Math 8300Homework 4Date due: Monday December 2, 2019

- 1. Let P_S be an indecomposable projective module for a finite dimensional algebra over a field. Show that every non-zero homomorphic image of P_S
 - (a) has a unique maximal submodule,
 - (b) is indecomposable, and
 - (c) has P_S as its projective cover.
- 2. Let A be a finite dimensional algebra.
 - (a) Show that if $f: U \to V$ is a homomorphism of A-modules for which the restriction $f|_{\text{Soc }U} : \text{Soc }U \to V$ is one-to-one then f is one-to-one.
 - (b) Show that the injective envelope of $A / \operatorname{Rad} A$ has the same dimension as A. (You may assume question 7 from homework 3.)
 - (c) Show that if $A / \operatorname{Rad} A \cong \operatorname{Soc} A$ as left A modules then the left regular representation ${}_{A}A$ is injective as a left A module; and also that the right regular representation A_{A} is injective as a right A module. (An algebra satisfying this condition is called *self-injective*)
 - (d) Give an example of a self-injective algebra that is not semisimple.
- 3. Let A be a finite dimensional algebra and let U be an A-module.
 - (a) Prove that if U is indecomposable then $\operatorname{Rad}_A(U, U) = \operatorname{Rad}_A^2(U, U)$.
 - (b) Find an example of an algebra A and a module U for which $\operatorname{Rad}_A(U, U) \neq \operatorname{Rad}_A^2(U, U)$.
- 4. Let A be a finite dimensional commutative algebra. Show that A is a finite product of commutative local algebras. (The product of algebras A and B is often written as a direct sum $A \oplus B = \{(a, b) \mid a \in A, b \in B\}$.)
- 5. Let $\alpha: U \to V_1 \oplus V_2$ be a homomorphism of finite dimensional A-modules where A is a finite dimensional algebra over a field, so that we can write $\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ where $\alpha_i = p_i \circ \alpha: U \to V_i$ are the component maps of α , the $p_i: V_1 \oplus V_2 \to V_i$ being the projections with respect to the direct sum decomposition. Suppose that U is indecomposable, so that $\operatorname{End}_A(U)$ is a local ring, and that $V_1 \neq 0 \neq V_2$.
 - (a) Show that if α_1 is split mono then α is split mono.

- (b) Show that if α is split mono then one of α_1 and α_2 is split mono.
- (c) Show that if α is an irreducible morphism then neither of α_1, α_2 is split epi.
- (d) Show that if α is an irreducible morphism then each of α_1 and α_2 is an irreducible morphism
- 6. Let A be a finite dimensional K-algebra such that $\operatorname{Rad}_A^m(-, -) = 0$ for some $m \ge 1$. Prove that any nonzero nonisomorphism between indecomposable modules in A-mod is a sum of compositions of irreducible morphisms.
- 7. In this question, describe modules by showing their composition factors, in such a way that we can also see the composition factors of their radical and socle series. A diagrammatic notation (as done in class) is sufficient to achieve this. Let P be the poset with four elements $\{1, 2, 3, 4\}$ and partial order 1 < 2 < 4, 1 < 3 < 4 so that the Hasse diagram is:

We consider representations of this poset over \mathbb{Q} , namely, modules for the category algebra \mathbb{QP} of P regarded as a category \mathcal{P} , over \mathbb{Q} , which are the same thing as functors from \mathcal{P} to \mathbb{Q} -vector spaces.

- (a) Describe (in the sense just explained) the four indecomposable projective representations, and also the four indecomposable injective representations.
- (b) For each of the four simple modules S, compute DTr(S).
- (c) Write down all almost split sequences that have as a middle term a module that is both projective and injective.
- (d) Complete the calculation of the Auslander-Reiten quiver of $\mathbb{Q}P$, giving a justification for each calculation made.
- 8. Find the error in the following argument (perhaps showing by example what is wrong) and then give an example as requested at the very end:

Theorem 0.1. Let $0 \to U \xrightarrow{\alpha} V \xrightarrow{\beta} W \to 0$ be an almost split sequence. If $V = V_1 \oplus V_2$ is the direct sum of two non-zero submodules then the restriction of β to each of V_1 and V_2 is one-to-one.

Proof. Let $V = V_1 \oplus V_2$ and let $p_i : V \to V_i$ be projection and $\iota_i : V_i \to V$ be inclusion with respect to this direct sum decomposition, i = 1, 2. Suppose one of the component maps $\beta \circ \iota_i = \beta|_{V_i} : V_i \to W$ is epi. Then it is not split epi, because otherwise β would be split epi. Consider the commutative diagram with exact rows

Because ι_i is split by p_i , the restriction $\iota_i|_{\operatorname{Ker}\beta|_{V_i}}$ is split by $p_i|_U$, so $\iota_i|_{\operatorname{Ker}\beta|_{V_i}}$ is split mono. Now U is indecomposable, so $\operatorname{Ker}\beta|_{V_i}$ is either isomorphic to U or is 0. In the first case ι_i is an isomorphism, so V does not have two summands. In the second case $V_i \cong W$ and β is split epi. Both of these are contradictions, so each restriction $\beta|_{V_i}$ is one-to-one.

Give an example of an almost split sequence where the middle term has two direct summands and the restriction of β to one of them is epi.