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For example, if X is the Cayley graph of G with respect to a generating
set S then the subset consisting of 1 and the edges (1,s), s€S, is a
fundamental G-transversal. See Example 2.2.

For G =1 the above argument shows the following.

2.7 Corollary. If X is a connected graph then X has a maximal subtree.
Any maximal subtree of X has vertex set all of VX. 1

3 Graphs of groups

We now introduce the main object of study for this chapter.

3.1 Definitions. By "a graph of groups (G(—),Y) we mean a connected
graph (Y, V, E,1,T) together with a function G(—) which assigns to cach
veV a group G(v), and to each edge ecE a distinguished subgroup G(e)
of G(ie) and an injective group homomorphism ¢,: G(e) - G(Te), g+ g'. We
call the G(v),veV, the vertex groups, the G(e),ecE, the edge groups, and
the t, the edge functions.

In examples we sometimes depict this by labelling the vertices and edges
of Y with the corresponding groups, see Example 3.3. 1§

3.2 General example. Let X be a G-graph such that G\X is connected
and choose a fundamental G-transversal Y for X with subtree Y.

Since each element of X lies in the same G-orbit as a unique element
of Y, for each eeEY there are unique ie,Tee V'Y which lie in the same
G-orbits as ie,te, respectively, and in fact 7e =1e. Using the incidence
functions 7, 7:EY —» VY we make Y into a graph, and clearly Y =~ G\X.
Notice Y, is simultaneously a maximal subtree of Y and a subtree of X.
Observe that Y is not a subgraph of X unless T agrees with t; in particular,
an arbitrary maximal subtree of Y need not be a subgraph of X.

For each ecEY,te and 7e lie in the same G-orbit in EX, so we can
choose an element t, of G such that (,7e = te; if ee EY,, then 7e = Te and
we take {, = 1. We then call (t,|ec EY) a family of connecting elements.

Now G.,=G, and G,=G,=1,G ;' so there is an embedding
te:G.— Gegorge=t; lgte"

This data gives the graph of groups associated to X with respect to the
fundamental G-transversal Y, the maximal subtree Y,, and the family of
connecting elements ¢t,. 1§
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3.3 Specific examples. (i) In Example 2.2(i),(ii), the illustrated funda-
mental G-transversal, with connecting element s, gives the graph of groups

(ii) In Example 2.2(iii), (iv), the illustrated fundamental G-transversal,
with connecting elements r, s gives the graph of groups

IO()l

(iii) In Example 2.2(v),(vi), the illustrated fundamental G-transversal,
with connecting elements 1, 1, gives the graph of groups

{1.3} 1 {L,n}
O——sar———PpQ

|
Thus a group acting on a graph with connected quotient graph détermines
a graph of groups. Conversely we now show how a graph of groups
determines a group acting on a graph with connected quotient graph.

3.4 Definitions. Let (G(—),Y) be a graph of groups as in Definition 3.1.
Choose a maximal subtree Y, of Y, so VY, =VY by Corollary 2.7. We
define the associated fundamental group n(G(~-), Y, Y,) to be the group
presented with

generating set: {t,|eeE} v v G(v)

relations:
the relations for G(v), for each veV,
t; Lgt, = g' for all eeE, ge G(e) < G(ie), so g'*c G(Te),
t,=1, for all eeEY,,.

Let G=n(G(~), Y, Y,)

In Corollary 7.5 we shall see that the G(v) embed in G, and can be
treated as subgroups.

To reduce the risk of confusion about the symbol ¢, being used to denote
an element of (the generating set of) G and a homomorphism, we make
the convention that (—)* always refers to the homomorphism in this
conicxl.
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Let T be the G-set presented with generating set Y, and relations saying
that each yeY is G(y)-stable. Then T has G-subsets VT = GV, ET = GE
and here ET=T — VT. It is straightforward to verify that there are
well-defined G-maps i, 7. ET > V.T such that i(ge) = gie, 7(ge) =g, Te for_
all ge G, eeE. This data then gives a G-graph T, which is in fact a tree, as
will be seen in Theorem 7.6. We call T the associated standard graph or
standard tree, denoted T(G(—), Y, Y,). It is straightforward to show that
Y is a fundamental G-transversal in T, and for each veV,

T'w)= |J Gmex V G(v)/Gle)
eci” 1(v) esi” ')
tiw)= |J Go)t;'ex V. GE)/Gle)~.

eet 1(,,) eEeT (l})

Thusin T,vhas ), (G(v):G(e)) edges going out and Y (G(v):t.(G(e))
eci () ect~1(n)

edges going in. |

Notice that once one knows that the vertex groups embed in the
fundamental group, it is a simple exercise to verify that a graph of groups
can be recovered from the fundamental group acting on the standard graph.

In the next section we shall see that, conversely, starting from a group
acting on a tree and forming the graph of groups we recover the group
acting on the tree.

Hence the graphs of groups occurring in Example 3.3(i), (ii), (iii)
have associated fundamental group and standard tree given in
Example 2.2(i1), (iv), (vi), respectively.

We conclude this section with examples of special graphs of groups
which occur throughout the sequel.

3.5 Examples. Let (G(—),Y) be a graph of groups and Y, a maximal
subtree of Y.

(i) Suppose G(y) = 1 for all ye Y. Here n(G(—), Y, Y,) is denoted n(Y, Y,).
It is the group presented on generators {t,|ec E} with relations ¢, = 1 for
all eeEY,, so is a free group of rank |[EY — EY,|.

We have seen this situation in Example 3.3(i), (i1} and Example 2.2(ii), (iv)
with Y consisting of one, two loops, respectively.

Since its isomorphism type is independent of the choice of Y, the group
n(Y, Y,) is usually denoted =n(Y) called the fundamental group of Y. This
will be discussed further in Definition 8.1.

(i) Suppose Y has one edge e and two vertices ie,te. Let A = G(ie),
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B = G(te), C=Gl(e), so C is a subgroup of 4 and there is specified an
embedding C — B,c ¢". The graph of groups is then depicted
A C B

Here Y, =Y, and the fundamental group is called the free product of A
and B amalgamating C, denoted Az B; it is presented on generating set

A v B with relations saying ¢ = ¢' for all ceC, together with the relations
of A and B. In the tree T, the vertices are of two sorts, with either (4:C)
edges going out, or (B:C’) edges going in.

In the case C = 1, we write simply A = B, called the free product of A and B.

This is the situation in Example 3.3(iii) and Example 2.2(vi), and we
can write D = C,xC,.

(iii) Suppose Y is a tree and G(e) = 1 for all ee EY. Then the fundamental
group is the free product of the vertex groups G(v), ve V'Y, denoted > G(v).

(iv) Suppose G(e)=1 for all ecEY. Then the fundamental group is
(Y, Yo)* * G(v).

(v) Suppose Y has one edge e and one vertex v = ze = te. Let A = G(v),
C = G(e), so C is a subgroup of 4 and there is specified an embedding
C—-A,c—c.

Here Y, consists of the single vertex, and the fundamental group is called
the HNN extensionof Abyt.C — A, denoted A zt; it is formed by adjoining

to A an indeterminate ¢ satisfying relations ¢t ~!ct = ¢' for all ceC. Every
vertex of the tree T has (4:C*) edges going in, and (A4:C) edges going out.

If C=1 we write Axt,s0 Axtx~A*xC.

We have seen the case 4 = C =1 in Examples 3.3(i) and 2.2(ii).

A more complicated example arises by taking 4 = {s|@>,C = {s*),
and t:C — A with (s*)' = s®. Here G = (s,t|t " 's’t =s%) and T is a tree in
which every vertex has two edges going in and three edges going out.

(vi) The fundamental group of any graph of groups can be obtained by
successively performing one free product with amalgamation for each
edge in the maximal subtree and then one HNN extension for each edge
not in the maximal subtree. #§
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4 Groups acting on trees
Throughout this section let T be a G-tree.

4.1 Structure Theorem for groups acting on trees. In the G-tree T choose
a fundamental G-transversal Y with subtree Y, and denote the incidence
functions by 1,T; choose, for each ecEY, t ,€G such that t ,Te = te, witht, = 1
if eeEY,; and form the resulting graph of groups (G(—),Y). Then G is
naturally isomorphic to n(G(-), Y, Yy).

Explicitly G has as a presentation:

(1) generating set: {t,|ecEY} v E\‘{Y G,.

(2) relations:
the relations for G,, for each veV'Y;
t;'gt,=4g'", forall eeEY,geG. < G, 50 g'°eG,;
t,=1, forall eeEY,.

Proof. Let us consider any ve V'Y, and analyze the neighbours of v in T.

Consider any edge of T incident to v and express it in the form ge with
geG, eesEY.

If ige = v then v =1ge = gie =gie, and, as Y is a G-transversal, ie = v,
geG, and 1ge = gtre =gt Te.

If tge = v then v = 1ge = gte = gl e, and, as Y is a G-tranversal, Te=v
and gt,eG,, so we can write g = ht; ! with heG,, and ige =gie = ht, ' ie.
Conversely, all edges of T constructed in this way are incident to v.

We can summarize this by saying that the paths of length 1 in T starting
at v are the sequences of the form v, gtz¢ Vet gitw where v, e, w is a
path in Y, and geG,.

Let P=n(G(~), Y, Y,), so P has presentation (1), (2). Since (1) is a
subfamily of G and all the relations (2) hold in G, there is a natural
homomorphism P — G, and we wish to show it is an isomorphism.

Since G acts on T, the map P — G induces a P-action on T. Consider
the subset PY of T. By the preceding paragraph, all edges of T incident
to Y lie in PY, and so do their vertices; hence all edges of T incident to
PY lie in PY and so do their vertices. Since T is connected it follows that
PY = T. Choose any vertex v, of Y. For any geG, we have gv,eT = PY
S0 gvy = pv for some peP, veY. But Y is a G-transversal so v =v,. Since
G,, is in the image of P, we see P— G is surjective.

Consider any peP. We claim we can choose a path v, ej,v,,e3,
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U3s..+sUp-1,6 0, =0, in Y, and elements g,eG,,, i€[0,n], such that

€) P=gote1g1te392 " Gn-1Leo0n-
This is achieved by expressing p as a product of the given generators and
their inverses, then using the relations for the G, to collect together
generators from the same G, into single expressions, and finally inserting
I’s as dictated by paths in the maximal subtree Y, to obtain an expression
as in (3).

It is straightforward to check that

4 Vo> 9Jo tth “Yel, goliivy,gotei g th ez,
Golig1t20s, .., G0l g1t - gu 12O Ve,
olerg1ley " Gn- 1Lerln = PVn
is then a path in T. Notice that, as P acts via the map P — G, it is irrelevant
whether the expressions are considered as representing elements of P or G.

We shall show by induction on n that if p is mapped to 1 in G then
p = 1in P. Since the composite G,,— P— G is the inclusion map, we may
assume n > 1. Since T is a tree and n > 1, the path (4) is not reduced, and
for some ie[1,n — 1] the ith edge and the (i + 1)th edge are inverse to each
other. It follows that ¢,, = —¢ and ;% Ye =tiigitilivi~ Ve, .
Since Y is a G-transversal in T,e;,, =¢; and 2" Vgt it e =g,
Thus we have two generators h = 3%+ g, t; i€+ DeG, = G, and K< =
e Dg, e 4e"VeG, , and, by (2), t;; ' ht, = h' in P.

Ife=1thenite,=v,_, =0, T¢,=0,5 heG, =G, ,and h'*' =g, so
t 'ht, =g, in P. Hence in (3) we can replace g;_;t,g;t., " g:+, With the
single generator g,_,hg;+,€G, , and omit e;,v;, e, " from the pathin ¥,
and so reduce n by 2.

Similarly, if ¢, = — 1 then ie,= v, Te,=v,_, =v;,,, s0 K'eG, =G, _,
and h =g, so K« =t; ' g;t, in P. Hence in (3) we can replace g; - 1 t;;" gite,di+1
with the single generator g, K*'g,,;€G, _ and omit ¢ ',v;,e; from the
path in Y, and so reduce n by 2.

It follows by induction on n that p = 1, so P— G is injective, and G has
the desired presentation. |

The case of a free action is particularly interesting.

4.2 Corollary. If G acts freely on T then G is a free group, in fact,
G~n(G\T). 1§

Since trivial vertex groups correspond to free groups, there is a type of
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duality between vertex groups and free groups. We now state some results
at the two extremes, for which we require the following observation.

4.3 Lemma. If N is a normal subgroup of G then N\T is a connected
G/N-graph and each Nte N\T has stabilizer (G/N)y, = NG,/N. 1

4.4 Proposition. If N is the subgroup of G generated by the G,, veVT,
then N is normal and G/N is free. Moreover, N\T is a G/N-free G/N-tree and
G/N ~n(G\T).

Proof. It follows easily from the Structure Theorem 4.1 that
G/N ~n(G\T).

We now apply this with N in place of G. Since N is generated by the
vertex stabilizers N, = G,, ve VT, we see that n(N\T)=~ N/N =1. Hence
N\T is a tree. By Lemma 4.3, G/N acts freely on N\VT, and hence on
N\T, so G/N=n(G\T). 1

4.5 Proposition. If a subgroup H of G does not meet any vertex stabilizer
then H acts freely on T, so H is free. For example, if H is torsion-free and
the vertex stabilizers are torsion groups then H is free. |1

4.6 Proposition. If G— A is a homomorphism of groups which is injective
on each vertex stabilizer then the kernel N is free. In fact N ~ n(X), where
X is the connected G/N-graph N\T. 1

If the homomorphism G — 4 is surjective then X is a connected A-graph.
In Theorem 9.2 we shall see that all group actions on connected graphs
can be realized in this way.

The Structure Theorem 4.1 suggests that there are only limited possi-
bilities for a group to act on a tree if the group has certain special properties
such as being finite, cyclic, soluble, free, etc. The finite case will be of great
importance in Chapters 3 and 4, and it will be useful to know the following.

4.7 Proposition. Let v be a vertex of T. Then G stabilizes a vertex of T
if and only if there is an integer N such that the distance from v to each
element of Gv is at most N.

Proof. If G stabilizes a vertex v, of T, and the T-geodesic p from v to v, has
length n, then for each ge G we have a path p,gp ~* of length 2n from v to gv.
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Conversely, suppose there is an integer N such that for each geG the
T-geodesic from v to gv has length at most N. Let T’ be the subtree
generated by Gu.

It is easy to see that T’ is a G-subtree of T and no reduced path has
length greater than 2N.

If T’ has at most one edge then every element of T’ is G-stable, and we
have the desired G-stable vertex. Thus we may assume that T" has at least
two edges, so some vertex of T’ has valency at least two. Now delete from
T’ all vertices of valency one, and their incident edges. This leaves a
G-subtree T" in which no reduced path has length greater than 2N — 2.
By induction, G stabilizes a vertex. |

Let us note the cases where Guv is finite, and where G is finite.

4.8 Corollary. If there is a finite G-orbit in VT then G stabilizes a vertex
of T. 1

4.9 Corollary. A finite group acting on a tree must stabilize a vertex. 1
At this stage it is convenient to introduce some very useful terminology.

4.10 Definitions. Let e, f be cdges of T and v a vertex of T.

We say that e points to v if e is the first edge in the T-geodesic from ie
to v, or equivalently, e and v lie in the same component of T — {e}.
Otherwise, e points away from v.

Consider a reduced path €%,...,ef" in T with e, = e, e, = f; it is unique
unless e= f and n=1. If ¢, =¢, we say that e and f point in the same
direction; otherwise e and f point in opposite directions. We define a partial
order > on EX*' by setting e > e~

An element g of G is said to translate e if ge and e are distinct and point
in the same direction, that is, ge > e or e > ge.

By an infinite path in X we mean a sequence v, €3',0,..., U, 1, € Vs . .
where for each n>0, v,eV X, and for each n> 1, e"eEX ' ', 1" =v,_,,
e = v,

By a doubly infinite path in X we mean a sequence ...,v,_,, e, v,,...
where for each neZ, v,eVX, e"eEX*', 1" =v,_,, e =v, |

4.11 Proposition. For any ge G the following are equivalent:
(@) g does not stabilize a vertex of T.
() g translates an edge of T.
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(¢) g acts by translation on a subtree of T homeomorphic to R.
In this event g has infinite order.

Proof. (a)=>(c). Choose a vertex v of T in such a way that the T-
geodesic p=¢€f,...,€" from v to gv is as short as possible. Assume (a)
holds so n> 1. Notice that e, " # ge}', for if e, *» = ge$' then n>2 and
€?,...,er-1 is the T-geodesic from €8 to 1€7-} = 1ef" = gret* = gie??
which contradicts the minimality of n. Hence by concatenating the g™ p,
meZ, we can construct a reduced doubly infinite path which gives a subtree
homeomorphic to R, on which g acts by translation by n. It 1s not difficult
to see that g acts by translating a fundamental G-transversal containing p.

(c)=(b)=>(a) is clear. 1

4.12 Theorem. Exactly one of the following holds:

(a) G stabilizes a vertex of T.

(b) There is a reduced infinite path v,,e5,v,,€%,... in T such that
G,, =G, c-,G=JG, =JG, andforalln>1,G+#G,,_.

nz0 nz=1

(¢) Some element of G translates some edge e of T, and then for C = G,,
either G = BzD with B#C#D or G = B:x.

Proof. 1t is an easy matter to verify that (a),(b),(c) are pairwise incom-
patible, and we wish to show that at least one of them holds.

Suppose that (a) and (c) fail and consider any vertex .

It follows from the failure of (a) that G # G,. Consider any geG — G,,.
Since (c) fails, it follows from Proposition 4.11 (a)=>(b) that g stabilizes
some vertex w #v of T, and we may choose w as close as possible to v.
Let ¢ be the first edge in the T-geodesic p from v to w. Then p,gp ' is
reduced, and hence ¢ > ge ™.

We claim that ¢° is independent of the choice of g. Suppose that e’ is
the first edge in the geodesic from v to a vertex w’ stabilized by g'eG — G,,.
Then ¢ > g'e’ ™. If e # ¢* then e™°,¢€” is a reduced path so e * > e,
and thus g'e > g'e® > e "% > e > ge "%, which means that gg'~! tran-
slates g'e ¢, contradicting the failure of (c). Hence, e* = ¢’ as desired.

Hence, 7¢* is uniquely determined by v, and we denote it by ¢(v). This
gives a well-defined map ¢: VT — VT.

It is clear that ¢ is a G-map, so G, < G,

By choosing geG— G,,, Wwe see ¢*(v)#v; hence v,¢(v),¢*®),...,
¢@"(v),... is the sequence of vertices in a reduced infinite path.

By using the same g, w to find as many of ¢(v), ¢*(v),.. ., @"(v) as possible,
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we deduce that w= ¢”(v) for some n. Hence ge () G, It follows that
n=0
n=0

Thus (a), (b) or (c) holds.

Finally, suppose that (c) holds. Contracting all edges not in Ge yields
a G-tree with exactly one edge orbit and with an edgc e translated by an
element of G, so no vertex is stabilized by G. By the Structure Theorem
4.1, either G=BED with B# C # D, or G=Bzx. |

In case (¢) somewhat more can be said.

4.13 Proposition. If some element of G translates some edge of T then
there is a unique minimal G-subtree T' of T and ET' consists of all edges
translated by elements of G. If G is finitely generated then G\ T’ is finite.

Proof. Let E' be the set of edges of T translated by elements of G, and
let T" be the subgraph of T with edge set E'. By hypothesis, T’ is non-empty;
we claim T” is connected and hence is a subtree.

Suppose T;, T, are subtrees of T homeomorphic to R on which elements
d,,9» act by translation, respectively. To show that T’ is connected, it
suffices to show that each edge in the path p joining T, to T, lies in E,
so we may assume p is nonempty. By replacing g, and/or g, with its
inverse 1f necessary, we may choose paths p,,p, in T,, T,, respectively, so
as to have the situation illustrated in Fig. 1.2(i). Here each edge of p is
translated by g,g, so it lies in E’; see Fig. 1.2(ii). Thus T” is a subtree.

Clearly, E' is a G-subset of ET, so T' is a G-subtree of T.

If geG translates an edge, then we have a (g)-subtree T, of T
homeomorphic to R, and {g) acts on T by translating T,. It is then easy
to see that T, is the unique minimal (g )-subtree of T, so lies in every
G-subtree of T. Hence, T" is the unique minimal G-subtree of T.

Now suppose G has a finite generating set S. Let v be a vertex of T’

P &P - &P

p P gd’ 8,8:P

= ’L .
82 P, P £,P:

0) (i)
Fig. 1.2
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and let Y be the subtree of T’ gencrated by Svu {v}. The union of the
gY,geG, gives a connected G-subgraph of T’ which, by minimality, must
be all of T". Since Y is finite, 7' is G-finite. |1

5 Trees for certain automorphism groups

In this section we discuss trees which are acted on by the
automorphism group of the free object of rank two in each of the following
categories: abelian groups, free groups, vector spaces over principal
valuated fields, commutative algebras over a field, and associative algebras
over a field.

5.1 Notation. For any commutative ring R and positive integer n, GL,(R)
denotes the group of all invertible n x n matrices with entries in R. The
centre of GL,(R) is the group of invertible scalar matrices, and this can
be identified with UR = GL, (R), the group of units of R; the quotient
group is denoted PGL,(R). An n x n matrix 4 over R lies in GL,(R) if
and only if the determinant det A lies in UR. The subgroup of nx n
matrices with determinant 1 is denoted SL,(R), and the centre lies in the
centre of GL,(R) and the quotient group is denoted PSL,(R). 1

5.2 Examples. (i) Let G= GL,(Z). There is a classical G-action on the
upper half-plane # = {zeC|Imz > 0} = {x + iy|x, yeR, y > 0}, with

()

acting on z=x + iy lo give

if ad— bc=1, and
az+b

7 =
g cz+d

if ad —bc= -1, where Z= x —iy. Thus
(a b)(x riy)= (ax + b)(cx + d) + acy* + iy_
d (cx + d)? + ¢? y?
Let Y={cos0 +isin0|n/3 <0< m/2}, a subset of # which can be

viewed as the geometric realization of a graph with one c¢dge ¢ having
re =i,te=}(1 +i,/3). Let T=GY, a G-subset of #, which we shall see is
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'
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Ite e

. += re -
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I
I
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Fig. I.3

a geometric realization of a G-tree with fundamental G-transversal Y. Sce
Fig. 1.3.

A straightforward calculation shows that
G = 1 0 + 0 -1 1 0 0 1
=10 1F o) T -1 T o

ornfofs Dl (1)
(3 abs e Do
o [s(3 ) )}-o

By the Euclidean algorithm, any 2 x 2 matrix over Z can be transformed
to an upper triangular matrix using the operations of interchanging two
rows and adding or subtracting the second row from the first; these
operations correspond to left multiplication by

t—o1 s—11 and s"—1 -1
“\1 0/ "\0 1 o 1)

respectively. It follows that GL,(Z) is generated by ¢, s and

)

NOtiCC that tEGe, rEGw’

-1 1
srt=<_1 O)GG,e,

so G,UG,, generates G. Since G permutes the components of 7, we see
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that the component of T containing Y is closed under theactionof G, G,,
so is closed under the action of G, so contains GY = T. Thus T is con-
nected.

It remains to verify that T has no simple closed curves. Consider any

a b
g=(c d)eGLz(Z)

and any z = x + iye Y. We claim that if gze Y then either each point of Y
is g-stable, or z is a g-stable endpoint of Y, and thus T is the geometric
realization of a G-graph. We claim further that if Re(gz) =0 then gz = ie.
There are two cases.

Consider first the case where ¢ # d>.

Using the fact that | z| = 1 onc can verify that |(¢? — d*)gz — (ac — bd)| = 1,
that is, gz is on a circle with centre (ac — bd)/(c? — d*) and radius 1/|c® — d?|.

If gzeY, then Im(gz) > ,/3/2>% so [¢® — d?| < 2 so |¢? —d?| = 1. Simi-
larly the centre is limited to 0 or 1 so ac—bd=0 or 1, and it can be
verified that either each point of Y is g-stable, or z is a g-stable endpoint
of Y. If Re(gz) =0 then the circle meets the upper half of the imaginary
axis and this forces ac — bd = 0, from which it follows that each point of
Y is g-stable, so z=gz =1e.

Now suppose that ¢* = d2,

Then ¢*=d?=1 and a, b have opposite parity. It can be shown that
2Re(gz)= ac + bd, an odd intcger, so nonzero.

If gzeY then ac + bd =1 and gz = 7e, and it follows that te is g-stable.

Now suppose there is a simple closed path in T. Then there is a path
in T from e to Te which does not use e. The only edges incident to ie are
e and the edge

0 —1
e’—(1 O)e.

So there is a path from 7€’ to e which does not pass through e =i, but
by continuity considerations it must pass through the imaginary axis, a
contradiction. Thus T is a G-tree and we deduce GL,(Z)=D, hy Dq.

2

It is not difficult to deduce the presentation
GL,(2)={q.1,t|g% r%,t%(tr)*, (tr) (tg)*)

(0 D=l D) = (o)

where
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The following three groups also act on T with Y as fundamecntal
transversal, and so have the descriptions indicated.
(i) PGL,(Z)=D, * D,, where

e {2 O} )

(iii) SL,(Z)=C, X C¢, where
1 0 0 -1
cefefy et )
10 1 -1 0 1
o 1)=( Topx(-1 1))
1 0
o-fs(s 9}

T T
e-{{=(b VM0 DM DI

(v) Denote the automorphism group of F, by Aut(F,). Let F, be free
on x,y so an automorphism ¢ can be represented by the ordered pair
(¢x, ¢y). We identify F, with the group of inner automorphisms, with F,
acting by left conjugation.

It can be shown that F, is generated by g=(xy,y~ '), r=(x,y7 1),
t=(y,x); see Lyndon and Schupp (1977), Proposition 1.4.1. Onc can
compule that 1 =g?=r?=t>=(tr)* and (tr)*(tq)® = xy.

Every automorphism of F, induces an automorphism on the abclian-
ization Z2, so there is a homomorphism from Aut(F,) to GL,(7), and
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the preceding paragraph, together with (i), shows that Aut (F,)— GL,(Z)
is surjective with kernel F,. Thus Aut(F,)= Azk_B, where A,B,C are

extensions of F, by D4, D, and D,, respectively. Sec Example 1V.1.13 for
a further discussion of 4,B,C. 1

5.3 Examples. (i) Let R be a principal valuation ring, K its ficld of
fractions, k the residue field, and ¢ a uniformizer, so R/tR = k. For example,
R can be the ring of formal power series k[[t]], and then K is the field
k((t)) of Laurent series.

Let U denote the group of units of R, K* the group of units of K, and
G =GL,(K), and view K* as the centre of G.

We shall construct a G-tree.

Let K? be the set of column vectors of length two over K, so K2 is a
G-module under matrix multiplication.

By an R-lattice P in K? we mean a free R-submodule of K? of rank 2,
that is, P is generated by a K-basis of K2. Let .# denote the set of all
R-lattices in K?, so & is a G-set.

For Pe.¥ we write [P]= {t'P|ieZ} = K* P. Then K*\ & = {[P]| Pe ¥}
is again a G-set, since K* is the centre of G.

If P,Qe% then by the theory of matrices over principal idcal domains
there exists an R-basis b, b’ of P and integers m, n such that t"b,t"b’ is an
R-basis of Q, and then {m,n} is independent of the choice of b,b'. We
define d(P,Q)=|m — n|, and also d([P],[Q]) =d(P,Q)=|m — n|, which is
easily seen to be well-defined.

Notice [P]={Qe.Z|d(P,Q)=0}.

Let E= {(p,q)|p,qeK*\ & with d(p,q)=1}. We claim that E is the edge
set of a G-tree T. To construct T we take vertex set V= {p, {p,q}|(p, 9)e E},
and incidence functions 1(p,q)=p, T(p,q)={p,q}. It is clear that T is a
G-graph.

If p,ge K*\.& then the paths in T from p to g can be identified with
the sequences p = pg,pi>-..,ps =g such thatd(p; ,,p;)=1for allie[1, n].

Consider any p,qeK*\.%, and choose representatives P,Qe %, rcs-
pectively, and an R-basis b,b’ of P such that t™b, t"b’ is an R-basis of Q
for some m, neZ. Now the sequences Rt'b + Rb’, i=0,...,m, Rt™b + Rt'b/,
j=0,...,nin & determine a path in T connecting p to p'. It follows that
T is connected.

If p,geK*\.& and d(p,q)=1 then we can choosc rcprescentatives
P,Qe ¥, respectively, and an R-basis b, b’ of P such that b, t™* !}’ is an
R-basis of Q for some integer m. Replacing Q by r"™(Q we may assume
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that Q is a maximal submodule of P and tP is a maximal submodule of Q.

If T is not a tree then there exists a sequence py, P1,..., Py = Po in K*\ &
such that p;_, #p;,, forallie[1,n— 1],and d(p;—,,p;) = 1 for all ie[1,n].
By the preceding paragraph we can construct a sequence Py, P,,...,P,=
t"Pyin.# such that tP;_, # P,,, forallie[1,n — 1], and for each ie[1, n],
P, is a maximal submodule of P; , and tP;_, is a maximal submodule
of P;. Hence, for each ie[1,n— 1], tP;., and P;,, are distinct maximal
submodules of P;,so tP;_, + P,,, = P,. By reverse induction tP; _, + P, =
P;, and in particular tPy+ P,=P,. Now Py>P,=t"P,, so m=>1
and tP, 2 P,, which means that tPy + P, =tP,. Hence P, =tPy+ P,=
tPy < P,, a contradiction. Thus T is a G-tree.

t 0)]

()] )

in K*\ %, and e=(p,p’) in E. Then 1e=p,te= {p,p'}.

We claim that the subgraph Y = {ie,e,te} is a G-transversal in T. It is
clear that e, Te are in different G-orbits, so it suffices to show E = Ge. Now
K*\ % = Gp so each edge of T lies in the G-orbit of an edge of the form
(p, q), where d(p,q) = 1. Here

a c

#0) 20,

for some a, b, ¢, deR such that ad — bc = t. Hence, for a unique » modulo (R,

q=

oo =G
=[x+ e

Thus E = Ge, as desired. We remark that the neighbours of ie are indexcd
by two copies of k.
By the Structure Theorem 4.1, GL,(K)=G,, by G,..- Notice that G, =

G,=GL,(R) K* Also, p'= gp, where

o=(7 o)

10
so G, =gG,g~ "', and it follows that

U tR
Ge=GN,,=<R U)-K*.
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Finally, G, = G, /, has index 2 in G, and contains g which is not an
element of GL,(R), so

U IR IR U
G, = K* K*.
e (R U) U(U tR)

In summary, GL,(K)= AzB, where

A=GL,(R)-K*,

U R R U
B= K* K
(R U) U(t“‘U R) ’

U R
= K *,
=(x o)

(i) Let H=SL,(K) and view T as an H-tree. By considering dcter-
minants it is not difficult to show that K*\ % has exactly two H-orbits,
Hp,Hgp, where

=(1 o)

The above argument then shows that E has two H-orbits He, Hge, and
one can compute that SL,(K) = AzB, where

a ¢
(b d)eSLZ(R)}

C=AnB= {(Z Z)GSLZ(RNcetR}.

In fact we can contract all edges in Hge and obtain a new H-tree T with
vertex set K*\.# and edge set {{v,w}|v,weK*\ & with d(v,w)=1}. Here
{v,w} has v,w as its vertices, with the initial vertex being the one lying in
Hp. One can think of T as being the barycentric subdivision of T.

(iii) Consider the case where K = k(x) the ficld of rational functions in
an indeterminate x, R = {f/g|f,gek[x], deg f < degg} = k[x™ '], 1)and
the uniformizeris t = x '. The above GL,(K)-tree T is then a GL, (k[x])-
tree, and one can verify that

()o(2)}

is a GL,(k[x])-transversal in K*\.%. The Structure Theorem 4.1 thcn

A=SL,(R),

B=gSL,(R)g"* ={(b‘/’t t;)

and
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shows that GLZ(k[x])=GL2(k)TaZk) T,(k[x]), where T, denotes lower

triangular 2 x 2 matrices. 1

5.4 Examples. Let k be a field and x, y indeterminates. Write k{x, y>
for the free associative k-algebra in x, y, so x, y commutc with the elements
of k but not with each other. Write k[x, y] for the polynomial ring over
k in x,y, the abelianization of k{ x, y ). '

Let R=k{x,y) or k[x,y]. and let G be the group of all k-algebra
automorphisms of R, that is, ring automorphisms of R which act as
the identity on k. Such an automorphism ¢ is completely specified
by the ordered pair (¢x,¢y), so we can use ordered pairs to describe
automorphisms.

Let X be the graph whose vertices are the k-subspaces of R and whose
edges are the inclusion relations between them. Thus an edge corresponds
to an inclusion v € w, where v, w are k-subspaces of R, and we specify that
v, w are the initial and terminal vertex, respectively. Clearly X is a G-graph.

Consider the vertices v=k + kx,w=k + kx + ky of X and let ¢ be the
edge of X joining them. Let Y be the subgraph {v,e,w} of X, and let
T=GY. Clearly T is a G-subgraph of X. By some rather involved
manipulations with leading forms one can show that T is a G-tree; see
Cohn (1985). Since T clearly has fundamental G-transversal Y, it follows
that G= AzB, wherc

A=G,={(2+ax,0y + f(x))| f(x)ek[x],2,d, Aek,ad # 0},

the group of x-based de Jonquiéres automorphisms of R,
B=G, = {(A+ax + By, st +yx +0y)| 2, B,7,0, A, uek, 2o # 73,
the group of affine automorphisms of R, and
C=G,={(+ax,u+yx+0y)|a,y,0, 2, uck,aé #0},

the group of affine x-based de Jonquiéres automorphisms of R.

In particular, G is the same for both R=k{x,y)> and R =k[x,y]. 1

6 The exact sequence for a tree

6.1 Definitions. By a G-module M we mcan an abelian group M which
is a G-set such that G acts by abelian group automorphisms on M. An
additive G-map between G-modules is called a G-linear map.

For any G-set V we write ZV or Z[V] for the free abelian group
on V, and write the elements as formal sums Z n,v, with n,eZ being

k]
eV



The exact sequence for a tree 29

0 for all but finitely many veV. This is a G-module with G-action

g( Y n,,v)= Y ny,gv. The G-linear mape:ZV —Z with s( Y n,,v)= Y n,

veV veV veV veV

is called the augmentation map of V. The kernel of ¢ 1s a G-submodule
wZV of ZV called the augmentation module of V. 1

6.2 Definitions. Let (X, V,E,1,7) be a G-graph.
By the boundary map of X we mean the G-linear map 0:ZE —ZV with
d(e)=1te—1e for all ecE, that is, 6( Y. nee> =) n,te—) nge. The

ecE ecE ecE

sequence
(1) 0-ZE-5L7V-57 -0

is then a complex, that is the composite of any two consecutive maps is
zero; it is called the augmented cellular chain complex of X, or simply the
complex for X.

The abelian groups in the complex are called the terms of the complex.
A complex is said to be exact at a term if the kernel of the map outward
from that term is precisely the image of the map into that term. The
complex itself is exact if it is exact at each term.

Notice that the complex (1) is exact at Z, that is, ¢ is surjective, because
V is nonempty.
We now examine exactness at each of the terms.

6.3 Lemma. X is connected if and only if ZE L7V 57 -0 is exact.

Proof. The cokernel of ¢ can be expressed in the form ZC, where C is
the G-set obtained from V by identifying te = 1e for all eeE. Since C can
be viewed as the set of components of X, the result i1s proved. 1

6.4 Lemma. X is a forest if and only if 0— Zv 5 ZE is exact.

Proof. If X is not a forest then there is a simple closed path
Vg, €5y, =vy In X, so d(g e+ +¢&e,)=(—vo+v,)+
(=0 +03)+ -+ (= Up—y + V)= — 0o +0,=0. But g,e; +--- +¢,e, #0
so ¢ 1s not injective.



30 I Groups and graphs

The converse is an easy exercise, and in fact we shall now see how to
construct a one-sided inverse for ¢. 1

6.5 Definitions. Let T =(T, V, E, 1, 1) be a G-tree.

For any vertices v,w of T there is a gecodesic v =1vq,€%,...,e"v,=w,
and we write T[v,w] for the element ¢, e, + --- + ¢,e, of ZE. Notice that
T[w,v]= —T[v,w] and T[v,w]=T[v,u]+ T[u,w] for all vertices u.
Since ZV is free abelian we can extend the map T[v,-]: V—>ZE,
w—T[v,w], to a map ZV —»ZE, and we denote this new map also by
T[v,-]. 1

6.6 Theorem. If T is a G-tree then there is an exact sequence of G-modules
0—ZET -ZVT->Z—0; hence oZVT ~ ZET as G-modules.

Proof. Let v be a vertex of T. For any edge e of T, T[v,de] = — T[v,1e] +
T[v,7e]= T[ie,v] + T[v,7e]= T[ie,te]=e¢. Thus the composite
ZET S 7vT -2, ZET is the identity, so 0 is injective. 1

In Theorem 9.2 we shall see the corresponding cxact sequence for a
connected G-graph.

In proving that the standard graph is a tree in the next section, we shall
ause the appropriate part of Lemma 6.4. However, the above proof of
Theorem 6.6 provides the actual motivation for the argument. It will be
useful to have the following concepts.

6.7 Definitions. Let M be a group on which G acts by group auto-
morphisms. Let us write M additively, although it need not be abelian,

By the semidirect product G x M or M xG we mean the group with
underlying set G x M and multiplication (g,m)(g’,m’)=(gg’,m + gm’),
suggestive of 2 x 2 matrices

G M
(s V)
Now let M be abelian, so M 1s a G-module.
By a derivation d:G—-M we mean a function such that d(x/ﬁ=
d(x) + xd(y) for all x, yeG.
It is straightforward to verify that a function d:G — M is a derivation

if and only if the function (1,d):G -G x M,g+> (g, dg), is a group homo-
morphism.
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For any me M, the function adm:G - M, g gm — m, 1s a derivation; in
G x M it corresponds to right conjugation by (1, m).

A derivation d:G — M 1s inner if d =adm for some meM: otherwise d
is outer. 1

6.8 Example. Let T be a G-tree and v a vertex of T.

The inner derivation adv:G—ZV T has image lying in wZVT ~ 7ET.
The resulting derivation G — ZET is given by g+ T[v, gv], and is denoted
T[v, v]. 1

7 The fundamental group and its tree

We now analyze the fundamental group of a graph of groups and
verify that the standard graph is a trec. Throughout this section we fix
the following terminology introduced in Scction 3:

7.1 Notation. Let (G(—), Y) be a graph of groups with connected graph
(Y, V, E,1,T), vertex groups G(v),veV, edge groups G(e) < G(ie), eeE, and
edge functions t,:G(e)— G(Te), g+ g's, e€E.

Let Y, be a maximal subtree of Y and v, a vertex of Y.

Let G=n(G(—), Y, Y,), the group presented with

generating set: {t,|e€E} v .VV G(v)

relations: the relations for G(v), veV;
gt,=t,g'* forall eeE, geG(e)< G(le) so g“eG(Te);
t,=1 forall eeEY,.

Let T=T(G(—-),Y, Y,), the G-graph presented with generating\ set Y,
relations saying y is G(y)-stable, and incidence functions given by i(ge) =
gie,1(ge) = gt 7e for all geG,ecE. 1

7.2 Lemma. Suppose that H is a group and that there are specified group
homomorphisms a,:G(v)—> H,veV'Y, and a function «:E— H, such that
a. (g)a(e) = a(e)a,,(g'e) for all eeE, geG(e) = G(ie). For v,weV'Y, define
a(v,w) to be the element afe,)'---a(e,f" of H where €7,...,é" is the
Yy-geodesic from v to w.

Then there exists a group homomorphism B:G — H defined on the given
generating set as

Bg) = 2(vo, v)a,(g)2(v, v0)  for all geG(v), wveV,
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and
B(t,) = a(ve, ie)a(e)x(Te,v9) for all eeE.

Proof. We need check only that f§ respects the relations of G.

It is easy to show that, for any u,v,weV, a(u,v)a(v, w)= «(u, w), and
a(w,v) = a(v,w) L.

For veV, consider the restriction of f to the subset G(v) of the generating
sel. It is oblained by composing «, with left conjugation by a(vg,v) =
a(v,ve) ', so is a group homomorphism, which means that the relations
of G(v) are respected.

For cach eeE and geG(e) < G(ie),

B(9)B(t.) = 2(vo, ie) o, (g)ar(ie, vo)2(vo, te) a(e)a(Te, vo)
= a(vo, Ie)a,(g)a(e)x(Te, vo) = a(ve, ie)x(e)x (g ) x(Te, vg)
= a(vg, le)a(e)a(Te, vg)a(vg, Te)2,, (g )%(Te, Vg)
= p(t.)B(g").
For each eeEY,, fi(t.) = a(vy, ie)a(e)a(Te, vg) = %(vo, ie)u(ie, Te)a(Te, vy) =
a(vg, Ug) = 1.

Thus f docs respect the relations of G and we have the desired group
homomorphism f:G—-H. 1

7.3 Definition. Lct P be the group presented with

generating set: {u,|eeE} v Vv G(v)

relations: the relations for G(v),veV;
gu,=u,g'« foralleeE, geG(e)< G(ie), so g'“eG(Te).

The fundamental group of (G(—),Y) with respect to vy, denoted
n(G(—), Y, vo), is defined to be the subgroup of P consisting of all elements

p for which there exists an expression p=gouslu,---g,-,ut"g, and a
closed path vy, ¢!, v,,..., e, v, = v, in Y at v, with g;€ G(v,) for all ie[0, n].
There is a well-defined group homomorphism P — G sending each

u, to t,. Using the function E— P,e+>u,, we can apply Lemma 7.2

to get a group homomorphism f:G — P, and the composite G LP-}G
is then the identity, so S is injective. It is not difficult to show
that pG==n(G(—),Y,v), and we have =n(G(—),Y,Yy)=GxpG=
n(G(—), Y, vo). |

Hence the isomorphism class of n(G(—), Y, Y,) is independent of the
choice of Y,. Where we arc dealing with abstract group properties we
shall somectimes speak of the fundamental group of (G(—), Y) and writc
n(G( ) Y).
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Here P is a scmidirect product of G by the normal closure of {u,|e€E Y, }.
|

7.4 Theorem. If U is a nonempty set such that |U| is uniquely divisible
by |G(v)| for each veV, then there exists a group homomorphism G —Sym U
such that the composite G(v)— G —Sym U is injective for each veV.

Proof. For each veV, |G(v)| divides |U| so we can partition U into copies
of G(v), and hence define a free G(v)-action on U; we denote by
a,:G(v) > Sym U the resulting injective homomorphism.

Consider any eeE. The free G(ie) and G(te) actions on U induce
free G(e)-actions on U via the maps G(e)< G(ie) and t,:G(e)— G(7e),
respectively; let us denote the corresponding G(e)-sets as U, U,. These two
free G(e)-sets are isomorphic because |U| is uniquely divisible by |G(e)|,
so there exists a G(e)-isomorphism a(e): U, — U.. Thus for all geG(e), ueU,
we have a(e)(x..(g")u) = 2 ,(g)(2(e)(u)). Hence a(e) is an element of Sym U
such that for all geG(e), a(e)x,.(g") = a,.(9)(e).

By Lemma 7.2, there is a group homomorphism f:G—Sym U such
that for each veV'Y, the composite G(v)— G —»Sym U is conjugate to «,,
so is injective, since a, 1s injective. 1

7.5 Corollary. G(v)— G is injective for each veV'Y.

Proof. Let U be any infinite set such that |U| > |G(v)| for all ve VY. Then
|U| i1s uniquely divisible by |G(v)| for all veVY. It now follows from
Theorem 7.4 that for each ve V'Y, G(v) - G is injective.

Henceforth the G(y), ye Y, will be treated as subgroups of G.
We now come to the main result of the chapter which will have many
applications in the sequel.

7.6 Theorem. T is a tree.

Proof. To see that T is connected we consider the set CT of components
of T. There is a natural map VT - CT, v [v]. This is a G-map, and
[1e]=[1e] for all ecET. Recall that VT is the G-set generated by
V with relations saying that cach veV is G(v)-stable. Hence CT is
the G-sct generated by V with relations saying that each [v]eCT is
G(v)-stable, and additional relations saying that for each e€E, [1e] = [te],
that is, [ie] = [t.7¢] =t,[Te]. As e ranges over EY,, the latter relations have
the form [ie] = [Te] for all ceEY,,, and thus [v] = [¢,] for all eV, so CT
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has only one G-orbit. Now [v, ] is G(v)-stable for eachveV, since [v] = [v, ];
and [z,] is t,-stable for each eeEY, since [vy]=[ie]=t.[Te]=t.[vo]
Thus [vy] i1s G-stable, so CT consists of a single element. Hence T is
connected.
By Lemma 64 it now sufficies to show that the boundary map
0:ZET - ZVT is injcctive.
Without knowing that T is a trec, we will be able to construct the
derivation T[vy,_vy]:G— ZET using the generators and relations of G.
For each veV, there is an obvious group homomorphism
®,:G(v)—> G x ZET, g (g, 0). Define a function 2: E— G x ZET, e (t,, e).
If geGle). ecE, then oy (g)ale)= (g, 0)(t., @)= (gt.,ge)=(t.g" €)=
(t. €)(g'", 0) = afe)a,(¢"), and the hypotheses of Lemma 7.2 are satisfied.
As in Lemma 7.2, for v,weV, if e},...,e" is the Yy-geodesic from v to
w, then a(v, w)=a(e, ) ---ale, )= (1,e,)°*---(1, e, )" = (1, Yo [v,w]), where
Yo[v,w]=¢,e, + - +¢,6,6ZEY, < ZET. By Lemma 7.2 there exists a
group homomorphism f:G —» G x ZET such that
if geG(v), veV then B(g) = a(vy,v)a,(g)a(v, vo)
= (13 Y, [Uo: U])(g, 0)(1’ YO[U’ UO]) = (g’ Y, [voa v]+ g9Y [U’ 00]);
if eeE then f(t.) = a(ve, le)a(e)a(Te, vy)
= (1, Yo[vo, te])(t., e)(1, Yo [T, vo])
=(t,, Yolvo,7€] + e+t Yy[Te,00])
It is clear that g has the form (1,d):G— G x ZET, so we have a map
G— ZET, denoted T[v,,_v, ], such that

(1) T[ve,—vo] is a derivation;
(2) if geG(v),veV, then T[vy, gve] = Yol[ve, v] +gYolv, vol);
(3) if eeE then T[vg,t,vo]= Yo[vg,1€] +e+t,Yo[Te, vy ]-
We claim there is a well-defined additive map T[v,,-]:ZVT —ZET
such that
@) T[vy, gv]= T[vg,gvo] +gYolve,v] for allgeG, veV.
Thus suppose gv = g'v’ with g,g'€G, v,v'eV. Then v=1v" and g’ = gh for
some heG(v) so '
TTvo,g'vo] + g Yolvo,v]
= T[vo,ghvo] + ghYo[vo,v]
= {T[vo,g9v0]1+ gT[ve, hve1} + ghYe[vo,v] by (1) i
= T, gvo] + g{ Yo [vo,v] + hYo[v,v51} + gh¥,[vg,v] by (2) -
= T[vo,gve] + gYo[vo,v]
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Thus T[vy,-]:ZVT —ZET is well-defined.
For any geG, eeE we have

T[v,,0ge] = — Tlvq,gie] + T[vy, gt.Te]

= {gY,[ie,v9] — T[vo,gv01} + {T[vogt,ve]+ gt. Yol vy, Te]}
by (4)

= gY,[ie,v0] — T[vo, gvol + {T[vo. gvo1 + gT[vo. t.00]}
+ gt. Yo[vo, Te] by (1)

=gYolte,v9] + gT[vo,t.v0] + gt. Yo[vo, Te]

=gY,[ie,vo] + g{Yol[vo,ie] + e+, Y,[7e,05]}
+gt. Yo[vo, 7€] by (3)

=ge.

Tlvg-
It follows that ZETi»ZVTi»ZET is the identity map, so ¢ is
injective, as desired. 1

If H is any subgroup of G then T is an H-tree so H is isomorphic to
the fundamental group of the graph of groups associated with T with
respect to a fundamental H-transversal and connecting elements. If H acts
freely on the edges the structure of H is fairly easy to describe.

7.7 Theorem. If H is a subgroup of G which intersects each G-conjugate
of each edge group G(e) trivially then H=F *_*IH ; for some free subgroup
1€

F, and subgroups H; of the form HngG(v)g™"' as g ranges over a certain
set of double coset representatives in H\G/G(v) and v ranges over VY. 1

7.8 The Kurosh Subgroup Theorem. If H is a subgroup of a free product

* G(v) then H=Fx E:IHi for some free subgroup F, and subgroups H; of
Ve

the form HngG(v)g~! as g ranges over a certain set of double coset
representatives in H\G/G(v) and v ranges over V. 1

There are even better actions such as those occurring in Propositions 4.5,
4.6 and Corollary 4.9.

7.9 Proposition. If a subgroup H of G intersects each G-conjugate of each
vertex group trivially then H is free.

For example, if H is torsion-free and the vertex groups are torsion groups
then H is free. 1
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7.10 Propeosition. If G — A is a homomorphism of groups which is injective
on each vertex group then the kernel is free. 1

7.11 Proposition. Every finite subgroup of G lies in some conjugate of some
vertex group. 1

8 Free groups

8.1 Definitions. Let Y be a connected graph, Y, a maximal subtree of
Y, and 1, a vertex of Y.

Form the graph of groups (G(—), Y) with G(y)=1 for all yeY.

In Example 3.5 (i), we defined the fundamental group of Y with respect
to Y, to be n(Y, Yo)=n(G(—), Y, Y, ); this is essentially the free group on
EY — EY,,.

We define the fundamental group of Y with respect to vy as n(Y,vy)=
n(G(—), Y, vy); that is, the subgroup of the free group on EY consisting
of all elements ef' €% --- e, where €5',€%,...,€" is a closed path in Y at v,
This agrees with the usual notion of the fundamental group of Y at p,
consisting of homotopy classes of closed paths at v,.

In Definition 7.3 it was shown that n(Y, Y,) ~ n(Y, v,).

Since the isomorphism type is independent of all choices we agreed to
speak of the fundamental group of Y and write n(Y), thinking of it as the
free group of rank |EY — EY,|.

Let G=n(Y, Y,) and write T= T(G(—), Y, Y,). We treat T as having a
distinguished vertex vy,. By Theorem 7.6, T is a tree, and from the
construction we see T is a G-free G-tree with G\T =~ Y.

Hence the corresponding map T —Y is an isomorphism on the
neighbourhood of each vertex. Any tree with the latter property is called
the universal covering tree of Y, which agrees with the usual notion of the
universal covering space of Y. It is not difficult to show that universal
covering trees for Y are unique up to unique isomorphism, as trees with
distinguished vertex.

For example, suppose Y has only one vertex, so consists of loops. Here
G is free on EY, and T is the Cayley graph of G with respect to EY. The
free groups of ranks 1 and 2 were illustrated in Example 2.2(ii), (iv).

We define rank Y =|EY — EY,|, so rank G =rank Y. ;

For a free group F of finite rank, we define the Euler characteristic of
F to be y(F)=1—-rank F.
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For a finite graph Y the Euler characteristic of Y is
wUY)=|VY| = |EY|=|VYo| - |EY|=(1 +|EYo|)— | EY]
=]1—|EY—EYy|=1—rankY=1—rank G=x(G). 1

Let us repeat one of the above observations and then combine it with
Corollary 4.2.

8.2 Theorem. G is freely generated by a subset S if and only if the Cayley
graph X(G,S) is a G-tree. 1

8.3 Theorem. There exists a G-free G-treeifand only if G is afree group. 1
The former property is clearly inherited by subgroups.

8.4 The Nielsen—Schreier Theorem. Every subgroup of a free group is free.
]

A closer analysis enables us to describe the ranks of the subgroups.

8.5 The Schreier Index Formula. If G is a free group of finite rank r and
H a subgroup of G of finite index n then H is a free group of rank 1 + n(r — 1).
In terms of Euler characteristics, y(H) = (G:H)yx(G).

Proof. Let S be a free generating set of G, and let T= X(G,S) so T is
H-free and G-free. By Corollary 4.2, G =~ n(G\T), H ~ n(H\T). Here G\T
is a finite graph, so x(G)= x(G\T). As ET is G-free, it is |G\ET]|
copies of G, and hence (G:H)|G\ET| copies of H; thus (G:H)|G\ET|=
|H\ET|. The analogous result holds for VT, so H\T is a finite graph
and y(H\T)=(G:H)x(G\T). Hence, y(H)=yx(H\T)=(G:H)y(G\T)=
(G:H)x(G). 1

There are many other results about free groups which can be proved using
trees and we conclude this section with a sampling.

8.6 Theorem. If G is free of finite rank and ¢ an automorphism of G then
the subgroup H of elements of G stabilized by ¢ is free of finite rank.

Proof. Let T be the Cayley graph of G with respect to a free generating
set S of G. By Theorem 8.2, T is a G-free G-tree.
Since VT =G we have an H-map ¢:VT - VT, and hence an H-subset
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E' of ET consisting of the edges e such that the T-geodesic from ¢(ie)
to ¢(te) contains e.

We shall show H\E' is finite. Consider any ecE’, so 1e =g, Te = gs for
some geG, seS, and the T-geodesic from ¢(1e) = ¢(g) to ¢(te)= ¢(gs) =
&(9)¢(s) contains e = g. Applying ¢(g)~! we see that the T-geodesic from
1 to ¢(s) contains ¢(g)~'g. It is easy to check that the map H\G -G,
Hgr> ¢(g) g, is well-defined and injective. Since S is finite, there are only
finitely many pairs (Hg, s) such that ¢(g)~'g lies in the T-geodesic from
1 to ¢(s). Hence, H\E' is finite.

We now ignore the G-action, and view T solely as H-free H-tree.

If ecET — E', then ¢(ie), ¢(ze) lic in the same component of T — {e}.
Hence we can reorient T so that for each ecET — E/, te lies in the same
component of T — {e} as ¢(ie), ¢(te). Notice this reorientation respects the
H-action.

Also, e is the first edge in the geodesic from ie to ¢(ie). Hence, for any
vertex v of T, any edge in ET — E’ having v as initial vertex must be the
first edge in the T-geodesic from v to ¢(v), but there is at most one such
edge. Thus in T — E’, each vertex is the initial vertex of at most one edge.

By Corollary 4.2, H ~ n(H\T), and it suffices to show that H\T has
finite rank. Since H\E'is finite, the graph (H\ T) — (H\E') has [initely many
components, and it suffices to show that each component has finite rank.
But (H\T)— (H\E')= H\(T — E'), and here each vertex is the initial vertex
of at most one edge. Hence each reduced closed path is oriented cyclically
with attached paths pointing in. It follows that no two simple closed paths
can ever be attached, and thus each component has rank at most one. 1

This proves that H is finitely generated.

8.7 Conjecture. If G is free of rank n, and ¢ an automorphism of G, then
the subgroup H of elements of G stabilized by ¢ is free of rank at most n.

Discussion. At the time of writing it is not known if rank H can be
bounded by a function of n. 1

8.8 Theorem. If A and B are finitely generated subgroups of a free grbup
G then AN B is finitely generated.

Proof. Write C=AnNB. By Theorem 8.3 there exists a G-free G-tree
T. Let v be a vertex of 7, and let T,, Ty, T be the subtrees of T,
generated by Av, By, Cv respectively, so closed under the actions of A, B, C
respectively. Clearly T, is contained in both T, and Ty. Hence, there is a
map C\T— A\ T, x B\Tg, Ct+—(At, Bt),and it is easily seen to be injective.
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But A\T, and B\Tj are finite since A and B are finitcly generated. Thus
C\T¢ is finite, so its fundamental group, C, is finitely generated. 1

8.9 Conjecture. If 4 and B arc nontrivial finitely generated subgroups
of a free group then rank (4 N B) <2 — rank A — rank B + rank (A) rank (B),
or equivalently — (4 N B) < y(A)x(B).

Discussion. Howson (1954) showed that
— (AN B) < 2y(A)x(B) — x(A) — x(B) + 2
and H. Neumann (1955) improved this to
— (AN B) < 2x(A)x(B).
Burns (1969) improved this to
— (A N B) < 2y(A)x(B) + max {(A), x(B)},
and the matter still rests there. See Nickolas (1985) for more details. @

Theorem 8.8 allows us to extend Theorem 8.6 o any finite set of
automorphisms.

8.10 Corollary. For any free group G of finite rank and finitely generated
group A of automorphisms of G, the subgroup H of elements of G stabilized
by A is free of finite rank. 1

9 Groups acting on connected graphs

This section shows that group actions on connected graphs arise
from group actions on trees as in Proposition 4.6.

9.1 Notation. Throughout this section let X be a connected G-graph.
Choose a fundamental G-transversal Y in X with subtree Y, and denote
the incidence functions by 7, 7. Choose a vertex v, in Y, and for each ecEY
choose an element f,€G such that t,7e=te, with t, =1 if e= EY,. Let
(G(—), Y) be the resulting graph of groups and write P = n(G(—), Y, Y),
T=T(G(-)Y,Y,) We treat vy as an element of Y,, Y, X and 7. 1

9.2 Structure Theorem for groups acting on connected graphs. There is a
natural extension of groups 1 »n(X)->P—->G—1.
Further, n(X) acts freely on T, and there is a natural isomorphism of
G-graphs n(X)\T = X. In particular, T is the universal covering tree of X.
The action of P on n(X) by left conjugation induces a natural G-module
structure on n(X)®, and there is an exact sequence of G-modules

(1) 0-n(X)* > Z[EX] > Z[VX]—Z —0.
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Proof. Let veV'Y. As in the proof of the Structure Theorem 4.1, the
paths of length 1 in X starting at v are the sequences of the form
v, gti¢~Ves, gt*w, where v,e%,w is a path in Y, and geG, Hence, as in
the proof of Theorem 4.1, the homomorphism P — G is surjective. Let N
be the kernel, so G = P/N.

For each yeY, the composite G(y)—» P —G is the natural embedding,
so N does not meet any meet any vertex groups. Thus T is N-free and
N =~ n(N\T) by Corollary 4.2.

The graph N\T is acted on by the group P/N = G; moreover, Y is a
fundamental G-transversal, the t,,ecEY, are connecting elements, and
the resulting graph of groups agrees with (G(—),Y). As before, the
paths of length 1 in N\T starting at v are the sequences of the form
v,gti~ Ve grtw, where v,¢,w is a path in Y, and geG,. It is then not
difficult to deduce that N\ T ~ X as G-graphs, so N ~ n(X). We shall treat
this isomorphism as an identification, and we wish to make this precise.

For any element ¢ of N, the path in T from v, to c¢v, maps to a closed
pathin X at v, which corresponds to the element of z(X) which we identify
with c.

We have P acting on n(X) by left conjugation, so in the induced action
on n(X)*, n(X) acts trivially, and thus n(X)® has the structure of a module
over P/n(X)=G. The action under geG sends an element of n(X)®
represenied by a closed path g in X at v, to the element of n(X)*
represented by any g-translate of g, that is, a closed path p,gq,p~! where
p is a path in X from v, to gv,. This action is independent of all choices.

The function which associates to a path €f,...,¢€" in X the element
g,e, + -~ +e,e,6Z[ EX] induces a natural map n(X)™® — Z[ EX] which is
easily seen to be G-linear, and we have a complex (1).

Since X is connected, (1) is exact at Z[VX] by Lemma 6.3.

Choose a maximal subtree X, of X. By Definition 8.1, n(X) is the free
group on EX — EX,, n(X)®~Z[EX — EX,], and the natural map to
Z[EX] takes the form Z[EX — EX,] > Z[ EX], e e + X y[ e, 1€], where
Xo[—, —]is asin Definition 6.5. This is clearly injective, since composing
with the projection onto Z[ EX — EX, ] gives the identity. _

It remains to prove exactness at Z[ EX']. Suppose 6( Y nee) =0. We

eeEX

know that 6( Y. n.(e+ X,[te, w])) =0so0 6( Y. n,X,[re, 1e]> =0. But
esEX

eeEX

0 is injective on Z[EX,] by Lemma 6.4, so Y, n,X,[te, 1] =0. Hence :

ecEX '

Y. ne= Y n. e+ X,[re,1e]), which is in the image of =(X)®, as
eceEX ecEX

desired. 1
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We note two consequences of the case where G acts freely on X, so
P=n(G\X).

9.3 Corollary. If X is a connected G-free G-graph then there is an extension
of groups 1 > n(X)->n(G\X)->G-1. 1

9.4 Corollary. If F is a free group on a set S, N a normal subgroup of F
and G = F/N then there is an exact sequence of G-modules

0> N%® > Z[G x §]—ZG — Z 0.

Proof. Let X be the Cayley graph for G with respect to S, so we have an
extension of groups 1 - n(X)—n(G\X)— G — 1 and an exact sequence of
G-modules 0 - n(X)*® »Z[G x §] »ZG - Z —0. Further we can identify
F=n(G\X)soN==n(X). 1

9.5 Remark. In order to have a complete structure theorem for a group
acting on a connected graph, we want an explicit description of n(X) as
a subgroup of P. An element of n(X) corresponds to a unique closed path
in X at vy and this can be expressed in the form
VosJotF T Vel gotei vy, gotel gy tH2 Ve, gotil gy ti2,,. ..,
Jole'g1t2g -~ Gu— 1 12" Ve, goterg 1 ti2gs -+ Gn— 1 Een0s = Vo,
where vy, e5',v,,€,0,,...,0,_1,€"v,=1, is a closed path in Y and
g:€G,, for all ie[0,n]. Thdn gytilg,t:2g,--- g, t& is an element of G,
and denoting it by g, ', we get an expression got:ig ti2gs - -gn-1terdy
representing the desired element of P.

For the purpose of presenting G, one wants a set of elements which
generate n(X) as normal subgroup of P; geometrically this amounts to a
set of closed paths at v, in X whose G-translates generate all of n(X).

For example, if X is the 1-skeleton of a simply connected CW-complex
on which G acts cellularly, respecting the orientation of X, then it suffices
to take one two-cell from each G-orbit and take the corresponding elements
of n(X) to present G. The next example illustrates this. 1

9.6 Example. Let G be the group of symmetries of a cube, so G acts on
the graph X in Fig. 14(i). For any edge e, {ie, e, e} is a fundamental
G-transversal 1n X, and for definiteness we choose e as indicated.

Let ry,r,,r; be the reflections in the planes of symmetry =n,,7,,n,
indicated in Fig. I.d4(i1), (iii), (iv), respectively. It is easy to check that
G, =(rri)=D,, G:e=<’1="2|"fﬂ'%’(”1"2)2>%Dzs and G,=
<r|ar.1|rf=r.2i-(r|".\)">zD,x-
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® (ii) (iii) (iv)

By Theorem 9.2, we have an extension of groups

1—>1I(X)—)D3;D2—*G—* I;
1

here n(X) is free of rank 1— y(X)=1—20+24=35. (We remark that
D, X D, ~ PGL,(Z) by Example 5.2(ii), and the universal covering tree of

X isasin Fig. 1.3, page 22; this determines an action of GL, (Z) on the cube.)

The path around the bottom of the cube starting with e gives a relation
(r,r3)* =1, as in Example 2.2(v). The G-translates of this path generate
all of n(X), and we arrive at the presentation

G = (ry,15,13lrE,13,73, (r1r2)2, (rars), (rars )

It is evident that |G| =|G,||Ge| =2 x 24 = 48.

In fact, it can be seen by the action on the four diagonals of the cube
that G~ C, x Sym4.

The cube has an obvious simply connected CW-structure with X as
one-skeleton. There is exactly one G-orbit of faces, and in the above
argument the bottom face is chosen as a representative of the G-orbit to
find a suitable element generating n(X) as normal subgroup of D, x D,.

10 Free products

10.1 Notation. For any set E and cquivalence relation SSE x E we
denote the set of equivalence classes by E/S. The equivalence relation for
equality is denoted AE = {(e, e)| ec E}, called the diagonal.

Let X be a graph and S < EX x EX an equivalence relation on EX.
We define VS to be the equivalence relation on VX generated by
Lae tf), (te,tf)I(e, f)€S}. Then the incidence functions 1, T:EX - VX
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induce functions 7, 7:EX/S— VX/VS. We denote by X/S the resulting
graph. Notice there is a surjective graph map X — X/S.

10.2 Lemma. If T is a tree and S < ET x ET an equivalence relation on
ET such that for all (e, f)eS either ie=1f or te =1tfthen T/S is a tree.

Proof. Since the statements concern only finitely many elements at a
time, we may assume that T is finite.

Consider now the case where S=AEX U {(e, f), (f. )} for distinct edges
e, f of T such that ie = 1f. Consider the graph T — { f'} obtained by decleting
ffrom T. Here te and tflie in the two different components, so identifying
te and 1f attaches together the two components, and we get a trce. It is
not difficult to see that this graph is isomorphic to T/S, so T/S is a tree.

The general case i8 obtained by a finite repetition of such constructions,
and the result follows by induction. 1

10.3 Theorem. Let N be a normal subgroup of G, and T a G/N-tree such
that ET is G/N-free. If there exists a G-tree T with G-free edge set, and a
surjective map of G-trees T — T, then there exists such a T with N\T ~ T
as G-trees.

Proof. Let us denote the map T— T by t+f. Here we have a surjective
map of G/N-graphs, N\T — T, Nt f. Suppose it is not injective. Since T
is a tree, it follows that N\ET — ET, Ne &, is not injective. This is a map
of free G/N-sets, so two G/N-orbits get identified. Thus there exist e, feET
with Ge # Gf, 2= f. Hence we can construct a path p=¢%,...,e"in T
with Ge, # Ge,, e, = e,.

We claim we can choose such a path p with n= 2. Clearly n> 2. Since
p=2¢,...,& is a path in T with e, = ,, there is some ic[1,n— 1] with
e/ l=¢e; % If Ge,, #Ge; then we can take p=e*, ei;1 and achieve
n = 2. [t remains to consider the case Ge,, , = Ge;,. Heren>3and ¢, , = ge,
for some geG. If i=1 or n— 1 we can delete the first or last edge of p,
respectively, and reduce n by 1. Thus we may assume n >4 and ie[2,n — 2].
Sincee,, , = gé,= gé,, , and ET is G/N-free we see g N. Thus g¢, = ¢, = ¢,
and- Gge, = Ge, # Ge,, while the path p’'=ge\,...,gef", e}fl,...,ec*in T
is not a reduced path. Hence we can delete ge?, e} | from p’ and rcduce
n. This proves the claim that we may assume n= 2.

Here e, €% is a path in T with &, = e,,Ge, # Ge,. Since &3!,2% is a path
in T with &, = &, we see that ¢, = —¢,. Since €%, €% is a path in T either
le, = ie, or Te, =1e,. Let S=AEU{(ge,,ge,).(ge,,ge,)|geG}. It is casy
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to see that this is an equivalencc relation on EX since Ge, # Ge, and e,, e,
have trivial stabilizers. By Lemma 10.2, it follows that the G-graph T’ = T/S
is a tree. Further T' has G-free edge set and there is a surjective map of
G-trees T' > T.

By Zorn’s Lemma there is a largest equivalence relation S on ET such
that the graph T'= T/S is still a G-tree with G-free edge set having a
surjective map of G-trees T’ — T. The preceding argument shows that, by
maximality, N\T' — T must be an isomorphism, as desired. 1

10.4 Theorem. Let I be a set and (:G;— G,|icl) a family of surjective
group homomorphisms. Denote the free products by G = 1*16” G= _*1(7,,
€ 1€

and the resulting map by «:G —»G. For any subgroup H of G such that
a(H)= G, there exist subgroups H;, icl, of H such that o(H;)= G, and

H= * Hi'
tel

Proof. Clearly we may assume that I is nonempty. Let Y be a tree with
vertex set I, and incidence functions f, T; for example, Y can be a star with
one specified element of I being the initial vertex of each edge.

Let (G(—),Y) be the graph of groups such that, for all ieVY =1,
G(i) = G;, and for all eeEY, G(e)= 1 so G(e) = G(te) and there is a unique
group homomorphism ¢,: G(e) - G(Te). Then G = n(G(—), Y, Y) acts on the
tree T=T(G(—), Y, Y). Here ET is G-free.

Define (G(—), Y) and T = T(G(—), Y) similarly, so ET is G-free.

There is a surjective graph map T — T; in fact, T= (Ker o)\ T.

We view T, T as H-trees in the obvious way. Then T — T is a surjective
map of H-trees, ET is H-free and ET is H/N-free, where N = H nKer a.

By Theorem 10.3 there exists an H-tree T’ with H-free edgc set such
that N\T'=T. The natural copy of Y in T is a G-transversal, and
G = a(H)= H/N. Thus we can lift the tree Y in N\T" back to a subtree
Z in T' and Z is a fundamental H-transversal in T". Since ET' is H-free,
the Structure Theorem 4.1 shows that H = e zH »- Further, foreachveVZ,

G,=a(H),= a(H;)= o(NH,) = 2(H,), as desired. 1

10.5 Theorem. Let I be a set, and (G;|i€l) a family of groups. For any free
group F and surjective homomorphism a: F — > G;, there exist subgroups F,,
€

iel, of F such that F = '*IFi and o(F,)= G;.

Proof. Consider the natural map B:_*!oc' 1(G,)—»F. The image of g is the
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subgroup of F generated by the «™'(G;), ic/, which is «~*(G)=F. As
is a surjective map to a free group, there exists a homomorphism
y:F - i:}cx' '(G;) such that By is the idcntity on F;in particular, y is injective.

Hence we have a copy yF of F in 1*1“_1(6‘) and it is easy to check that
the restriction of the natural surjection xa” I(G,)-at* G; to the copy of
e el

F is the given surjection a. The result now follows from Theorem 10.4. 1

10.6 The Grushko—Neumann Theorem. For any set I and family (G,|icl)
of groups, rank( * G;))=) rank G,

iel

Proof. It is clear that rank ( *G ;)<Y rank G,.

lel
Let F be a free group with rank (F)=rank (1*1 G;), so there is a surjection

o:F - b G,. By Theorem 10.5, there are subgroups F,, icl, of F such that
F=» Fi and «(F;) =G, so Y rank G, < Y rank F;. But the F, are free

lel lel

groups by the Nielsen—-Schreier Thcorem 8.4, so Y rank F;=rank F =
iel

rank (-*: G);), and we have the reverse inequality. 1
e

Notes and comments

The book of Serre (1977), written with the collaboration of Bass, forms
the foundation of this chapter.

The first three sections contain little more than notation, not all of which is
standard, as noted by Rota (1986). For example, what we call a graph is usually
called a directed multigraph, and what we call a tree is usually called an oriented
tree. We felt at liberty to give the short names to the concepts which occurred
most frequently in this work.

Free products with amalgamation were introduced by Schreier (1927); the HNN
extension fake its name from the initials of the authors of Higman, Neumann and
Neumann (1949), where the concept was first studied.

Section 4 is taken from Serre (1977). The Structure Theorem 4.1 is due to Bass
and Serre; the proof can be used to obtain a normal form, which in turn can be
used as a rather cumbersome substitute for a tree. Theorem 4.12 is due to Tits,
and Proposition 4.7 is classical.

In Example 5.2, the tree is from Serre (1977), where the action of SL,(Z) is
described; the extension to GL, (Z) was pointed out to us by Paul Gerardin. The
group-theoretic conclusions are essentially well-known.

Example 5.3 is due to Serre (1977), and the interested reader can find many
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more details there. The group-theoretic conclusions in (iii), (ii) are a theorem of
Nagao (1959) and a generalization of a theorem of Thara (1966), respectively.

Example 5.4 is a condensed version of the survey we wrote for Cohn (1985); the
interested reader will find there details of the arguments, and the numerous
attributions.

Theorem 7.6 is due to Bass and Serre, see Serre (1977), and the proof here follows
Dicks (1980). Other, more topological, proofs can be found in Chiswell (1979), and
Scott and Wall (1979). Theorem 7.7 is a generalization of a result of H. Neumann
(1948), which in turn generalizes Theorem 7.8, of Kurosh (1937).

Theorem 8.2 has long been known. Theorem 8.3 secms to have been first stated
explicitly in Serre (1977), but is essentially contained in Reidemeister (1932),
Section 4, 20. Nielsen (1921) proved Theorem 8.4 for finitely generated subgroups,
and Schreier (1927) proved the general case and Theorem 8.5.

Theorem 8.6 is due to Gersten (1984); the elegant proof given here is extracted
from Goldstein and Turner (1986) where more is proved; Conjecture 8.7 is due to
G.P. Scott.

Theorem 8.8 is due to Howson (1954), whose proof mentions trees. Conjecture 8.9
is from H. Neumann (1953).

Theorem 9.2 is from Serre (1977), and the explicit version in Remark 9.5 was
written out by Brown (1984). Corollary 9.4 is due to Lyndon (1950).

Theorem 10.3 is based on results of Chiswell (1976) and Stallings (1965).
Theorem 10.4 is due to Higgins (1966). Theorem 10.5 goes back to Wagner (1957),
and the argument given here was shown to us by E. Formanek. Theorem 10.6
was proved independently by Grushko (1940) and B.H. Neumann (1943).
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Cutting graphs and building trees

Section 1 gives a useful characterization of trees in terms of vertices acting
as functions on the edge set. Section 2 introduces the concept of the Boolean
ring of a connected G-graph, and associates with it an inverse limit of
G-trees. This is used in Section 3 to determine the infinite finite-valency
distance-transitive graphs, and will also be important in the next chapter.

1 Tree sets

We begin with terminology and notation which will be used fre-
quently throughout the chapter.

1.1 Definitions. Let E, V be G-sets and A a nonempty set.

(i) The set of all functions from E to A will be denoted (E, A); this is a
G-sct with (gv)(e) = v(g~e) for all ve(E, A), g€G, ecE.

If there is specified a G-map V —(E, A) we denote it by v v|E and
write V|E for the image. The value of v|E at e will be denoted simply
v(e). There is then a dual G-map E —(V, A), denoted e—e|V, and the
same notation applies; thus for ecE, veV, e(v) = v(e).

(i) Since Z, has a ring structure, (V, Z,) is a ring under pointwisc
addition and multiplication. The 0 and 1 are the obvious constant
functions.

Ifbe(V, Z,) then b* denotes 1 — b, or cquivalently 1 + b. For any subset
F of (V,Z,), F* denotes { f*| feF}.

Let a,be(V, Z,). If ab* =0 we writc a < b; this defines a partial order
on (V,Z,). We denote by a[1b the family consisting of ab, a*b, ab*, a*b*;
these are then four distinct elements of a[Jb even though some of them
may be equal as elements of (V,Z,). We say that a and b are nested if
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