1. Show that over any field $M^{(2,2)}$ has a series of submodules

$$0 \subset V_1 \subset V_2 \subset M^{(2,2)}$$

such that $V_1 \cong S^{(2,2)}$, $V_2/V_1 \cong S^{(3,1)}$, $M^{(2,2)}/V_2 \cong S^{(4)}$; and also a series of submodules

$$0 \subset W_1 \subset W_2 \subset M^{(2,2)}$$

such that $W_1 \cong S^{(1^4)}$, $W_2/W_1 \cong S^{(2,1,1)} \otimes S^{(1^4)}$ and $M^{(2,2)}/W_2 \cong S^{(2,2)} \otimes S^{(1^4)}$. [Recall the aspects of structure done in class and treated in chapters 4 and 8. Recall question 2 on HW4, noting that $U \mapsto U^\circ$ is an order reversing bijection from the lattice of submodules of M to the lattice of submodules of M^* . Remember the information we have about dimensions of various modules. I have not gone over pages 20 and 21

of the text, but I think you can read what you need from these pages for yourself, and get suggestions for some useful mappings.]

2. For each of the following (3, 2)-tabloids t express the polytabloid e_t as a linear combination of standard polytabloids:

$$t_a = \frac{345}{12}$$
 and $t_b = \frac{543}{21}$

3. (i) Find a basis for the Specht module $S^{(3,2)}$, each vector of which contains a unique standard tabloid in its support with respect to the basis of tabloids of the permutation module $M^{(3,2)}$. Express your basis for the Specht module as linear combinations of the standard polytabloids.

(ii) Find a basis for the subspace of $S^{(3,2)}$ consisting of linear combinations of tabloids which have no standard tabloid in their support.

- 4. When λ' is a *p*-regular partition, show that S^{λ} has a unique minimal submodule (which is isomorphic to $D^{\lambda'} \otimes S^{(1^n)}$).
- 5. (a) List all 2-regular particitions of 4.
 - (b) Find the dimensions of all the irreducible representations of S_4 over \mathbb{F}_2 .

(c) Working over \mathbb{F}_2 , show that $S^{(2,1,1)}$ has a unique minimal submodule, and that in fact $S^{(2,1,1)}$ has a unique composition series. Identify the composition factors in this series.

6. (a) Working over \mathbb{F}_3 , show that $S^{(2,2)}$ has two composition factors appearing in a unique composition series. Identify the isomorphism type of the unique minimal sub-module of $S^{(2,2)}$.

- (b) Working over \mathbb{F}_3 , find the 3-regular particition λ such that $S^{(1^n)} \cong D^{\lambda}$.
- (c) Find the decomposition matrix for S_4 in characteristic 3.
- 7. What is wrong with the following argument, which purports to show that in Theorem 9.3 the following stronger conclusion holds:

INCORRECT THEOREM. Whenever μ is a partition of n and S^{μ} is regarded as an FS_{n-1} -module it is in fact a direct sum

$$S^{\mu}\downarrow_{S_{n-1}}\cong S^{\lambda^1}\oplus\cdots\oplus S^{\lambda^m}$$

where $\lambda^1, \ldots, \lambda^m$ are the partitions of n-1 which appear in the branching rule.

Proof. In the argument given in the book, consider the short exact sequence of FS_{n-1} -modules $0 \to V_1 \to S^{\mu} \to S^{\mu}/V_1 \to 0$. The FS_{n-1} -module isomorphism $\theta_1 : V_1 \to S^{\lambda^1}$ is in fact defined on M^{μ} so we get a homomorphism $S^{\mu} \to S^{\lambda^1}$ which splits the short exact sequence. Therefore $S^{\mu} \cong S^{\lambda^1} \oplus S^{\mu}/V_1$. Now consider the short exact sequence $0 \to V_2/V_1 \to S^{\mu}/V_1 \to S^{\mu}/V_2 \to 0$. As before, the isomorphism $\theta_2 : V_2/V_1 \to S^{\lambda^2}$ extends to S^{μ}/V_1 (because it extends to M^{μ}/V_1) and so the sequence splits. Thus $S^{\mu} \cong S^{\lambda^1} \oplus S^{\lambda^2} \oplus S^{\mu}/V_2$. Continuing in this way we obtain that S^{μ} is a direct sum of the S^{λ^i} .