mrI@n=mQ (rn),

andthemap:: M x N - M ®g N with ¢((m, n) = m ® n is an R-bilinear map. If L
is any left R-module then there is a bijection

R-bilinear maps R-module homomorphisms
¢ . MxN—>L P MQrN->L

where the correspondence between ¢ and @ is given by the commutative diagram

MxN—>M®gN

N

L

Proof: We have shown M @ N is an R-module and that ¢ is bilinear. It remains
only to check that in the bijective correspondence in Theorem 10 the bilinear maps
correspond with the R-module homomorphisms. If ¢ : M X N — L is bilinear then it
is an R-balanced map, so the corresponding @ : M ®x N is a group homomorphism.
Moreover, on simple tensors @((rm) @ n) = @(rm,n) = re@n,n) = rP(m @ n),
where the middle equality holds because ¢ is R-linear in the first variable. Since @ is
additive this extends to sums of simple tensors to show @ is an R-module homomor-
phism. Conversely, if @ is an R-module homomorphism it is an exercise to see that the
corresponding balanced map ¢ is bilinear.

Examples

(1) In any tensor product M @ g N wehave m®@0=m @ 0+0) =m0+ me0),
som ®0=0. Likewise 0@ n =0.
(2) We have Z/27.®z Z./3Z. = 0, since 3a = a for a € Z/2Z. so that

a®b=3aR®b=a®3b=a®0=0

and every simple tensor is reduced to 0. In particular 1 ® 1 = 0. It follows that there
are no nonzero balanced (or bilinear) maps from Z /27 x Z./3Z. to any abelian group.
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On the other hand, consider the tensor product Z/2Z.®z Z./2Z., which is generated
as an abelian group by the elements 00 =1®0=0® 1 =0and 1 ® 1. In this case
1®1 # O since, for example, the map Z/27Z x Z./27. — Z./27Z defined by (a, b) > ab
is clearly nonzero and linear in both @ and b. Since2(1® 1) =2®1=091=0,
the element 1 ® 1 is of order 2. Hence Z/2Z ®z Z/27. = Z[27Z.

(3) In general,
ZimZ @z Z[{nZ = Z[/dZ,

where d is the g.c.d. of the integers m and n. To see this, observe first that
a®@b=a@®b-1)=@h)®1=ab(1®1),

from which it follows that Z./mZ ®z Z/nZ. is a cyclic group with 1 ® 1 as generator.
Sincem(1@ 1) =m®1=0® 1 =0 and similarly n(1 ® 1) = 1 ® n = 0, we have
d(1®1) = 0, so the cyclic group has order dividingd. Themap ¢ : Z/mZ x Z/nZ —
Z./dZ defined by ¢(a mod m, b mod n) = ab mod d is well defined since d divides
both m and n. Itisclearly Z-bilinear. The induced map @ : Z/mZQ®z Z[/nZ — Z/dZ
from Corollary 12 maps 1 ® 1 to the element 1 € Z/dZ, which is an element of order
d. In particular Z/mZ ®z Z./nZ has order at least d. Hence 1 ® 1 is an element of
order d and @ gives an isomorphism Z/mZ ®z Z/nZ = Z./dZ.

4) In Q/Z ®z Q/Z a simple tensor has the form (a/b modZ) ® (c/d mod Z) for some
rational numbers a/b and c¢/d. Then

(% modZ) ® (3 modZ) = d(% modZ) ® (3 modZ)
a C a
=Gg modZ) ® d(E modZ) = (- modZ)®0=0

and so
Q/Z®z Q/Z =0.

In a similar way, A ®z B = 0 for any divisible abelian group A and forsion abelian
group B (an abelian group in which every element has finite order). For example

Q®zQ/Z=0.

(5) The structure of a tensor product can vary considerably depending on the ring over
which the tensors are taken. For example Q ®g Q and Q ®z Q are isomorphic as left
@Q-modules (both are one dimensional vector spaces over Q) — cf. the exercises. On
the other hand we shall see at the end of this section that C ®¢ C and C ®g C are
not isomorphic C-modules (the former is a 1-dimensional vector space over C and the
latter is 2-dimensional over C).

(6) General extension of scalars or change of base: Let f : R — S be aring homomor-
phism with f(1g) = 1s. Then s - r = sf (r) gives S the structure of a right R-module
with respect to which § is an (S, R)-bimodule. Then for any left R-module N, the
resulting tensor product S ® g N is a left S-module obtained by changing the base
from R to S. This gives a slight generalization of the notion of extension of scalars
(where R was a subring of S).

(7) Let f : R — S be a ring homomorphism as in the preceding example. Then we
have S ®g R = S as left S-modules, as follows. The map ¢ : S x R — § defined
by (s,r) — sr (where sr = sf(r) by definition of the right R-action on S), is an
R-balanced map, as is easily checked. For example,

@(s1 + 52, 7) = (51 + 52)r =517 + sor = @(s1,7) + @(s2, 1)
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and
o(sr, 1’y = (sr)r’ = s@r’y = @(s, ).

By Theorem 10 we have an associated group homomorphism ¢ : S ® g R — S with
P(s®@r) = sr. Since P(s'(s @ 1)) = P (s's ®r) = s'sr = 5'P(s @ r), it follows that
& is also an S-module homomorphism. The map @' : § - S®g R withs = s®1is
an S-module homomorphism that is inverse to @ because @ o @'(s) =P (s @ 1) = s
gives 2@’ =1, and

P odERN=P'(r)=srl=5s@®r

shows that @’ is the identity on simple tensors, hence ¢'® = 1.

(8) Let R be aring (not necessarily commutative), let I be atwo sidedideal in R, andlet N
be a left R-module. Then as previously mentioned, R/I is an (R/I, R)-bimodule, so
the tensor product R/I ®g N is aleft R/I-module. This is an example of “extension
of scalars” with respect to the natural projection homomorphism R — R/I.

Define
IN = [Za,-n,- lai € I,n; eNl,
finite
which is easily seen to be a left R-submodule of N (cf. Exercise 5, Section 1). Then
(R/I)®@r N = N/IN,

as left R-modules, as follows. The tensor product is generated as an abelian group by
the simple tensors r mod I) @ n =r(1 @ n) forr € Rand n € N (viewing the R/I-
module tensor product as an R-module on which I acts trivially). Hence the elements
1 ® n generate (R/I) @ N as an R/I-module. The map N — (R/I) ®g N defined
by n — 1 ® n is a left R-module homomorphism and, by the previous observation,
is surjective. Under this map a;n; witha; € T and n; € N maps to 1 @ ajn; =
a; ®@n; =0, and so I N is contained in the kernel. This induces a surjective R-module
homomorphism f : N/IN — (R/I) ®g N with f(nmodI) = 1 ® n. We show f
is an isomorphism by exhibiting its inverse. The map (R/I) x N — N/IN defined
by mapping (r mod I, n) to (rn mod I N) is well defined and easily checked to be R-
balanced. It follows by Theorem 10 that there is an associated group homomorphism
g:(R/HY®N — N/IN with g((rmodI) ® n) = rnmod IN. As usual, fg =1and
gf = 1,0 f is abijection and (R/I) ®g N = N/IN, as claimed.

As an example, let R = Z with ideal I = mZ and let N be the Z-module Z/nZ.
Then IN = m(Z/nZ) = (mZ + nZ)/nZ = dZ/nZ where d is the g.c.d. of m and n.
Then N/IN = 7Z/dZ and we recover the isomorphism Z/mZ ®z Z/n’Z = Z/dZ of
Example 3 above.

We now establish some of the basic properties of tensor products. Note the frequent
application of Theorem 10 to establish the existence of homomorphisms.

Theorem 13. (The “Tensor Product” of Two Homomorphisms) Let M, M’ be right
R-modules, let N, N’ be left R-modules, and suppose ¢ : M — M’ and ¢ : N —> N’
are R-module homomorphisms.
(1) There is a unique group homomorphism, denoted by ¢ ® ¥, mapping M ®g N
into M’ ®g N’ such that (¢ ® ¢¥)(m @ n) = ¢(m) @ Y (n) forallm € M and
neN.
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(2) If M, M’ are also (S, R)-bimodules for some ring S and ¢ is also an S-module
homomorphism, then ¢ ® is a homomorphism of left S-modules. In particular,
if R is commutative then ¢ ® ¢ is always an R-module homomorphism for the
standard R-module structures.

@ Ir: M > M'and u : NN - N” are R-module homomorphisms then

ARWo(@®Y)=RAop)®(noy).

Proof: The map (m,n) +— ¢(@m) @ ¥(n) from M x N to M’ ®g N’ is clearly
R-balanced, so (1) follows immediately from Theorem 10.

In (2) the definition of the (left) action of S on M together with the assumption that
¢ is an S-module homomorphism imply that on simple tensors

(@ @ Y)sim @ n)) = (¢ @ Y)(sm @n) = p(sm) @ Y(n) = sp(m) @ ¥(n).

Since ¢ ® ¥ is additive, this extends to sums of simple tensors to show that ¢ ® ¢ is
an S-module homomorphism. This gives (2).
The uniqueness condition in Theorem 10 implies (3), which completes the proof.

The next result shows that we may write M @ N ® L, or more generally, an n-fold
tensor product M; @ M, ® - - - @ M,,, unambiguously whenever it is defined.

Theorem 14. (Associativity of the Tensor Product) Suppose M is a right R-module, N
is an (R, T)-bimodule, and L is a left 7-module. Then there is a unique isomorphism

MRrN)RQFLEMR N QL)

of abelian groups suchthat m @ n) @I > m @ (n @ I). If M is an (S, R)-bimodule,
then this is an isomorphism of S-modules.

Proof: Note first that the (R, T)-bimodule structure on N makes M ®@g N into a
right T-module and N ®7 L into a left R-module, so both sides of the isomorphism are
well defined. For each fixed | € L, the mapping (m, n) — m ® (n ® ) is R-balanced,
so by Theorem 10 there is a homomorphism M @ N — M Qg (N ®r L) with
m@n +— m® (nQ®I). This shows that the map from (M Qg N) x Lto M Qg (N &7 L)
given by (im @ n,1) > m ® (n ® I) is well defined. Since it is easily seen to be T-
balanced, another application of Theorem 10 implies that it induces a homomorphism
MQRQRN)Qr L > MQr(N®r Lysuchthat m®@n)Ql—> mQ@ (n®!). Ina
similar way we can construct a homomorphism in the opposite direction that is inverse
to this one. This proves the group isomorphism.

Assume in addition M is an (S, R)-bimodule. Then fors € S and # € T we have

smn))=smnt)=sm nt = (smQOn)t = (s(m Qn))t

so that M ®g N is an (S, T)-bimodule. Hence (M ®r N) ®¢ L is a left S-module.
Since N ®y L is aleft R-module, also M ®g (N ®y L) is aleft S-module. The group
isomorphism just established is easily seen to be a homomorphism of left S-modules
by the same arguments used in previous proofs: it is additive and is S-linear on simple
tensors since s (M @n) ®I) = s(m@n) R = (sm ® n) ® [ maps to the element
sm@n I =s(m® (nQI)). The proof is complete.
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Corollary 15. Suppose R is commutative and M, N, and L are left R-modules. Then
MIN)QRL=MQ(INQ®L)
as R-modules for the standard R-module structures on M, N and L.

There is a natural extension of the notion of a bilinear map:

Definition. Let R be a commutative ring with 1 and let My, M>, ..., M,, and L be
R-modules with the standard R-module structures. Amap ¢ : My x --- X M,, - L is
called n-multilinear over R (or simply multilinear if n and R are clear from the context)
if it is an R-module homomorphism in each component when the other component
entries are kept constant, i.e., for each i

’ ’
oy, ....mi_y, rm; +rm;, miqq, ..., my,)
’ /
=re(my,....mj,...,mp)+romy,....,m;,...,my)

for all m;, m; € M; and r, 7’ € R. When n = 2 (respectively, 3) one says ¢ is bilinear
(respectively trilinear) rather than 2-multilinear (or 3-multilinear).

One may construct the n-fold tensor product M; @ M; ® - - - ® M, from first
principles and prove its analogous universal property with respect to multilinear maps
from M; X - - - x M, to L. By the previous theorem and corollary, however, an n-
fold tensor product may be obtained unambiguously by iterating the tensor product of
pairs of modules since any bracketing of M; ® - - - ® M,, into tensor products of pairs
gives an isomorphic R-module. The universal property of the tensor product of a pair
of modules in Theorem 10 and Corollary 12 then implies that multilinear maps factor
uniquely through the R-module M; ®- - - ® M,,, i.e., this tensor product is the universal
object with respect to multilinear functions:

Corollary 16. Let R be a commutative ring and let My, ..., M,, L be R-modules. Let
M; ® M; ®- - - ® M, denote any bracketing of the tensor product of these modules and
let

Lt Myx---xXM,->MQ®---QM,

be the map defined by ¢(my, ..., m,) = m; @ - - - @ m,,. Then
(1) forevery R-module homomorphism @ : M; ®---Q M, — Lthemapyp = Pot
is n-multilinear from M; x - - - x M, to L, and
Q) ife : My X --- x M,, - L is an n-multilinear map then there is a unique
R-module homomorphism @ : M; ® ---® M,, —> Lsuchthatgp = ot.
Hence there is a bijection

n-multilinear maps R-module homomorphisms
o.My x---xM,—> L P Mi®---®M, > L

with respect to which the following diagram commutes:

Mx.,.an_._;M®...®Mn

S

L
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We have already seen examples where M; ®g N is not contained in M ® N
even when M, is an R-submodule of M. The next result shows in particular that (an
isomorphic copy of) M; ®g N is contained in M Qg N if M; is an R-module direct
summand of M.

Theorem 17. (Tensor Products of Direct Sums) Let M, M’ be right R-modules and let
N, N’ be left R-modules. Then there are unique group isomorphisms

(M&M)®N=(M®rN)®(M Qg N)
M@ (N®N)= (M@ N)® (Mg N

such that (m, m")®n > (Mn, m'@n) andm(n, n') > (M®n, m@n’) respectively.
If M, M’ are also (S, R)-bimodules, then these are isomorphisms of left S-modules. In
particular, if R is commutative, these are isomorphisms of R-modules.

Proof: Themap (MO&M')XxN — (Mg NYD(M'QgN)defined by ((m, m"), n)
(m @ n, m’ ® n) is well defined since m and m’ in M @ M’ are uniquely defined in
the direct sum. The map is clearly R-balanced, so induces a homomorphism f from
(M®&M)Y®N to(M®g N)® (M ®g N) with

f(m,mY®n)=mn,m Qn).
In the other direction, the R-balancedmaps M x N > (M@ M )Q@gNand M’ x N —
(M@®M")QgN givenby (m,n) > (m, 0)®n and (m’, n) > (0, m")Qn, respectively,
define homomorphisms from M @z N and M’ @ N to (M & M’) @ N. These in turn
give ahomomorphism g from the direct sum (M @z N)D(M'Qr N)to (MO M YR N
with
g((m @ ni, m' @ ny)) = (m, 0) @ ny + (0, m") @ n,.

An easy check shows that f and g are inverse homomorphisms and are S-module
isomorphisms when M and M’ are (S, R)-bimodules. This completes the proof.

The previous theorem clearly extends by induction to any finite direct sum of R-
modules. The corresponding result is also true for arbitrary direct sums. For example

M ® (@ici Vi) = Sic1(M Q N),
where I is any index set (cf. the exercises). This result is referred to by saying that

tensor products commute with direct sums.

Corollary 18. (Extension of Scalars for Free Modules) The module obtained from the
free R-module N = R" by extension of scalars from R to S is the free S-module S,
ie.,

SQrR"= S"

as left S-modules.

Proof: This follows immediately from Theorem 17 and the isomorphism S®g R =
S proved in Example 7 previously.
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Corollary 19. Let R be a commutative ring and let M = R* and N = R’ be free
R-modules withbasesm, ..., mgandny, ..., n,, respectively. Then M @ N is a free
R-module of rank sz, with basis m; ® n;,1 <i <sand1 < j <t,ie,

Rs ®R Rt jacd Rst.

Remark: More generally, the tensor product of two free modules of arbitrary rank over
a commutative ring is free (cf. the exercises).

Proof: This follows easily from Theorem 17 and the first example following Corol-
lary 9.

Proposition 20. Suppose R is a commutative ring and M, N are left R-modules,
considered with the standard R-module structures. Then there is a unique R-module
isomorphism

MQrN=N@rM

mapping m @ nton @ m.

Proof: The map M x N - N ® M defined by (1, n) — n ® m is R-balanced.
Hence it induces a unique homomorphism f from M@ Nto N ® M with f(in®n) =
n ® m. Similarly, we have a unique homomorphism g from N @ M to M ® N with
g(n®m) = m@n giving the inverse of f, and both maps are easily seen to be R-module
isomorphisms.

Remark: When M = N it is not in general true thata @ b =b ® a fora, b € M. We
shall study “symmetric tensors” in Section 11.6.

We end this section by showing that the tensor product of R-algebras is again an
R-algebra.

Proposition 21. Let R be a commutative ring and let A and B be R-algebras. Then the
multiplication (a ® b)(a¢’ @ b') = aa’ ® bb' is well defined and makes A Qg B into an
R-algebra.

Proof: Note first that the definition of an R-algebra shows that

r@®@®by=ra@®b=ar@b=a@rb=a® br = (a @b)r

foreveryr € R,a € Aand b € B. To show that A® B isan R-algebra the main task is,
as usual, showing that the specified multiplication is well defined. One way to proceedis
to use two applications of Corollary 16, as follows. Themapgy : AXBXAXB — AQB
defined by f(a, b, d’, b') = aa’ ® bb' is multilinear over R. For example,

fla, b1 + rab,, a,by= aa ® (nb + rzbz)b’
=aa @ nbib' + aa’ @ rybyb’
=rnf@,b,d,b)+rf(a, by,d,b).
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By Corollary 16, there is a corresponding R-module homomorphism & from A ® B ®
ARQBto AR Bwith®d(@®b®ad ®bV)=ad  bb'. Viewing A®@ BQ A® B as
(A ® B) ® (A ® B), we can apply Corollary 16 once more to obtain a well defined R-
bilinear mapping ¢’ from (AQ®B) X (AQB) to AQ Bwith¢'(a®b, a’'®b') = aa’ @bb'.
This shows that the multiplication is indeed well defined (and also that it satisfies the
distributive laws). It is now a simple matter (left to the exercises) to check that with
this multiplication A ® B is an R-algebra.

Example

The tensor product C @g C is free of rank 4 as a module over R with basis given by
aa=1®lLe=1Qi,e3=i®1,andeg =i ®i (by Corollary 19). By Proposition 21,
this tensor product is also a (commutative) ring with e; = 1, and, for example,

G=>®NI®)=i’0i’=(-D-D=(D-hel=L1

Then (e4 — 1)(e4 + 1) = 0, so C ®g C is not an integral domain.

The ring C®g C is an R-algebra and the left and right R-actions are the same: xr = rx
forevery r € Rand x € C®g C. The ring C ®g C has a structure of a left C-module
because the first C is a (C, R)-bimodule. It also has a right C-module structure because
the second C is an (R, C)-bimodule. For example,

iraa=i-(IxDN=0-DIR1=ikl=c
and
e]'i=(1®1)'i=1®(1'i)=1®i=e2,

This example also shows that even when the rings involved are commutative there may be
natural left and right module structures (over some ring) that are not the same.

EXERCISES

Let R be aring with 1.

1. Let f : R — S be a ring homomorphism from the ring R to the ring S with f(1g) = 15.
Verify the details that sr = sf(r) defines a right R-action on S under which § is an
(S, R)-bimodule.

2. Show that the element “2 ® 17 is 0 in Z ®z Z/2Z but is nonzero in 27 @z, Z./27Z.

3. Show that C®g C and C®¢ C are both left R-modules but are not isomorphic as R-modules.

4. Show that Q ®z Q and Q ®g Q are isomorphic left Q-modules. [Show they are both
1-dimensional vector spaces over Q.]

5. Let A be a finite abelian group of order n and let p¥ be the largest power of the prime p
dividing n. Prove that Z/p*Z @z A is isomorphic to the Sylow p-subgroup of A.

6. If R is any integral domain with quotient field Q, prove that (Q/R) ®g (Q/R) = 0.

7. If R is any integral domain with quotient field Q and N is a left R-module, prove that
every element of the tensor product Q ®g N can be written as a simple tensor of the form
(1/d) ® n for some nonzerod € Rand somen € N.

8. Suppose R is an integral domain with quotient field Q and let N be any R-module. Let
U = R* be the set of nonzero elements in R and define U N to be the set of equivalence

classes of ordered pairs of elements (u, n) with u € U and n € N under the equivalence
relation (u, n) ~ (¢, n) if and only if w'n = un’ in N.
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10.

11

12.

13.

14.

15.

16.

17.

(a) Prove that U!N is an abelian group under the addition defined by (u1,n1) +
(u2, n2) = (uyuz, usny + uinz). Prove that r(u, n) = (u, rn) defines an action of R
on U~! N making it into an R-module. [This is an example of localization considered
in general in Section 4 of Chapter 15, cf. also Section 5 in Chapter 7.]

(b) Show that the map from Q@ x N to U™!N defined by sending (a/b, n) to (b, an)
fora € R, b € U,n € N, is an R-balanced map, so induces a homomorphism f
from Q ®g N to U"'N. Show that the map g from U~'N to Q ®g N defined by
g((u, n)) = (1/u)@n is well defined and is an inverse homomorphism to f. Conclude
that 0 ®@ g N = U1 N as R-modules.

(c) Conclude from (b) that (1/d) @ r is 0 in @ ®g N if and only if rn = ( for some
nonzeror € R.

(d) If A is an abelian group, show that Q ®z A = 0 if and only if A is a torsion abelian
group (i.e., every element of A has finite order).

Suppose R is an integral domain with quotient field Q and let N be any R-module. Let
Q ®r N be the module obtained from N by extension of scalars from R to Q. Prove that
the kernel of the R-module homomorphisme : N — Q ®g N is the torsion submodule of
N (cf. Exercise 8 in Section 1). [Use the previous exercise.]

Suppose R is commutative and N = R" is afree R-module of rank # with R-module basis

€1,...,6€pn.

(a) For any nonzero R-module M show that every element of M ® N can be written
uniquely in the form }7_, m; ® ¢; where m; € M. Deduce thatif } ], m; @ e; =0
inM®N thenm; =0fori=1,...,n.

(b) Show thatif Y m; ® n; = 0in M ® N where the n; are merely assumed to be R-
linearly independent then it is not necessarily true that all the m; are 0. [Consider
R=Z,n=1, M =Z/2Z, and the element 1 ® 2.]

Let {e1, e2} be a basis of V = R2. Show that the elemente; @ ex + e, ® €1 in V ®r V
cannot be written as a simple tensor v ® w for any v, w € R2.

Let V be a vector space over the field F and let v, v’ be nonzero elements of V. Prove that
1@V =1 ®vin V®p Vifand only if v = av’ for some a € F.

Prove that the usual dot product of vectors defined by letting (ay, -..,an)- (b1, ..., b,) be
a1hy + - - - + ayb, is abilinear map from R” x R” toR.

Let I be an arbitrary nonempty index set and for each i € I let N; be aleft R-module. Let
M be aright R-module. Prove the group isomorphism: M ® (®jc1N;) = @ijci (M @ N;),
where the direct sum of an arbitrary collection of modules is defined in Exercise 20,
Section 3. [Use the same argument as for the direct sum of two modules, taking care to
note where the direct sum hypothesis is needed — cf. the next exercise.]

Show that tensor products do not commute with direct products in general. [Consider

the extension of scalars from Z to Q of the direct product of the modules M; = Z/2'Z,

i=12,...]

Suppose R is commutative and let 7 and J be ideals of R, so R/I and R/J are naturally

R-modules.

(a) Prove that every element of R/I @g R/J can be written as a simple tensor of the form
(1mod ) ® (r mod J).

(b) Prove that there is an R-module isomorphism R/I ® g R/J = R/(I + J) mapping
(rmodI)® (r’ mod J) to rr' mod (I + J).

LetI = (2, x) betheideal generated by 2and x inthering R = Z[x]. TheringZ/2Z = R/I

is naturally an R-module annihilated by both 2 and x.
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18.

19.

21.

22

=

25.

(a) Show that the map ¢ : I x I — Z/27Z defined by
olagt+ax+--+ax",bp+bhix+-- -+ bpx™) = Engl mod?2

is R-bilinear.

(b) Show that there is an R-module homomorphism from I ® g I — Z/2Z mapping
0 .

p(x) ®q(x)to &q’ (0) where g’ denotes the usual polynomial derivative of g.
(c) Showthat2® x #x®2in I ®g I.
Suppose 1 is a principal ideal in the integral domain R. Prove that the R-module I ®g I
has no nonzero torsion elements (i.e., rm = 0 with 0 £ r € R and m € I ®g I implies
that m = 0).

Let I = (2, x) be the ideal generated by 2 and x in the ring R = Z[x] as in Exercise 17.
Show that the nonzero element 2 ® x —x ® 2in I ®p I is a torsion element. Show in
fact that 2 ® x — x ® 2 is annihilated by both 2 and x and that the submodule of I ®g I
generated by 2 ® x — x ® 2 is isomorphic to R/1.

. Let I = (2, x) be the ideal generated by 2 and x in the ring R = Z[x]. Show that the

element 2@ 2+ x ® x in I ®g I is not a simple tensor, i.e., cannot be written as a ® b for

somea,bel.

Suppose R is commutative and let 7 and J be ideals of R.

(a) Show there is a surjective R-module homomorphism from I ®g J to the product ideal
I1J mapping i ® j to the element i;.

(b) Give an example to show that the map in (a) need not be injective (cf. Exercise 17).

Suppose that M is a left and a right R-module such that rm = mr for all r € R and

m € M. Show that the elements 172 and r>ry act the same on M for every r1, 7 € R.

(This explains why the assumption that R is commutative in the definition of an R-algebra

is a fairly natural one.)

Verify the details that the multiplication in Proposition 19 makes A®pg B into an R-algebra.

Prove that the extension of scalars from Z to the Gaussian integers Z[i] of the ring R is
isomorphic to C as aring: Z[i] ®z R = C as rings.

Let R be a subring of the commutative ring S and let x be an indeterminate over S. Prove
that S[x] and S ® g R[x] are isomorphic as S-algebras.

Let § be a commutative ring containing R (with 1g = 1g) and let x4, . .., x, be indepen-
dent indeterminates over the ring S. Show that for every ideal I in the polynomial ring
Rix1,...,x,]that S®g (RIx1, - ... xp1/1) = S[x1, - .., x,1/ISlx1, - .., xn] as S-algebras.

The next exercise shows the ring C ®@g C introduced at the end of this section is isomorphic
to C x C. One may also prove this via Exercise 26 and Proposition 16 in Section 9.5, since

Ccz=

27.

R[x]/ (x2 + 1). The ring C x C s also discussed in Exercise 23 of Section 1.

(a) Write down a formula for the multiplication of two elements -1+ b-e3+c-e3+d-es
anda'-14+b -e3+c’ -e3+d’ - eq in the example A = C ®g C following Proposition
21 (where 1 = 1 ® 1 is the identity of A).

(b) Lete; = 1(1®@1+i®@i)ande; = 1(1®1-i®i). Showthatere; = 0, €1+€2 = 1,and
61-2 =¢; for j = 1, 2 (€1 and €2 are called orthogonal idempotents in A). Deduce that
A is isomorphic as aring to the direct product of two principal ideals: A = Ae; x Aep
(cf. Exercise 1, Section 7.6).

(¢) Provethatthemap ¢ : C xC — C x Cby ¢(z1, 22) = (2122, 2172). Where 72 denotes
the complex conjugate of z2, is an R-bilinear map.
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(d) Let & be the R-module homomorphism from A to C x C obtained from ¢ in (c).
Show that @ (e;) = (0, 1) and & (e3) = (1, 0). Show also that ¢ is C-linear, where
the action of C is on the left tensor factor in A and on both factors in C x C. Deduce
that @ is surjective. Show that & is a C-algebra isomorphism.

10.5 EXACT SEQUENCES—PROJECTIVE, INJECTIVE, AND
FLAT MODULES

One of the fundamental results for studying the structure of an algebraic object B (e.g.,
a group, a ring, or a module) is the First Isomorphism Theorem, which relates the
subobjects of B (the normal subgroups, the ideals, or the submodules, respectively)
with the possible homomorphic images of B. We have already seen many examples
applying this theorem to understand the structure of B from an understanding of its
“smaller” constituents—for example in analyzing the structure of the dihedral group
Ds by determining its center and the resulting quotient by the center.

In most of these examples we began first with a given B and then determined some
of its basic properties by constructing a homomorphism ¢ (often given implicitly by
the specification of ker¢ € B) and examining both ker ¢ and the resulting quotient
B/ ker ¢. We now consider in some greater detail the reverse situation, namely whether
we may first specify the “smaller constituents.” More precisely, we consider whether,
given two modules A and C, there exists a module B containing (an isomorphic copy
of) A such that the resulting quotient module B/A is isomorphic to C—in which case
B is said to be an extension of C by A. It is then natural to ask how many such B exist
for a given A and C, and the extent to which properties of B are determined by the
corresponding properties of A and C. There are, of course, analogous problems in the
contexts of groups and rings. This is the extension problem first discussed (for groups)
in Section 3.4; in this section we shall be primarily concerned with left modules over
a ring R, making note where necessary of the modifications required for some other
structures, notably noncommutative groups. As in the previous section, throughout this
section all rings contain a 1.

We first introduce a very convenient notation. To say that A is isomorphic to a
submodule of B, is to say that there is an injective homomorphism ¢ : A — B (so
then A = Y (A) C B). To say that C is isomorphic to the resulting quotient is to say
that there is a surjective homomorphism ¢ : B — C with ker ¢ = ¥ (A). In particular
this gives us a pair of homomorphisms:

AL BS C

with image ¥ = ker ¢. A pair of homomorphisms with this property is given a name:

Definition.
(1) The pair of homomorphisms X —> ¥ L/ is said to be exact (at Y) if
image o = ker 8.

(2) Asequence--- — X,_; - X, > X,41 — --- of homomorphisms is said to be
an exact sequence if it is exact at every X,, between a pair of homomorphisms.
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With this terminology, the pair of homomorphisms A ¥ B 5 C above is exact at B.
We can also use this terminology to express the fact that for these maps i is injective
and ¢ is surjective:

Proposition 22. Let A, B and C be R-modules over some ring R. Then
(1) The sequence 0 — A > B is exact (at A) if and only if ¥ is injective.
(2) The sequence B - C — 0 is exact (at C) if and only if ¢ is surjective.

Proof: The (uniquely defined) homomorphism 0 — A has image 0 in A. This will
be the kernel of y if and only if ¢ is injective. Similarly, the kernel of the (uniquely
defined) zero homomorphism C — 0 is all of C, which is the image of ¢ if and only if
¢ is surjective.

Corollary 23. The sequence 0 —> A % B % C - 0is exact if and only if ¢ is
injective, ¢ is surjective, and image {r = ker ¢, i.e., B is an extension of C by A.

Definition. The exact sequence 0 — A LA B % C — 0is called a short exact
sequence.

In terms of this notation, the extension problem can be stated succinctly as follows:
given modules A and C, determine all the short exact sequences

0—sA-Y% B Y% Cc—so0. (10.9)

We shall see below that the exact sequence notation is also extremely convenient for
analyzing the extent to which properties of A and C determine the corresponding prop-
erties of B. If A, B and C are groups written multiplicatively, the sequence (9) will be
written

1—-A5 B %S Cc—1 (10.9)

where 1 denotes the trivial group. Both Proposition 22 and Corollary 23 are valid with
the obvious notational changes. .
Note that any exact sequence can be written as a succession of short exact sequences

since to say X —» ¥ P, Zisexact at Y is the same as saying that the sequence
0 —> a(X) > Y - Y/ker B — 0 is a short exact sequence.

Examples

(1) Given modules A and C we can always form their direct sum B = A @ C and the
sequence
0>A>A0CBC—>0
where 1(a) = (a, 0) and 7r(a, ¢) = cis a short exact sequence. In particular, it follows
that there always exists at least one extension of C by A.
(2) As a special case of the previous example, consider the two Z-modules A = Z and
C =Z/nZ:
0 — Z —> Z& (Z/nZ) %> Z/nZ —> 0,
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giving one extension of Z/nZ by Z.
Another extension of Z/nZ by Z is given by the short exact sequence

02523 7Z/mZ—0

where n denotes the map x — nx given by multiplication by n, and 7 denotes the
natural projection. Note that the modules in the middle of the previous two exact
sequences are not isomorphic even though the respective “A” and “C” terms are
isomorphic. Thus there are (at least) two “essentially different” or “inequivalent”
ways of extending Z/nZ by Z.

(3) If ¢ : B — C is any homomorphism we may form an exact sequence:

0 —> ker¢p —> B -2 imagegp —> 0

where : is the inclusion map. In particular, if ¢ is surjective, the sequence¢ : B - C
may be extended to a short exact sequence with A = ker ¢.

(4) Oneparticularly important instance of the preceding exampleis when M is an R-module
and § is a set of generators for M. Let F(S) be the free R-module on S. Then

0— K- F(S) > M—0

is the short exact sequence where ¢ is the unique R-module homomorphism which is
the identity on § (cf. Theorem 6) and K = ker ¢.
More generally, when M is any group (possibly non-abelian) the above short exact

sequence (with 1’s at the ends, if M is written multiplicatively) describes a presentation
of M, where K is the normal subgroup of F(S) generated by the relations defining M
(cf. Section 6.3).

(5) Two “inequivalent” extensions G of the Klein 4-group by the cyclic group Z; of order
two are

1—>Zz—l—)D3-£)ZQXZQ—>1, and

1—> Zp —> Qs -5 Zy x Zp —> 1,

where in each case : maps Z; injectively into the center of G (recall that both Dg and

Qs have centers of order two), and ¢ is the natural projection of G onto G/Z(G).
Two other inequivalent extensions G of the Klein 4-group by Z; occur when G

is either of the abelian groups Z; x Z x Z» or Zz x Z4 for appropriate maps ¢ and ¢.

Examples 2 and 5 above show that, for a fixed A and C, in general there may be
several extensions of C by A. To distinguish different extensions we define the notion
of a homomorphism (and isomorphism) between two exact sequences. Recall first that
a diagram involving various homomorphisms is said to commute if any compositions of
homomorphisms with the same starting and ending points are equal, i.e., the composite
map defined by following a path of homomorphisms in the diagram depends only on
the starting and ending points and not on the choice of the path taken.
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Definition. Let0 > A—> B —» C - 0and0 - A’ - B’ — C’ — 0be two short
exact sequences of modules.
(1) A homomorphism of short exact sequences is a triple «, 8, y of module homo-
morphisms such that the following diagram commutes:

0 A B c 0
L
0 A B c 0

The homomorphism is an isomorphism of short exact sequences if «t, B, y are all
isomorphisms, in which case the extensions B and B’ are said to be isomorphic
extensions.

(2) The two exact sequences are called equivalent if A = A’, C = C’, and there is
an isomorphism between them as in (1) that is the identity maps on A and C
(i.e., @ and y are the identity). In this case the corresponding extensions B and
B’ are said to be equivalent extensions.

If B and B’ are isomorphic extensions then in particular B and B’ are isomorphic
as R-modules, but more is true: there is an R-module isomorphism between B and
B’ that restricts to an isomorphism from A to A’ and induces an isomorphism on the
quotients C and C’. For a given A and C the condition that two extensions B and B’
of C by A are equivalent is stronger still: there must exist an R-module isomorphism
between B and B’ that restricts to the identity map on A and induces the identity map
on C. The notion of isomorphic extensions measures how many different extensions of
C by A there are, allowing for C and A to be changed by an isomorphism. The notion
of equivalent extensions measures how many different extensions of C by A there are
when A and C are rigidly fixed.

Homomorphisms and isomorphisms between short exact sequences of multiplica-
tive groups (9')-are defined similarly.

It is an easy exercise to see that the composition of homomorphisms of short exact
sequences is also a homomorphism. Likewise, if the triple ¢, 8, y is an isomorphism
(or equivalence) then o, 871, ! is an isomorphism (equivalence, respectively) in
the reverse direction. It follows that “isomorphism” (or equivalence) is an equivalence
relation on any set of short exact sequences.

Examples

(1) Let m and n be integers greater than 1. Assume » divides m and let k = m/n. Define
a map from the exact sequence of Z-modules in Example 2 of the preceding set of
examples:

0 —— Z 21— Z ——-——JZ——>Z/nZ———-————>0

L= L I

0 — > Z/kZ —— Z/mZ —"—> Z/nZ —> O

where o and 8 are the natural projections, y is the identity map, ¢ maps a modk to
na mod m, and 7’ is the natural projection of Z/mZ onto its quotient (Z/mZ)  (nZ./ mZ)
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(which is isomorphic to Z/nZ). One easily checks that this is a homomorphism of
short exact sequences.

Ifagain0— Z 3z3 Z{nZ — Qis the short exact sequence of Z-modules defined
previously, map each module to itself by x > —x. This triple of homomorphisms
gives an isomorphism of the exact sequence with itself. This isomorphism is not an
equivalence of sequences since it is not the identity on the first Z.

The short exact sequences in Examples 1 and 2 following Corollary 23 are not
isomorphic—the extension modules are not isomorphic Z-modules (abelian groups).
Likewise the two extensions, Dg and Qg, in Example 5 of the same set are not iso-
morphic (hence not equivalent), even though the two end terms “A” and “C” are the
same for both sequences.

Consider the maps

0 —> Z/27 —Y— 7/22.62/22 —4— 7/27 —> 0

Jia I Jia
0 —> 727 Y 722.02/22 —%— 722 — 0

where » maps Z/2Z injectively into the first component of the direct sum and ¢ projects
the direct sum onto its second component. Also ¥’ embeds Z/27Z into the second
component of the direct sum and ¢’ projects the direct sum onto its first component.
If B maps the direct sum Z/27Z @ Z/2Z to itself by interchanging the two factors,
then this diagram is seen to commute, hence giving an equivalence of the two exact
sequences that is not the identity isomorphism.

‘We exhibit two isomorphic but inequivalent Z-module extensions. Fori = 1, 2 define

0 — 222 %> 2/47.0 222 %> 7/22.6 7/27. — O

where ¢ : 1 = (2, 0) in both sequences, ¢ is defined by ¢1(@ mod4, bmod2) =
(amod 2, bmod 2), and ga(amod4, bmod2) = (bmod 2, amod 2). It is easy to see
that the resulting two sequences are both short exact sequences.

An evident isomorphism between these two exact sequences is provided by the
triple of maps id, id, y, where y : Z/2Z & Z/27Z — Z[27Z & Z/2Z is the map
y((c, d)) = (d, ¢) that interchanges the two direct factors.

‘We now check that these two isomorphic sequences are not equivalent, as fol-
lows. Since ¢1(0, 1) = (0, 1), any equivalence, id, 8, id, from the first sequence to
the second must map (0, 1) € Z/4Z @ Z/2Z to either (1, 0) or (3, 0) in Z/4Z. & Z./2Z,
since these are the two possible elements mapping to (0, 1) by ¢2. This is impossible,
however, since the isomorphism 8 cannot send an element of order 2 to an element of
order 4.

Put another way, equivalences involving the same extension module B are au-
tomorphisms of B that restrict to the identity on both ¥(A) and B/y(A). Any such
automorphism of B = Z/4Z & Z/2Z must fix the coset (0, 1) + (A) since this
is the unique nonidentity coset containing elements of order 2. Thus maps which
send this coset to different elements in C give inequivalent extensions. In particular,
there is yet a third inequivalent extension involving the same modules A = Z/27Z,
B =Z/AZ.&® Z/27Z and C = Z/2Z & Z./2Z, that maps the coset (0, 1) + ¢ (A) to the
element (1, 1) € Z/2Z. & Z/27Z.

By similar reasoning there are three inequivalent but isomorphic group extensions
of Z; x Zz by Z» with B = Dg (cf. the exercises).
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The homomorphisms ¢, 8, y in a homomorphism of short exact sequences are not
independent. The next result gives some relations among these three homomorphisms.

Proposition 24. (The Short Five Lemma) Let «, , y be a homomorphism of short
exact sequences

0 A B c 0
L
0 A —— B c 0

(1) If o and y are injective then so is S.

(2) If ¢ and y are surjective then so is 8.

(3) If @ and y are isomorphisms then so is 8 (and then the two sequences are
isomorphic).

Remark: These results hold also for short exact sequences of (possibly non-abelian)
groups (as the proof demonstrates).

Proof: We shall prove (1), leaving the proof of (2) as an exercise (and (3) follows
immediately from (1) and (2)). Suppose then that & and y are injective and suppose
be Bwithf(b) =0. Let ¢ : A—> B and ¢ : B — C denote the homomorphisms in
the first short exact sequence. Since B(b) = O, it follows in particular that the image
of B(b) in the quotient C’ is also 0. By the commutativity of the diagram this implies
that y (¢(b)) = 0, and since y is assumed injective, we obtain ¢(b) = 0, i.e., b is
in the kernel of ¢. By the exactness of the first sequence, this means that b is in the
image of i, i.e., b = Y (a) for some a € A. Then, again by the commutativity of
the diagram, the image of a(a) in B’ is the same as 8(¥(a)) = B(b) = 0. But « and
the map from A’ to B’ are injective by assumption, and it follows that ¢ = 0. Finally,
b = ¢r(a) = ¥ (0) = 0 and we see that g is indeed injective.

We have already seen that there is always at least one extension of amodule C by A,
namely the direct sum B = A @ C. In this case the module B contains a submodule C’
isomorphic to C (namely C' = 0 @ C) as well as the submodule A, and this submodule
complement to A “splits” B into a direct sum. In the case of groups the existence of
a subgroup complement C’ to a normal subgroup in B implies that B is a semidirect
product (cf. Section 5 in Chapter 5). The fact that B is a direct sum in the context
of modules is a reflection of the fact that the underlying group structure in this case is
abelian; for abelian groups semidirect products are direct products. In either case the
corresponding short exact sequence is said to “split™:

Definition.

(1) Let Rbe aring and let0 — A ¥ B5c—> 0 be a short exact sequence of
R-modules. The sequence is said to be split if there is an R-module complement
to ¥ (A) in B. In this case, up to isomorphism, B = A @ C (more precisely,
B = {¥(A) @ C’ for some submodule C’, and C’ is mapped isomorphically onto
C by ¢: ¢(C) = C).
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QI - A il/) B 5 C — 1is a short exact sequence of groups, then the
sequence is said to be split if there is a subgroup complement to {r(A) in B. In
this case, up to isomorphism, B = A x C (more precisely, B = {/(A) x C’ for
some subgroup C’, and C’ is mapped isomorphically onto C by ¢: ¢(C’) = C).

In either case the extension B is said to be a split extension of C by A.

The question of whether an extension splits is the question of the existence of a
complement to ¥ (A) in B isomorphic (by ¢) to C, so the notion of a split extension
may equivalently be phrased in the language of homomorphisms:

Proposition 25. The short exact sequence 0 — A % B4 € — 0of R-modules is
split if and only if there is an R-module homomorphism g : C — B such that g o p

is the identity map on C. Similarly, the short exact sequence | — A LA B5c—>1
of groups is split if and only if there is a group homomorphism g : C — B such that
@ o . is the identity map on C.

Proof: This follows directly from the definitions: if y is given define C' = u(C) €
B andif C’is givendefine u = ¢! : C = C' C B.

Definition. With notation as in Proposition 25, any set map i : C — B such that
¢ o u = id is called a section of ¢. If u is a homomorphism as in Proposition 25 then
1 is called a splitting homomorphism for the sequence.

Note that a section of ¢ is nothing more than a choice of coset representatives in B
for the quotient B/ ker¢ = C. A section is a (splitting) homomorphism if this set of
coset representatives forms a submodule (respectively, subgroup) in B, in which case
this submodule (respectively, subgroup) gives a complement to ¢r(A) in B.

Examples

(1) The split short exact sequence 0 — A 5 A®C 5 C — 0has the evident splitting
homomorphism u(c) = (0, ¢).

(2) The extension 0 > Z > Z & (Z/nZ) % Z/nZ — 0, of Z/nZ by Zis split (with
splitting homomorphism g mapping Z/nZ isomorphically onto the second factor of
the direct sum). On the other hand, the exact sequence of Z-modules 0 - Z Sz5
Z/nZ — 0 is not split since there is no nonzero homomorphism of Z/nZ into Z.

(3) Neither Dg nor Qs is a split extension of Z; x Z; by Z; because in neither group is
there a subgroup complement to the center (Section 2.5 gives the subgroup structures
of these groups).

(4) The group Dg is a split extension of Z> by Zj, i.e., there is a split short exact sequence

1-——)Z4-—L—)D3-—ﬂ—)22-——)1,
namely,
L — (r) = Dg = (§) — 1,
using our usual set of generators for Dg. Here ¢ is the inclusion map and 7 : r%s® > 50
is the projection onto the quotient Dg/{r) = Z;. The splitting homomorphism p
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maps (5 ) isomorphically onto the complement (s ) for (7 ) in Dg. Equivalently, Dg
is the semidirect product of the normal subgroup {r) (isomorphic to Z4) with {s)
(isomorphic to Z5).

On the other hand, while Qg is also an extension of Z> by Z4 (for example,
{i} = Z4 has quotient isomorphic to Z3), Qg is not a split extension of Z; by Z4: no
cyclic subgroup of Qg of order 4 has a complement in Qs.

Section 5.5 contains many more examples of split extensions of groups.

Proposition 25 shows that an extension B of C by A is a split extension if and only
if there is a splitting homomorphism g of the projectionmap ¢ : B — C from B to the
quotient C. The next proposition shows in particular that for modules this is equivalent
to the existence of a splitting homomorphism for i at the other end of the sequence.

Proposition 26. Let0 — A % B 5 € — 0be a short exact sequence of modules

(respectively, 1 - A ¥ B 5 C — 1 ashort exact sequence of groups). Then B =
¥ (A) ® C’' for some submodule C’ of B with ¢(C’) = C (respectively, B = ¢r(A) x C’
for some subgroup C’ of B with ¢(C’) = C) if and only if there is a homomorphism
X : B — Asuch that A o ¢ is the identity map on A.

Proof: This is similar to the proof of Proposition 25. If A is given, define C' =
ker A € B and if C’' is given define A : B = ¢ (A) & C' - A by M((¥(a),¢) = a.
Note that in this case C’ = ker X is normal in B, so that C’ is a normal complement to
¥ (A) in B, which in turn implies that B is the direct sum of ¥r(A) and C’ (cf. Theorem
9 of Section 5.4).

Proposition 26 shows that for general group extensions, the existence of a splitting
homomorphism A on the left end of the sequence is stronger than the condition that
the extension splits: in this case the extension group is a direct product, and not just
a semidirect product. The fact that these two notions are equivalent in the context of
modules is again a reflection of the abelian nature of the underlying groups, where
semidirect products are always direct products.

Modules and Homg( D, _ )
Let R be aring with 1 and suppose the R-module M is an extension of N by L, with

0— L YoM N — 0

the corresponding short exact sequence of R-modules. It is natural to ask whether
properties for L and N imply related properties for the extension M. The first situation
we shall consider is whether an R-module homomorphism from some fixed R-module
D to either L or N implies there is also an R-module homomorphism from D to M.

The question of obtaining a homomorphism from D to M given a homomorphism
from D to L is easily disposed of: if f € Homg (D, L) is an R-module homomorphism
from D to L then the composite f' = ¥ o f is an R-module homomorphism from D to
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M. The relation between these maps can be indicated pictorially by the commutative
diagram

LY >y
Put another way, composition with i induces a map
¥’ : Homg(D. L) — Homg(D, M)
fr—fl=v¥of.
Recall that, by Proposition 2, Homg (D, L) and Homg (D, M) are abelian groups.

Proposition 27. Let D, L and M be R-modules and let ¢ : L — M be an R-module
homomorphism. Then the map

¥’ : Homg(D, L) — Homg(D, M)
fr=f=yof

is a homomorphism of abelian groups. If ¢ is injective, then ¢ is also injective, i.e.,
if 0—1L-LM is exact,

then 0 — Homg(D, L) —W-> Homg (D, M) is also exact.

Proof: The fact that ¢’ is a homomorphism is immediate. If ¢ is injective, then
distinct homomorphisms f and g from D into L give distinct homomorphisms ¢ o f
and ¢ o g from D into M, which is to say that ¢’ is also injective.

While obtaining homomorphisms into M from homomorphisms into the submodule
L is straightforward, the situation for homomorphisms into the quotient N is much less
evident. More precisely, given an R-module homomorphism f : D — N the question
is whether there exists an R-module homomorphism F : D — M that extends or lifts
f to M, ie., that makes the following diagram commute:

¥ @
M——>N

As before, composition with the homomorphism ¢ induces a homomorphism of abelian
groups
¢ : Homg (D, M) — Homg(D, N)
Fr— F =¢oF.
In terms of ¢, the homomorphism f to N lifts to a homomorphism to M if and only if
f is in the image of ¢’ (namely, f is the image of the lift F).
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In general it may not be possible to lift a homomorphism f from D to N to a
homomorphism from D to M. For example, consider the nonsplit exact sequence

02325 Z/27Z — 0 from the previous set of examples. Let D = Z/2Z and let
f be the identity map from D into N. Any homomorphism F of D into M = Z must
map D to O (since Z has no elements of order 2), hence 7w o F maps D to 0 in N, and
in particular, 7 o F # f. Phrased in terms of the map ¢’, this shows that

if MY N—0 isexact,

then Homg(D, M) AN Homg(D, N) —> O is not necessarily exact.

These results relating the homomorphisms into L and N to the homomorphisms
into M can be neatly summarized as part of the following theorem.

Theorem 28. Let D, L, M, and N be R-modules. If

0—->L—¢->M—w->N—->O is exact,

then the associated sequence

0 —> Homg(D, L) % Homg(D, M) % Homg(D, N) isexact.  (10.10)

A homomorphism f : D — N lifts to a homomorphism F : D — M if and only if
f € Homg(D, N)isintheimage of ¢’. In general ¢’ : Homg (D, M) — Homg(D, N)
need not be surjective; the map ¢’ is surjective if and only if every homomorphism from
D to N lifts to a homomorphism from D to M, in which case the sequence (10) can be
extended to a short exact sequence.

The sequence (10) is exact for all R-modules D if and only if the sequence

0—>Li[/>M—w>N is exact.

Proof: The only item in the first statement that has not already been proved is the
exactness of (10) at Homg (D, M), ie., ker¢’ = image’. Suppose F : D —- M
is an element of Homg(D, M) lying in the kernel of ¢/, ie., with ¢ 0o F = 0 as
homomorphisms from D to N. If d € D is any element of D, this implies that
¢(F(d)) =0and F(d) € ker ¢. By the exactness of the sequence defining the extension
M we have ker ¢ = image v, so there is some element! € L with F(d) = ¥ (I). Since
¥ is injective, the element ! is unique, so this gives a well defined map F' : D — L
given by F'(d) = I. It is an easy check to verify that F’ is a homomorphism, i.e.,
F' € Homg(D, L). Since ¢ o F'(d) = ¥ () = F(d), we have F = '(F") which
shows that F is in the image of i, proving that ker ¢’ C image’. Conversely,
if F is in the image of {’' then F = /(F’) for some F' € Homg(D, L) and so
(F(d)) = ¢ (F'(d))) for any d € D. Since ker ¢ = image { we have ¢ o ¢y = 0,
and it follows that ¢(F(d)) = O for any d € D, i.e., ¢'(F) = 0. Hence F is in the
kernel of ¢’, proving the reverse containment: image v’ C ker ¢'.

For the last statement in the theorem, note first that the surjectivity of ¢ was not
required for the proof that (10) is exact, so the “if” portion of the statement has already
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been proved. For the converse, suppose that the sequence (10) is exact for all R-modules
D. In general, Homg (R, X) = X for any left R-module X, the isomorphism being
given by mapping a homomorphism to its value on the element 1 € R (cf. Exercise

10(b)). Taking D = R in (10), the exactness of the sequence 0 — L LMEN
follows easily.

By Theorem 28, the sequence
0 —> Homg(D, L) > Homg(D, M) -¥> Homg(D, N) — 0 (10.11)

is in general not a short exact sequence since the homomorphism ¢’ need not be sur-
jective. The question of whether this sequence is exact precisely measures the extent
to which the homomorphisms from D into M are uniquely determined by pairs of ho-
momorphisms from D into L and D into N. More precisely, this sequence is exact if
and only if there is a bijection F < (g, f) between homomorphisms F : D — M and
pairs of homomorphisms g : D — L and f : D — N givenby F|yq) = ¥'(g) and
f=¢'(F).

One situation in which the sequence (11) is exact occurs when the original sequence
0> L —> M — N — 0is a splir exact sequence, i.e., when M = L @ N. In this
case the sequence (11) is also a split exact sequence, as the first part of the following
proposition shows.

Proposition 29. Let D, L and N be R-modules. Then
(1) Homg(D, L & N) = Homg(D, L) @ Homg(D, N), and
(2) Homg(L & N, D) = Homg(L, D) @ Homg(N, D).

Proof: Letmy : LON — L bethe natural projection from L@ N to L and similarly
let 77> be the natural projectionto N. If f € Homg(D, L @ N) then the compositions
m o f and my o f give elements in Homg(D, L) and Homg (D, N), respectively.
This defines a map from Homg(D, L & N) to Homgz(D, L) @ Homg (D, N) which
is easily seen to be a homomorphism. Conversely, given f; € Homg(D, L) and
f> € Homg(D, N), define the map f € Homg(D, L @ N) by f(d) = (fi(d), f2(d)).
This defines a map from Homg (D, LY®Homg(D, N) toHomgz (D, L& N) that is easily
checked to be a homomorphism inverse to the map above, proving the isomorphism in
(1). The proof of (2) is similar and is left as an exercise.

The results in Proposition 29 extend immediately by induction to any finite direct
sum of R-modules. These results are referred to by saying that Hom commutes with
[finite direct sums in either variable (compare to Theorem 17 for a corresponding result
for tensor products). For infinite direct sums the situation is more complicated. Part
(1) remains true if L @ N is replaced by an arbitrary direct sum and the direct sum on
the right hand side is replaced by a direct product (Exercise 13 shows that the direct
product is necessary). Part (2) remains true if the direct sums on both sides are replaced
by direct products.

This proposition shows that if the sequence

0—L-Y M5 N—0
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is a split short exact sequence of R-modules, then

0 —s Homg(D, L) > Homg(D, M) -%> Homg(D, N) —> 0
is also a split short exact sequence of abelian groups for every R-module D. Ex-
ercise 14 shows that a converse holds: if 0 — Homg(D, L) i) Hompg (D, M) 5

Homg (D, N) — 0 is exact for every R-module D then0 — L L ME N> Ois
a split short exact sequence (which then implies that if the original Hom sequence is
exact for every D, then in fact it is split exact for every D).

Proposition 29 identifies a situation in which the sequence (11) is exact in terms
of the modules L, M, and N. The pext result adopts a slightly different perspective,
characterizing instead the modules D having the property that the sequence (10) in
Theorem 28 can always be extended to a short exact sequence:

Proposition 30. Let P be an R-module. Then the following are equivalent:
(1) For any R-modules L, M, and N, if

0—LYL M-I N—0

is a short exact sequence, then

0 —> Homg(P, L) > Homg(P, M) -*> Homg(P, N) —> 0

is also a short exact sequence.

(2) For any R-modules M and N, if M 25 N> 0is exact, then every R-module
homomorphism from P into N lifts to an R-module homomorphism into M,
ie., given f € Homg(P, N) there is a lift F € Homg (P, M) making the
following diagram commute:

Y4
M N 0
(3) If P is aquotient of the R-module M then P is isomorphic to a direct summand
of M, i.e., every short exact sequence 0 - L —> M — P — O splits.
(4) P is adirect summand of a free R-module.

Proof: The equivalence of (1) and (2) is a restatement of a result in Theorem 28.

Suppose now that (2) is satisfied, and let 0 — L %ML P> 0be exact. By (2), the
identity map from P to P lifts to a homomorphism p making the following diagram
commute:

P
i lid
¥

mZ s p 0

Then ¢ o i = 1, so u is a splitting homomorphism for the sequence, which proves (3).
Every module P is the quotient of afree module (for example, the free module on the
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set of elements in P), so there is always an exact sequence 0 — kergp — F LHP>0
where F is a free R-module (cf. Example 4 following Corollary 23). If (3) is satisfied,
then this sequence splits, so F is isomorphic to the direct sum of ker ¢ and P, which
proves (4).

Finally, to prove (4) implies (2), suppose that P is a direct summand of a free R-
module on some set S, say F(S) = P @ K, and that we are given a homomorphism f
from P to N asin (2). Let 7 denote the natural projection from 7 (S) to P, sothat f omr
is a homomorphism from F(S) to N. For any s € S define ny = f o7(s) € N and let
ms € M be any element of M with ¢(im;) = n, (which exists because ¢ is surjective).
By the universal property for free modules (Theorem 6 of Section 3), there is a unique
R-module homomorphism F’ from F(S) to M with F'(s) = m,. The diagram is the
following:

FS=POK
/
/ lﬂ
F'7 P
/
/ lf
I 4
M ¢ N 0

By definition of the homomorphism F’ we have goF'(s) = ¢(mn;) = ny = fom(s),
from which it follows that ¢ o F' = f o  on F(S), i.e., the diagram above is com-
mutative. Now define amap F : P —» M by F(d) = F'((d,0)). Since F is the
composite of the injection P — F(S) with the homomorphism F’, it follows that F is
an R-module homomorphism. Then

goFd)=¢oF'((d,0)) = f on((d,0)) = f(d)
ie., ¢ o F = f, so the diagram

P
£
V4
M ¢ N 0

commutes, which proves that (4) implies (2) and completes the proof.

Definition. An R-module P is called projective if it satisfies any of the equivalent
conditions of Proposition 30.

The third statement in Proposition 30 can be rephrased as saying that any module
M that projects onto P has (an isomorphic copy of) P as a direct summand, which
explains the terminology.

The following result is immediate from Proposition 30 (and its proof):

Corollary 31. Free modules are projective. A finitely generated module is projective
if and only if it is a direct summand of a finitely generated free module. Every module

is a quotient of a projective module.
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If D is fixed, then given any R-module X we have an associated abelian group
Homg(D, X). Further, an R-module homomorphism « : X — Y induces an abelian
group homomorphism &’ : Homg (D, X) — Homg(D, Y), defined by &/(f) =a o f.
Put another way, the map Homg(D, _ ) is a covariant functor from the category of
R-modules to the category of abelian groups (cf. Appendix IT). Theorem 28 shows that
applying this functor to the terms in the exact sequence

0—L-Y5 M5 N—0

produces an exact sequence

0 — Homg(D, L) > Homg(D, M) % Homg(D, N).

This is referred to by saying that Homg (D, _ ) is a left exact functor. By Proposition
30, the functor Homg (D, _ ) is exact, i.e., always takes short exact sequences to short
exact sequences, if and only if D is projective. We summarize this as

Corollary 32. If D is an R-module, then the functor Homg (D, _ ) from the category
of R-modules to the category of abelian groups is left exact. It is exact if and only if D
is a projective R-module.

Note that if Homg (D, _ ) takes short exact sequences to short exact sequences,
then it takes exact sequences of any length to exact sequences since any exact sequence
can be broken up into a succession of short exact sequences.

As we have seen, the functor Homg(D, _ ) is in general not exact on the right.
Measuring the extent to which functors such as Homz (D, _ ) fail to be exact leads to
the notions of “homological algebra,” considered in Chapter 17.

Examples

(1) We shall see in Section 11.1 that if R = F is a field then every F-module is projective
(although we only prove this for finitely generated modules).
(2) By Corollary 31, Z is a projective Z-module. This can be seen directly as follows:

suppose f is amap from Z to N and M % N — Oisexact. The homomorphism f is
uniquely determined by the value n = f(1). Then f can be lifted to a homomorphism
F : Z — M by first defining F (1) = m, where m is any element in M mapped to n
by ¢, and then extending F to all of Z by additivity.

By the first statement in Proposition 30, since Z is projective, if

0—>LL ML NSO

is an exact sequence of Z-modules, then

0 —> Homgz(Z, L) > Homgz(Z, M) > Homg(Z, N) —> 0

is also an exact sequence. This can also be seen directly using the isomorphism
Homgz(Z, M) = M of abelian groups, which shows that the two exact sequences
above are essentially the same.

(3) Free Z-modules have no nonzero elements of finite order so no nonzero finite abelian
group can be isomorphic to a submodule of a free module. By Corollary 31 it follows
that no nonzero finite abelian group is a projective Z-module.
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(4) As a particular case of the preceding example, we see that for n > 2 the Z-module
Z/nZ is not projective. By Theorem 28 it must be possible to find a short exact
sequence which after applying the functor Homgz(Z/nZ, _ ) is no longer exact on the
right. One such sequence is the exact sequence of Example 2 following Corollary 23:

0—> Z-257Z-55 Z/nZ —> 0,

for n > 2. Note first that Homz(Z/nZ, Z) = 0 since there are no nonzero Z-module
homomorphisms from Z/nZ to Z. It is also easy to see that Homz(Z/nZ, Z/nZ) =
Z./nZ, as follows. Every homomorphism f is uniquely determined by f(1) = a €
Z/nZ, and given any a € Z/nZ. there is a unique homomorphism f, with f;(1) = a;
the map f, — a is easily checked to be an isomorphism from Homgz(Z/nZ, Z/nZ)
to Z/nZ.

Applying Homz(Z/nZ, _) to the short exact sequence above thus gives the
sequence

0-———)0-£>0-7—T—’>Z/nZ-——>0

which is not exact at its only nonzero term.

(5) Since Q/Z is a torsion Z-module it is not a submodule of a free Z-module, hence is
not projective. Note also that the exact sequence 0 - Z — Q 5 Q/Z — 0 does not
split since Q contains no submodule isomorphic to Q/Z.

(6) The Z-module Q is not projective (cf. the exercises).

(7) We shall see in Chapter 12 that a finitely generated Z-module is projective if and only
if it is free.

(8) Let R be the commutative ring Z/2Z x Z/2Z under componentwise addition and
multiplication. If P; and P, are the principal ideals generated by (1, 0) and (0, 1)
respectively then R = Py @ P,, hence both P; and P, are projective R-modules by
Proposition 30. Neither P; nor P is free, since any free module has order a multiple
of four.

(9) The direct sum of two projective modules is again projective (cf. Exercise 3).

(10) We shall see in Part VI that if F is any field and n € Z then thering R = M,,(F) of all
n x n matrices with entries from F has the property that every R-module is projective.
'We shall also see that if G is a finite group of order » and n # O in the field F then the
group ring FG also has the property that every module is projective.

Injective Modules and Homg(__, D)

IfO— L —w-> M 2> N —s 0is a short exact sequence of R-modules then, instead
of considering maps from an R-module D into L or N and the extent to which these
determine maps from D into M, we can consider the “dual” question of maps from
Lor N to D. In this case, it is easy to dispose of the situation of a map from N to
D: an R-module map from N to D immediately gives a map from M to D simply by
composing with . It is easy to check that this defines an injective homomorphism of
abelian groups

¢’ : Homg (N, D) — Homg(M, D)
fr—f=fop
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or, put another way,

if M2 N->0 is exact,

then 0 — Homg(N, D) —W-> Homg (M, D) is exact.

(Note that the associated maps on the homomorphism groups are in the reverse direction
from the original maps.)

On the other hand, given an R-module homomorphism f from L to D it may not
be possible to extend f to a map F from M to D, i.e., given f it may not be possible
to find a map F making the following diagram commute:

L—M

For example, consider the exact sequence 0 —> Z A/ AN Z/2Z — O of
Z-modules, where i is multiplication by 2 and ¢ is the natural projection. Take
D=27Z/27 and let f : Z — Z/2Z be reduction modulo 2 on the first Z in the se-
quence. There is only one nonzero homomorphism F from the second Z in the se-
quence to Z/2Z (namely, reduction modulo 2), but this F does not lift the map f since
Foy(Z)=FQ2Z)=0,s0 Foyr # f.

Composition with 1 induces an abelian group homomorphism ¢’ fromHomg (M, D)
to Homg(L, D), and in terms of the map v, the homomorphism f € Homg(L, D)
can be lifted to a homomorphism from M to D if and only if f is in the image of .
The example above shows that

if 0—> L-Y> M isexact,

then Homg(M, D) Y, Homg (L, D) — O is not necessarily exact.

We can summarize these results in the following dual version of Theorem 28:

Theorem 33. Let D, L, M, and N be R-modules. If

0—->L—¢->M—w->N—->O is exact,

then the associated sequence

0 — Homg(N. D) % Homg(M, D) %> Homg(L, D) isexact.  (10.12)

A homomorphism f : L — D lifts to a homomorphism F : M — D if and only if
f € Homg(L, D)isinthe image of ¢’. Ingeneral ' : Homg (M, D) — Homg(L, D)
need not be surjective; the map ¢’ is surjective if and only if every homomorphism from
L to D lifts to a homomorphism from M to D, in which case the sequence (12) can be
extended to a short exact sequence.

The sequence (12) is exact for all R-modules D if and only if the sequence

Li)M—V;N—)O is exact.
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Proof: The only item remaining to be proved in the first statement is the exactness
of (12) at Homg(M, D). The proof of this statement is very similar to the proof of
the corresponding result in Theorem 28 and is left as an exercise. Note also that the
injectivity of ¢ is not required, which proves the “if”” portion of the final statement of
the theorem.

Suppose now that the sequence (12) is exact for all R-modules D. We first show
that ¢ : M — N is a surjection. Take D = N/p(M). If m;; : N —> N/p(M) is
the natural projection homomorphism, then 77; o ¢ (M) = 0 by definition of ;. Since
3 o = ¢’ (71), this means that the element 71, € Homg (N, N /@ (M)) is mapped to O
by ¢’'. Since ¢’ is assumed to be injective for all modules D, this means m; is the zero
map, i.e., N = ¢(M) and so ¢ is a surjection. We next show that ¢ o {y = 0, which
will imply that image ¢ < ker ¢. For this we take D = N and observe that the identity
map idy on N is contained in Homg (N, N), hence ¢'(idy) € Homg(M, N). Then the
exactness of (12) for D = N implies that ¢’ (idy) € ker ¢, so ¥’ (¢’ (idn)) = 0. Then
idy o o = 0,1.e., ¥ o =0, as claimed. Finally, we show that ker ¢ C image .
Let D = M/y(L) and let 1, : M — M/y (L) be the natural projection. Then
¥’ (7r2) = 0 since 72 (¥ (L)) = 0 by definition of ;. The exactness of (12) for this D
then implies that 77, is in the image of ¢’, say m2 = ¢'(f) for some homomorphism
f € Homg(N, M/yr (L)), ie., 2 = f op. If m € ker ¢ then mp(m) = f(p@n)) =0,
which means that m € (L) since 7, is just the projection from M into the quotient
M/ (L). Hence ker ¢ € image i, completing the proof.

By Theorem 33, the sequence

0 —> Homg(N, D) > Homg(M, D) > Homg(L, D) —> 0

is in general not a short exact sequence since {’ need not be surjective, and the question
of whether this sequence is exact precisely measures the extent to which homomor-
phisms from M to D are uniquely determined by pairs of homomorphisms from L and
NtoD.

The second statement in Proposition 29 shows that this sequence is exact when the
original exact sequence 0 > L - M — N — 0 is a split exact sequence. In fact in

this case the sequence 0 — Homg(N, D) % Homg (M, D) Y Homg(L, D) — Ois
also a split exact sequence of abelian groups for every R-module D. Exercise 14 shows
that a converse holds: if 0 — Homgz(N, D) 5 Homg (M, D) i) Homg(L, D) - 0O
is exact for every R-module D then 0 — L X ME N> Oisa split short exact
sequence (which then implies that if the Hom sequence is exact for every D, then in
fact it is split exact for every D).

There is also a dual version of the first three parts of Proposition 30, which describes
the R-modules D having the property that the sequence (12) in Theorem 33 can always
be extended to a short exact sequence:

Proposition 34. Let Q be an R-module. Then the following are equivalent:
(1) For any R-modules L, M, and N, if

0—LL M55 N—0
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is a short exact sequence, then

0 —> Homg(N, Q) - Homg(M, Q) %> Homg(L, Q) —> 0

is also a short exact sequence.

(2) For any R-modules L and M,if0 — L AN M is exact, then every R-module
homomorphism from L into Q lifts to an R-module homomorphism of M into
Q, ie, given f € Homg(L, Q) there is a lift F € Homg(M, Q) making the
following diagram commute:

(3 If Q is a submodule of the R-module M then Q is a direct summand of M, i.e.,
every short exact sequence 0 - Q - M — N — 0 splits.

Proof: The equivalence of (1) and (2) is part of Theorem 33. Suppose now that (2)

is satisfied and let0 — Q % M3 N - Obeexact. Taking L = Q and f the identity
map from Q to itself, it follows by (2) that there is a homomorphism F : M — Q with
F oy = 1, so F is a splitting homomorphism for the sequence, which proves (3). The
proof that (3) implies (2) is outlined in the exercises.

Definition. An R-module Q is called injective if it satisfies any of the equivalent
conditions of Proposition 34.

The third statement in Proposition 34 can be rephrased as saying that any module
M into which Q injects has (an isomorphic copy of) Q as a direct summand, which
explains the terminology.

If D is fixed, then given any R-module X we have an associated abelian group
Hompg (X, D). Further, an R-module homomorphism « : X — Y induces an abelian
group homomorphism ¢’ : Homg (Y, D) — Homg(X, D), defined by o/(f) = f ca,
that “reverses” the direction of the arrow. Put another way, the map Homg(D, _ ) isa
contravariant functor from the category of R-modules to the category of abelian groups
(cf. Appendix II). Theorem 33 shows that applying this functor to the terms in the exact
sequence

0—LLMEN—0
produces an exact sequence

0 — Homg(N, D) % Homg(M, D) % Homg(L, D).

This is referred to by saying that Homg(__, D) is a left exact (contravariant) functor.
Note that the functor Homg(__, D) and the functor Homg (D, _ ) considered earlier
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are both left exact; the former reverses the directions of the maps in the original short
exact sequence, the latter maintains the directions of the maps.

By Proposition 34, the functor Homg (__, D) is exact, i.e., always takes short exact
sequences to short exact sequences (and hence exact sequences of any length to exact
sequences), if and only if D is injective. We summarize this in the following proposition,
which is dual to the covariant result of Corollary 32.

Corollary 35. If D is an R-module, then the functor Homg(__, D) from the category
of R-modules to the category of abelian groups is left exact. It is exact if and only if D
is an injective R-module.

We have seen that an R-module is projective if and only if it is a direct summand
of a free R-module. Providing such a simple characterization of injective R-modules
is not so easy. The next result gives a criterion for Q to be an injective R-module (a
result due to Baer, who introduced the notion of injective modules around 1940), and
using it we can give a characterization of injective modules when R = Z (or, more
generally, when R is aP.I.LD.). Recall that a Z-module A (i.e., an abelian group, written
additively) is said to be divisible if A = nA for all nonzero integers n. For example,
both Q@ and QQ/Z are divisible (cf. Exercises 18 and 19 in Section 2.4 and Exercise 15
in Section 3.1).

Proposition 36. Let Q be an R-module.

(1) (Baer’s Criterion) The module Q is injective if and only if for every left ideal 1
of R any R-module homomorphism g : I — Q canbeextended to an R-module
homomorphism G : R — Q.

(2) If R is a PLD. then Q is injective if and only if r Q = Q for every nonzero
r € R. In particular, a Z-module is injective if and only if it is divisible. When
R is a P1.D., quotient modules of injective R-modules are again injective.

Proof: If Q is injective and g : I — Q is an R-module homomorphism from the
nonzero ideal I of R into Q, then g can be extended to an R-module homomorphism
from R into Q by Proposition 34(2) applied to the exact sequence 0 — I — R, which
proves the “only if” portion of (1). Suppose conversely that every homomorphism
g : I > Q can be lifted to a homomorphism G : R — Q. To show that Q is
injective we must show that if 0 - L — M isexactand f : L — Q is an R-
module homomorphism then there is a lift F : M — Q extending f. If S is the
collection (f’, L') of lifts f' : L' — Q of f to a submodule L’ of M containing L,
then the ordering (f', L") < (f”,L")if L' C L" and f” = f’ on L' partially orders
S. Since S # @, by Zorn’s Lemma there is a maximal element (F, M’) in S. The map
F : M — Qisalift of f and it suffices to show that M’ = M. Suppose that there is
some element m € M not containedin M’ andlet I ={r € R | rm € M'}. Itiseasy to
check that I is aleftideal in R, and themap g : I — Q defined by g(x) = F(xm)isan
R-module homomorphism from I to Q. By hypothesis, thereis alift G : R - Q of g.
Consider the submodule M’ + Rm of M, and define the map F' : M’ + Rm — Q by
F'm' +rm) =Fm") + G@). my +rim =my +rymthen (ry — rp))m =mp —m
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shows that r; — r» € I, so that
G(r1—r2) =81 —r2) = F((n — r2)m) = F(mp — m),

and so F(m1) + G(r1) = F(@n3) + G(rz). Hence F' is well defined and it is then
immediate that F’ is an R-module homomorphism extending f to M’ + Rm. This
contradicts the maximality of M’, so that M’ = M, which completes the proof of (1).

To prove (2), suppose R is a P1.D. Any nonzero ideal I of R is of the form I = (r)
for some nonzero element r of R. An R-module homomorphism f : I — Q is
completely determined by the image f(r) = g in Q. This homomorphism can be
extended to a homomorphism F : R — ( if and only if there is an element ¢’ in Q
with F(1) = ¢’ satisfyingg = f(r) = F(r) = rq’. It follows that Baer’s criterion for
Q is satisfied if and only if » Q = Q, which proves the first two statements in (2). The
final statement follows since a quotient of a module Q withrQ = Q forall» # 0in R
has the same property.

Examples
(1) Since Z is not divisible, Z is not an injective Z-module. This also follows from the

fact that the exact sequence 0 —> Z 2, Z ——> Z[2Z. -—> 0 corresponding to
multiplication by 2 does not split.

(2) The rational numbers Q is an injective Z-module.

(3) The quotient Q/Z of the injective Z-module Q is an injective Z-module.

(4) 1t is immediate that a direct sum of divisible Z-modules is again divisible, hence a
direct sum of injective Z-modules is again injective. For example, Q & Q/Z is an
injective Z-module. (See also Exercise 4).

(5) We shall see in Chapter 12 that no nonzero finitely generated Z-module is injective.

(6) Suppose that the ring R is an integral domain. An R-module A is said to be a divisible
R-module if rA = A for every nonzero r € R. The proof of Proposition 36 shows
that in this case an injective R-module is divisible.

(7) We shall see in Section 11.1 that if R = F is a field then every F-module is injective.

(8) We shall see in Part VI that if F is any field and n € Z* then the ring R = M, (F)
of all n x n matrices with entries from F has the property that every R-module is
injective (and also projective). We shall also see that if G is a finite group of order
n and n # 0 in the field F then the group ring FG also has the property that every
module is injective (and also projective).

Corollary 37. Every Z-module is a submodule of an injective Z-module.

Proof: Let M be a Z-module and let A be any set of Z-module generators of M.
Let 7 = F(A) be the free Z-module on the set A. Then by Theorem 6 there is a
surjective Z-module homomorphism from F to M and if K denotes the kernel of this
homomorphism then K is a Z-submodule of F and we can identify M = F /K. Let Q
be the free (Q-module on the set A. Then Q is a direct sum of a number of copies of Q,
so is a divisible, hence (by Proposition 36) injective, Z-module containing 7. Then K
is also a Z-submodule of @, so the quotient @/K is injective, again by Proposition 36.
Since M = F/K € Q/K, it follows that M is contained in an injective Z-module.

Corollary 37 can be used to prove the following more general version valid for
arbitrary R-modules. This theorem is the injective analogue of the results in Theorem 6
and Corollary 31 showing that every R-module is a quotient of a projective R-module.
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Theorem 38. Let R be aring with 1 and let M be an R-module. Then M is contained
in an injective R-module.

Proof: A proof is outlined in Exercises 15 to 17.

It is possible to prove a sharper result than Theorem 38, namely that there is a
minimal injective R-module H containing M in the sense that any injective map of
M into an injective R-module Q factors through H. More precisely, if M C Q for
an injective R-module Q then there is an injection ¢ : H < Q that restricts to the
identity map on M; using ¢ to identify H as a subset of Q we have M € H C Q. (cf.
Theorem 57.13 in Representation Theory of Finite Groups and Associative Algebras
by C. Curtis and I. Reiner, John Wiley & Sons, 1966). This module H is called the
injective hull or injective envelope of M. The universal property of the injective hull of
M with respect to inclusions of M into injective R-modules should be compared to the
universal property with respect to homomorphisms of M of the free module F(A) ona
set of generators A for M in Theorem 6. For example, the injective hull of Z is @@, and
the injective hull of any field is itself (cf. the exercises).

Flat Modules and D®g __

We now consider the behavior of extensions 0 —> L Y, ML N — 0of
R-modules with respect to tensor products.

Suppose that D is a right R-module. For any homomorphism f : X — Y of left
R-modules we obtain a homomorphism 1 ® f : D ®g X — D ®g Y of abelian groups
(Theorem 13). If in addition D is an (S, R)-bimodule (for example, when S = R is
commutative and D is given the standard (R, R)-bimodule structure as in Section 4),
then 1 ® f is a homomorphism of left S-modules. Put another way,

D®_  :X—>DQrX

is a covariant functor from the category of left R-modules to the category of abelian
groups (respectively, to the category of left S-modules when D is an (S, R)-bimodule),
cf. Appendix II. In a similar way, if D is a left R-module then __ ®g D is a covariant
functor from the category of right R-modules to the category of abelian groups (respec-
tively, to the category of right S-modules when D is an (R, S)-bimodule). Note that,
unlike Hom, the tensor product is covariant in both variables, and we shall therefore
concentrate on D ®g _ , leaving as an exercise the minor alterations necessary for
__®rD.

We have already seen examples where themap 1 ® ¢ : D®r L - D@ M
induced by an injective map ¢ : L <> M is no longer injective (for example the
injection Z < Q of Z-modules induces the zero map from Z/2Z ®z Z = Z/2Z to
Z/2Z.®zQ = 0). Onthe other hand, suppose that ¢ : M — N is a surjective R-module
homomorphism. The tensor product D ®g N is generated as an abelian group by the
simple tensors d @n ford € D and n € N. The surjectivity of ¢ implies thatn = ¢(m)
forsome m € M, and then 1 @ ¢(d ®m) =d ® p(m) = d @ n shows that 1 @ ¢ is
a surjective homomorphism of abelian groups from D ®z M to D ®g N. This proves
most of the following theorem.
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Theorem 39. Suppose that D is a right R-module and that L, M and N are left

R-modules. If

0—->L—¢->M—w->N—->O is exact,

then the associated sequence of abelian groups

DL B DM B DN —> 0 isexact. (10.13)

If D is an (S, R)-bimodule then (13) is an exact sequence of left S-modules. In partic-
ular, if § = R is a commutative ring, then (13) is an exact sequence of R-modules with
respect to the standard R-module structures. The map 1 ® ¢ is not in general injective,
i.e., the sequence (13) cannot in general be extended to a short exact sequence.

The sequence (13) is exact for all right R-modules D if and only if

Li[/>M—w>N—>O is exact.

Proof: For the first statement it remains to prove the exactness of (13) at D ®g M.
Since ¢ o ¢ = 0, we have

189 (Y doyi) =Y deEoye) =0

and it follows thatimage(1 ®) < ker(1®¢). In particular, there is a natural projection
7 : (D ®gr M)/ image(1 @ ¢) »> (D Qg M)/ker(1 ® ¢) = D ®g N. The composite
of the two projection homomorphisms

D®g M — (D ®g M)/ image(1 @ ¢¥) > D®g N

is the quotient of D ® g M by ker(1 ® ¢), so is just the map 1 ® ¢. We shall show that
7 is an isomorphism, which will show that the kernel of 1 ® ¢ is just the kernel of the
first projection above, i.e., image(1 ® i), giving the exactness of (13) at D ®g M. To
see that 77 is an isomorphism we define an inverse map. First definen’ : D x N —
(D ®g M)/ image(1 ® ) by n’((d,n)) = d @ m for any m € M with ¢(m) = n.
Note that this is well defined: any other element m’ € M mapping to n differs from
m by an element in ker¢ = image, i.e, m’ = m + (l) for some ! € L, and
d ® ¥() € image(1 ® ¢). Itis easy to check that 7’ is a balanced map, so induces a
homomorphism 77 : D x N — (D ®g M)/ image(1 ® ) with77(d ® n) = d Qm.
Then 7 o (d @ m) = 7(d ® p(n)) = d ® m shows that 7 o v = 1. Similarly,
o7t =1, sothatw and 7 are inverse isomorphisms, completing the proof that (13) is
exact. Note also that the injectivity of ¢ was not required for the proof.

Finally, suppose (13) is exact for every right R-module D. Ingeneral, RQr X = X
for any left R-module X (Example 1 following Corollary 9). Taking D = R the

exactness of the sequence L X M4 N - 0follows.

By Theorem 39, the sequence
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is not in general exact since 1 ® 1 need not be injective. If0 — L X ME NS ois
a split short exact sequence, however, then since tensor products commute with direct
sums by Theorem 17, it follows that

0— D@L DRxr M2 DerN —0
is also a split short exact sequence.
The following result relating to modules D having the property that (13) can always
be extended to a short exact sequence is immediate from Theorem 39:

Proposition 40. Let A be a right R-module. Then the following are equivalent:
(1) For any left R-modules L, M, and N, if

0—->L—¢->M—w->N—->O

is a short exact sequence, then

0—>ARRL Z Ar M2 AQr N — 0

is also a short exact sequence.

(2) For any left R-modules L and M, if 0 — L —w-> M is an exact sequence of

left R-modules (i.e., ¥ : L — M is injective) then 0 — A ®z L =% A @z M

is an exact sequence of abelian groups (ie., 1 @ ¢ : AQr L > A®r M is
injective).

Definition. A right R-module A is called flar if it satisfies either of the two equivalent
conditions of Proposition 40.

For a fixed right R-module D, the first part of Theorem 39 is referred to by saying
that the functor D Qg __ is right exact.

Corollary 41. If D is a right R-module, then the functor D ® __ from the category
of left R-modules to the category of abelian groups is right exact. If D is an (S, R)-
bimodule (for example when § = R is commutative and D is given the standard
R-module structure), then D ®g __ is a right exact functor from the category of left
R-modules to the category of left S-modules. The functor is exact if and only if D isa
flat R-module.

‘We have already seen some flat modules:
Corollary 42. Free modules are flat; more generally, projective modules are fiat.
Proof: To show that the free R-module F is flat it suffices to show that for any
injective map ¢ : L — M of R-modules L and M the inducedmap 1 ® ¢ : FQgL —
F ®r M is also injective. Suppose first that F = R”" is a finitely generated free R-

module. Inthis case F®g L = R" Qg L = L" since R®g L = L and tensor products
commute with direct sums. Similarly F g M = M" and under these isomorphisms
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themap 1® ¢ : F ®gr L — F Qg M is just the natural map of L" to M" induced
by the inclusion ¢ in each component. In particular, 1 ® ¢ is injective and it follows
that any finitely generated free module is flat. Suppose now that F is an arbitrary free
module and that the element ) f; ®; € F ®g L is mapped to 0 by 1 ® yr. This means
that the element )_(f;, ¥ (l;)) can be written as a sum of generators as in equation (6)
in the previous section in the free group on F x M. Since this sum of elements is finite,
all of the first coordinates of the resulting equation lie in some finitely generated free
submodule F’ of F. Then this equation implies that ) f; ® l; € F’ ®g L is mapped to
Oin F' ®g M. Since F’ is a finitely generated free module, the injectivity we proved
above shows that ) f; ®; is0in F' ®g L and so alsoin F ®g L. It follows that 1 ® ¢
is injective and hence that F is flat.

Suppose now that P is a projective module. Then P is a direct summand of a
free module F (Proposition 30), say F = P @ P’. If ¢ : L — M is injective then
1Q@¢: FrL— F ®g M is also injective by what we have already shown. Since
F = P @ P’ and tensor products commute with direct sums, this shows that

1@V :(PArLY®(P'QrL)—> (PQr M) @ (P' ®r M)
is injective. Hence 1 @ ¢ : P ®g L — P ®g M is injective, proving that P is flat.

Examples

(1) Since Z is a projective Z-module it is flat. The example before Theorem 39 shows
that Z/2Z not a fiat Z-module.

(2) The Z-module Q is a flat Z-module, as follows. Suppose ¥ : L — M is an injective
map of Z-modules. Every element of Q ®z L can be written in the form (1/d) ®1 for
some nonzero integer d and some ! € L (Exercise 7 in Section 4). If (1/d) ®1 is in the
kernel of 1® ¢ then (1/d) ® ¢ (1) is 0in Q®z M. ByExercise 8 in Section 4 this means
cy(l) = 0in M for some nonzero integer c. Then v (c - ) = 0, and the injectivity of
¥ implies ¢- I = 0 in L. But this implies that (1/d) ® I = (1/cd) ® (c-1) =0in L,
which shows that 1 ® v is injective.

(3) The Z-module Q/Z is injective (by Proposition 36), but is not flat: the injective
map ¥ (z) = 2z from Z to Z does not remain injective after tensoring with Q/Z
(1®v:Q/Z®z Z — Q/Z ® Z has the nonzero element (% + Z) ® 1 in its kernel
— identifying Q/Z = Q/Z ®z Z this is the statement that multiplication by 2 has the
element 1/2 in its kernel).

(4) The direct sum of flat modules is flat (Exercise 5). In particular, Q & Z is flat. This
module is neither projective nor injective (since Q is not projective by Exercise 8 and
Z is not injective by Proposition 36 (cf. Exercises 3 and 4).

We close this section with an important relation between Hom and tensor products:

Theorem 43. (Adjoint Associativity) Let R and S berings, let A be aright R-module, let
B be an (R, S)-bimodule and let C be a right S-module. Then there is an isomorphism
of abelian groups:

Homg(A ®g B, C) = Homg(A. Homg (B, C))
(the homomorphism groups are right module homomorphisms—note that Homg(B, C)

has the structure of a right R-module, cf. the exercises). If R = S is commutative this
is an isomorphism of R-modules with the standard R-module structures.
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Proof: Suppose ¢ : AQg B — C is a homomorphism. For any fixed a € A define
the map @ (a) from B to C by ®(a)(b) = ¢(a @ b). It is easy to check that ¢ (a)
is a homomorphism of right S-modules and that the map ¢ from A to Homg(B, C)
given by mapping a to @(a) is a homomorphism of right R-modules. Then f(¢) = @
defines a group homomorphism from Homg(A ®r B, C) to Homg(A, Homg(B, C)).
Conversely, suppose @ : A — Homg(B, C) is a homomorphism. The map from
A x B to C defined by mapping (a, b) to @(a)(c) is an R-balanced map, so induces a
homomorphism ¢ from A ®g B to C. Then g(®) = ¢ defines a group homomorphism
inverse to f and gives the isomorphism in the theorem.

As a first application of Theorem 43 we give an alternate proof of the first result
in Theorem 39 that the tensor product is right exact in the case where § = Ris a
commutative ring. If 0 — L — M —> N — 0 is exact, then by Theorem 33 the
sequence

0 — Homg (N, E) — Homg(M, E) — Homg(L, E)
is exact for every R-module E. Then by Theorem 28, the sequence
0 — Homg (D,Homg (N, E)) > Homg(D,Homg (M, E)) - Homg (D,Homg (L, E))
is exact for all D and all E. By adjoint associativity, this means the sequence
0 — Homg(D ®g N, E) — Homg(D Qg M, E) — Homg(D ®f L, E)

is exact for any D and all E. Then, by the second part of Theorem 33, it follows that
the sequence
DQrL—>DQ®rM —> DN —0

is exact for all D, which is the right exactness of the tensor product.

As a second application of Theorem 43 we prove that the tensor product of two
projective modules over a commutative ring R is again projective (see also Exercise 9
for a more direct proof).

Corollary 44. If R is commutative then the tensor product of two projective R-modules
is projective.

Progf: Let P, and P, be projective modules. Then by Corollary 32, Homg(P,, _ )
is an exact functor from the category of R-modules to the category of R-modules. Then
the composition Homg (P;, Homg(P;, _ )) is an exact functor by the same corollary.
By Theorem 43 this means that Homg (P; ® g P>, ) is an exact functor on R-modules.
It follows again from Corollary 32 that P, ®g P; is projective.

Summary

Each of the functors Homg(A, _ ), Homg(__, A), and A ®g __, map left R-modules

to abelian groups; the functor __ ® g A maps right R-modules to abelian groups. When

R is commutative all four functors map R-modules to R-modules.

(1) Let A be a left R-module. The functor Homg (A, _ ) is covariant and left exact;
the module A is projective if and only if Homg(A, _ ) is exact (i.e., is also right
exact).
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(2) Let A be aleft R-module. The functor Homg(__, A) is contravariant and left exact;
the module A is injective if and only if Homgz(__, A) is exact.

(3) Let A be aright R-module. The functor A ® __is covariant and right exact; the
module A is flat if and only if A ®g __is exact (i.e., is also left exact).

(@) Let A be aleft R-module. The functor __ ®g A is covariant and right exact; the
module A is flat if and only if __ ®x A is exact.

(5) Projective modules are flat. The Z-module Q/Z is injective but not flat. The
Z-module Z & Q is flat but neither projective nor injective.

EXERCISES
Let R be a ring with 1.
1. Suppose that
1 %
A B C
4,
'l/f’ (pl
A B’ c’

is a commutative diagram of groups and that the rows are exact. Prove that

(a) if ¢ and ¢ are surjective, and 8 is injective then y isinjective. [If ¢ € ker y, show there
isab € B with ¢(b) = ¢. Show that ¢’'(8(b)) = 0 and deduce that (b) = ¥’ (')
for some @’ € A’. Show there is an @ € A with a(a) = ¢’ and that (¥ (a)) = B(b).
Conclude that b = v(a) and hence ¢ = ¢(b) = 0.]

(b) if ¥, a, and y are injective, then B is injective,

(© if ¢, a, and y are surjective, then B is surjective,

(d) if B is injective, @ and y are surjective, then y is injective,

(e) if B is surjective, y and v’ are injective, then ¢ is surjective.

2. Suppose that

A B C D
S
A B’ c D

is a commutative diagram of groups, and that the rows are exact. Prove that
(a) if « is surjective, and B, § are injective, then y is injective.
(b) if & is injective, and ¢, y are surjective, then 8 is surjective.

3. Let P; and P, be R-modules. Prove that Py & P is a projective R-module if and only if
both P; and P; are projective.

4. Let 07 and Q7 be R-modules. Prove that Q1 & Q> is an injective R-module if and only
if both @} and Q> are injective.

5. Let A1 and A2 be R-modules. Prove that A; @ A3 is a flat R-module if and only if both Ay
and A, are flat. More generally, prove that an arbitrary direct sum Y A; of R-modules is
flat if and only if each A; is flat. [Use the fact that tensor product commutes with arbitrary
direct sums.]

6. Prove that the following are equivalent for a ring R:

(i) Every R-module is projective.
(ii) Every R-module is injective.
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10.

11.

12,

13.

. Let A be a nonzero finite abelian group.

(a) Prove that A is not a projective Z-module.
(b) Prove that A is not an injective Z-module.

. Let O beanonzero divisible Z-module. Prove that Q is not a projective Z-module. Deduce

that the rational numbers Q is not a projective Z-module. [Show first that if F is any free
module then N°°  nF = 0 (use a basis of F to prove this). Now suppose to the contrary

that Q is projective and derive a contradiction from Proposition 30(4).]

. Assume R is commutative with 1.

(a) Prove that the tensor product of two free R-modules is free. [Use the fact that tensor
products commute with direct sums.]
(b) Use (a) to prove that the tensor product of two projective R-modules is projective.

Let R and S be rings with 1 and let M and N be left R-modules. Assume also that M is

an (R, S)-bimodule.

(a) Fors € S and for ¢ € Homg(M, N) define (sp) : M — N by (s¢)(m) = ¢(ms).
Prove that s¢ is a homomorphism of left R-modules, and that this action of S on
Homg(M, N) makes it into a left S-module.

(b) Let S = R and let M = R (considered as an (R, R)-bimodule by left and right
ring multiplication on itself). For each n € N define ¢, : R = N by @n(r) = rn,
i.e., ¢y, is the unique R-module homomorphism mapping 1g to n. Show that ¢, €
Homg(R, N). Use part (a) to show that the map n + ¢, is an isomorphism of left
R-modules: N = Hompg(R, N).

(c) Deduce that if N is a free (respectively, projective, injective, flat) left R-module, then
Homg(R, N) is also a free (respectively, projective, injective, flat) left R-module.

Let R and S be rings with 1 and let M and N be left R-modules. Assume also that N is an

(R, S)-bimodule.

(a) For s € S and for ¢ € Homg(M, N) define (¢s) : M — N by (¢s)(m) = ¢(m)s.
Prove that ¢s is a homomorphism of left R-modules, and that this action of S on
Hompg (M, N) makes it into a right S-module. Deduce that Homg (M, R) is a right
R-module, for any R-module M—called the dual module to M.+

(b) Let N = R be considered as an (R, R)-bimodule as usual. Under the action de-
fined in part (a) show that the map r > ¢, is an isomorphism of right R-modules:
Homg(R, R) = R, where ¢, is the homomorphism that maps 1g to r. Deduce that
if M is a finitely generated free left R-module, then Homg(M, R) is a free right
R-module of the same rank. (cf. also Exercise 13.)

(c) Show that if M is a finitely generated projective R-module then its dual module
Homg (M, R) is also projective.

Let A be an R-module, let I be any nonempty index set and for each i € I let B; be an

R-module. Prove the following isomorphisms of abelian groups; when R is commutative

prove also that these are R-module isomorphisms. (Arbitrary direct sums and direct

products of modules are introduced in Exercise 20 of Section 3.)

(a) Homg(D;; B, A) = [ ];; Homg(Bi, A)

(b) Homg(A, [];¢; Bi) = [1;c; Homg(A, B;).

(a) Show that the dual of the free Z-module with countable basis is not free. [Use the
preceding exercise and Exercise 24, Section 3.] (See also Exercise 5 in Section 11.3.)

(b) Show that the dual of the free Z-module with countable basis is also not projective.
[You may use the fact that any submodule of a free Z-module is free.]

14. Let0 —> L 2> M %> N —> Obea sequence of R-modules.
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15.

16.

17.

18.

19
20

21.

(a) Prove that the associated sequence

0 —> Homg(D, L) _11/_’) Homg (D, M) -—«)—l) Homg(D, N) — 0

is a short exact sequence of abelian groups for all R-modules D if and only if the
original sequence is a split short exact sequence. [To show the sequence splits, take
D = N and show the lift of the identity map in Homg (XN, N) to Homg(N, M) is a
splitting homomorphism for ¢.]

(b) Prove that the associated sequence

0 —> Homg(N, D) -—‘p—; Homg (M, D) -10—) Homg(L, D) —> 0

is a short exact sequence of abelian groups for all R-modules D if and only if the
original sequence is a split short exact sequence.

Let M be a left R-module where R is a ring with 1.
(a) Show that Homgz(R, M) is a left R-module under the action (r¢)(r') = ¢(r'r) (see
Exercise 10).

(b) Suppose that 0 — A 3 B is an exact sequence of R-modules. Prove that if every
homomorphism f from A to M lifts to a homomorphism F from B to M with f =
F o, then every homomorphism f’ from A to Homgz (R, M) lifts to a homomorphism
F' from B to Homgz(R, M) with f' = F'oy. [Given f’, show that f(a) = f'(a)(1r)
defines a homomorphism of A to M. If F is the associated lift of f to B, show that
F'(b)(r) = F(rb) defines a homomorphism from B*{o Homz(R, M) that lifts f’.]

(¢) Prove that if Q is an injective R-module then Homgz(R, Q) is also an injective R-
module.

This exercise proves Theorem 38 that every left R-module M is contained in an injective
left R-module.
(a) Show that M is contained in an injective Z-module Q. [M is a Z-module—use
Corollary 37.]
(b) Show that Homg (R, M) € Homgz(R, M) C Homz(R, Q).
(¢) Use the R-module isomorphism M = Homg(R, M) (Exercise 10) and the previous
exercise to conclude that M is contained in an injective module.

This exercise completes the proof of Proposition 34. Suppose that Q is an R-module with
the property that every short exact sequence 0 > Q — M; — N — 0 splits and suppose

that the sequence 0 — L 5 M is exact. Prove that every R-module homomorphism f
from L to Q can be lifted to an R-module homomorphism F from M to Q with f = Foy.
[By the previous exercise, Q is contained in an injective R-module. Use the splitting
property together with Exercise 4 (noting that Exercise 4 can be proved using (2) in
Proposition 34 as the definition of an injective module).]

Prove that the injective hull of the Z-module Z is Q. [Let H be the injective hull of Z
and argue that Q contains an isomorphic copy of H. Use the divisibility of H to show
1/n € H for all nonzero integers n, and deduce that H = Q.]

If F is a field, prove that the injective hull of F is F.
Prove that the polynomial ring R[x] in the indeterminate x over the commutative ring R
is a flat R-module.

Let R and S be rings with 1 and suppose M is a right R-module, and N is an (R, S)-
bimodule. If M is flat over R and N is fiat as an S-module prove that M @ N is flatas a
right S-module.
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22. Suppose that R is a commutative ring and that M and N are flat R-modules. Prove that
M ®pg N is a flat R-module. [Use the previous exercise.]

23. Prove that the (right) module M ® g S obtained by changing the base from thering R to the
ring S (by some homomorphism f : R — § with f(1g) = 1, cf. Example 6 following
Corollary 12 in Section 4) of the flat (right) R-module M is a flat S-module.

24. Prove that A is a flat R-module if and only if for any left R-modules L and M where L is
finitely generated, then v : L — M injective implies thatalso 1@y : AQrL - A®rM
is injective. [Use the techniques in the proof of Corollary 42.]

25. (A Flatness Criterion) Parts (a)-(c) of this exercise prove that A is a flat R-module if and
only if for every finitely generated ideal 7 of R, the map from A@rI - AQrRR=A
induced by the inclusion I C R is again injective (or, equivalently, A @ g I = Al C A).
(a) Prove thatif A is flat then A ® g I — A ®g R is injective.

(b) f A®r I - A ®pr R is injective for every finitely generated ideal 7, prove that
A®g I - AQ®g R isinjective for every ideal 1. Show thatif K is any submodule of
a finitely generated free module F then A ® g K — A ®p F is injective. Show that
the same is true for any free module F. [Cf. the proof of Corollary 42.]

(¢) Under the assumptionin (b), suppose L and M are R-modules and L ¥ M isinjective.

Provethat AQgr L lgw A ®p M is injective and conclude that A is flat. [Write M as
a quotient of the free module F, giving a short exact sequence

f

0-—K-—>F-—5>M-—0.
Show thatif J = f~1(y¢(L)) and: : J — F is the natural injection, then the diagram

0 K J L 0
o ]
0 K F M 0

is commutative with exact rows. Show that the induced diagram

AQrK —— AQrJ —— AQrL ——0

idl 1®zl 1®¢l

AQRK —> AQRF —> AQrM ——>0
is commutative with exact rows. Use (b) to show that 1 ® ¢ is injective, then use
Exercise 1 to conclude that 1 ® v is injective.]

(d) (A Flatness Criterion for quotients) Suppose A = F/K where F is flat (e.g., if F is
free) and K is an R-submodule of F. Provethat A is flatifandonlyif FINK = K1
for every finitely generated ideal I of R. [Use (a) to prove F ® g I = FT and observe
the image of K ®p 1 is KI; tensor the exact sequence 0 » K - F - A — O with
I to prove that A ®g I = FI/K, and apply the fiatness criterion.]

26. Suppose R is a PLD. This exercise proves that A is a flat R-module if and only if A is
torsion free R-module (i.e., if a € A is nonzero and r € R, then ra = 0 implies r = 0).
(a) Suppose that A is flat and for fixed r € R consider the map v, : R — R defined
by multiplication by r: v,(x) = rx. If r is nonzero show that v is an injection.
Conclude from the flatness of A that the map from A to A defined by mapping a to
ra is injective and that A is torsion free.
(b) Suppose that A is torsion free. If I is a nonzero ideal of R, then I = r R for some
nonzero r € R. Show that the map v, in (a) induces an isomorphism R = I of
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R-modules and that the composite R il/) I-5 Rof Y, with the inclusion: : I C R

1 r
is multiplication by r. Prove that the composite A @ R g;[/ AQgrl 19;¢ A®rR

corresponds to the map a — ra under the identification A ® g R = A and that this
composite is injective since A is torsion free. Show that 1 ® v is an isomorphism
and deduce that 1 ® is injective. Use the previous exercise to conclude that A is fiat.

27. Let M, A and B be R-modules.
(a) Suppose f : A > M and g : B —» M are R-module homomorphisms. Prove that
X ={(a,b) | a € A, b e B with f(a) = g(b)} is an R-submodule of the direct sum
A& B (called the pullback or fiber product of f and g) and that there is a commutative
diagram -

72
X—>8B

nll gl
A —f> M

where 71 and 72 are the natural projections onto the first and second components.

(b) Suppose f': M — Aand g’ : M — B are R-module homomorphisms. Prove that
the quotient ¥ of A @ B by {(f'(m), —g'(m)) | m € M} is an R-module (called the
pushout or fiber sum of f’ and g') and that there is a commutative diagram

’
M_L>B

A
n.l

A—Ll >y

where 7| and 7, are the natural maps to the quotient induced by the maps into the
first and second components.

28. (a) (Schanuel’s Lemma) If0 — K — P L M- 0and0— K' - P f) M — O are
exactsequences of R-modules where P and P’ areprojective,prove PGS K' = P’ @ K

as R-modules. [Show that there is an exact sequence 0 — kermr — X 5P>0
withkermw = K’, where X is the fiber product of ¢ and ¢’ as in the previous exercise.
Deduce that X = P @ K’. Show similarly that X = P’ @ K.]

(b)) If0 > M > Qib) L—->0and0—> M— Q’ﬂL’—)Oareexactsequencesof

R-modules where Q and Q' are injective, prove Q @ L' = Q' @ L as R-modules.

The R-modules M and N are said to be projectively equivalent if M @ P = N @ P’ for some
projective modules P, P’. Similarly, M and N are injectively equivalentif M @ Q=N & ¢
for some injective modules Q, (. The previous exercise shows K and K’ are projectively
equivalent and L and L’ are injectively equivalent.
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