CHAPTER 8

Some Stmple Linear Groups

The Jordan—Holder theorem tells us that once we know extensions and
simple groups, then we know all finite groups. There are several infinite
families of finite simple groups (in addition to the cyclic groups of prime
order and the large alternating groups), and our main concern in this chapter
is the most “obvious” of these, the projective unimodular groups, which arise
natura}lly from the group of all matrices of determinant 1 over a field K. Since
these groups are finite only when the field K is finite, let us begin by examining
the firlite fields.

Finite Fields

Definition. If K is a field, a subfield of K is a subring k of K which contains
the inverse of every nonzero element of k. A prime field is a field k having no
proper subfields.

Theorem 8.1. Every field K contains a unique prime subfield k, and either
k= Qor k=17, for some prime p.

Proof. If k is the intersection of all the subfields of K, then it is easy to check
that k is the unique prime subfield of K. Define y: Z — K by y(n) = nl, where
1 denotes the “one” in K. It is easily checked that y is a ring homomorphism
with im y < k. Since K is a field, im y is a domain and ker y must be a prime
ideal in Z. Therefore, either ker y = 0 or ker y = (p) for some prime p. In the
first case, im y = Z and k contains an isomorphic copy F of the fraction field
of Z, namely, Q; as k is a prime field, k = F =~ Q. In the second case, k
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contains an isomorphic copy E of Z/ker y = Z,, which is a field; as k is.a
prime field, k = E = 7.

Definition. If K is a field with prime field k, then K has ckaracteristic 0 if
k ~ O and K has characteristic pif k = 7 ,.

Observe that if K has characteristic p > 0, then pa =0 for all a € K.

Corollary 8.2. If K is a finite field, then |K| = p" for some prime p and some
n> 1

Proof. If k is the prime field of K, then k % Q because K is finite; therefore,
k > Z, for some prime p. We may view K as a vector space over Z, (the
“vectors” are the elements of K, the “scalars” are the elements of k, and the
“scalar multiplication™ aa, for a € k and « € K, is just their product in K); if K
has dimension n, then |K| = p".

There exist infinite fields of prime characteristic; for example, the field of all
rational functions over Z, (i.e,, the fraction field of Z [x]) is such a field.

The existence and uniqueness of finite fields are proven in Appendix VI: for
every prime p and every integer n > 1, there exists a field with p" elements
(Theorem VI.19); two finite fields are isomorphic if and only if they have the
same number of elements (Theorem VI.20). Finite fields are called Galois
fields after their discoverer; we thus denote the field with g = p" elements by
GF(g) (another common notation for this field is F,;), though we usually
denote GF(p) by Z,.

Recall that if E is a field, k is a subfield, and n € E, then k(r), the subfield of
E obtained by adjoining 7 to k, is the smallest subfield of E containing k and
7; that is, k(=) is the intersection of all the subfields of E containing k and =.

Definition. A primitive element of a finite field K is an element 7 € K with
K = k(n), where k is the prime field.

Lemma 8.3. There exists a primitive element © of GF(p"); moreover, m may be
chosen to be a root of an irreducible polynomial g(x) € Z,[x] of degree n.

Proof. Let g = p" and let K = GF(q). By Theorem 2.18(ii), the multiplicative
group K* is cyclic; clearly, any generator @ of K* is a primitive element of K
(there can be primitive elements of K that are not generators of K*). By
Lagrange’s theorem, 97! = 1 (for |K*| = q¢ — 1), and so n is a root of f(x) =
x971 — 1. Factoring f(x) into a product of irreducible polynomials in k[x]
(where k = 7, is the prime field) provides an irreducible g(x) € k[x] having =
as a root. If g(x) has degree d, then k(n) is a subfield of K with [k(n): k] =d
(Theorem VI.21 in Appendix VI); therefore, |k(r)| = p?. But k(n) = K (be-
cause 7 is a primitive element) and sod = n. 8
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Theorem 8.4. If p is a prime, then the group Aut(GF(p")) of all field automor-
phisms of GF(p") is cyclic of order n.

Proof. Let k be the prime field of K = GF(p”"). If n is a primitive element of
K, as in the lemma, then there is an irreducible polynomial g(x) € k[x] of
degree n having m as a root. Since every ¢ € Aut(K) must {ix k pointwise
(because (1) = 1), Lemma 5.1 shows that ¢(n) is also a root of g(x). As
K = k(n), Lemma 5.2 shows that ¢ is completely determined by ¢(n). It
follows that |Aut(K)| < n, because g(x), having degree n, has at most n roots.
The map o: K — K, given by o(a) = o, 1s an automorphismof K. If l <i<n
and ¢' =1, then a = a? for every a € K. In particular, n”~* = 1, contra-
dicting © having order p" — 1 in K*. Therefore, (o) < Aut(K) is cyclic of
order n, and so Aut(K) = (o).

We remark that Aut(GF(p")) is the Galois group Gal(GF(p")/Z,), for
every ¢ € Aut(GF(p")) fixes the prime field Z, pointwise.

The General Linear Group

Groups of nonsingular matrices are as natural an object of study as groups
of permutations: the latter consists of “automorphisms” of a set; the former
consists of automorphisms of a vector space.

Deijnition. If V is an m-dimensional vector space over a field K, then the
general linear group GL(V) is the group of all nonsingular linear transforma-
tions on V (with composite as operation).

If one chooses an ordered basis {e,, ..., e,} of V, then each T € GL(V)
determines a matrix 4 = [a;;], where Te; = ), aye; (the jth column of A con-
sists of the coordinates of Te;). The function T+ A is an isomorphism
GL(V)— GL(n, K), where GL(m, K) is the multiplicative group of all m x m
nonsingular matrices over K. When K = GF(g), we may write GL(m, q)
instead of GL(m, K).

Theorem 8.5. |GL(m, q)] = (g™ — 1)(g™ — q)...(g™ — g™ ).

Proof. Let V be an m-dimensional vector space over a field K, and let
{e;,...,e,} be an ordered basis of V. If # denotes the family of all ordered
bases of ¥, then there is a bijection GL(V)— 4. if T is nonsingular, then
{Te,, ..., Te,} is an ordered basis of V; if {v,,...,v,} is an ordered basis,
then there exists a unique nonsingular T with Te; = v, for all i.

Let {v,,...,v,} be an ordered basis of V. Since there are g™ vectors in V,
there are g™ — 1 candidates for v, (the zero vector is not a candidate). Having
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chosen v,, the candidates for v, are those vectors in V not in {v,), the
subspace spanned by v,; there are thus g™ — g candidates for v,. More gener-
ally, having chosen an independent set {v, ..., v;}, we may choose v;,, to be
any vector not in {v,, ..., v;>, and so there are g™ — ¢’ candidates for v;,;.
The result follows. E

Notation. If V is an m-dimensional vector space over K = GF(g), if t is a
nonnegative integer, and if 7 is a primitive element of K, then

M(t) = {A e GL(V): det 4 is a power of n"}.

Lemma 8.6. If Q = |GL(m, q)| and if t is a divisor of q — 1, then M(t) is a
normal subgroup of GL(m, q) of order Q/t. Moreover, if ¢ — 1 =p,...p,, where
the p; are (not necessarily distinct) primes, then the following normal series is
the beginning of a composition series:

GL(m, g = M(1) > M(p,) > M(p,p;) > > Mg —-1)> 1.

Proof. Let K = GF(g). Use the correspondence theorem in the setting
det: GL(m, q) > K*.

If t divides ¢ — 1 = | K *|, then the cyclic subgroup {n*) of K* is normal (K*
is abelian), has order (g — 1)/t, and has index t. Since M(t) is the subgroup of
GL(m, q) corresponding to {(n*), it is a normal subgroup of index ¢ hence
order O/t. Now |M(p; ... p)/M(py ... prst)l = (Q/py ... DIQ/P1 - - Piv1) = Disss
since the factor groups have prime order, they are simple. 3

Definition. A matrix (or linear transformation) having determinant 1 is called
unimodular.

The subgroup M(q — 1) consists of all the unimodular matrices, for
it =1

Definition. If V' is an m-dimensional vector space over a field K, then the
special linear group SL(V) is the subgroup of GL(V) consisting of all the
unimodular transformations.

Choosing an ordered basis of V gives an isomorphism SL(V) — SL(m, K),
the group of all unimodular matrices. If K = GF(g), we may denote SL(m, K)
by SL(m, g).

The following elementary matrices are introduced to analyze the structure
of SL(m, K).

Definition. Let A be a nonzero element of a field K, and let i # j be integers
between 1 and m. An elementary transvection B;;(4) is the m x m matrix differ-
ing from the identity matrix E in that it has A as its ij entry. A transvection is
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a matrix B that is similar to some By;(4); that is, B is a conjugate of some B;;(4)
in GL(m, K).

Every transvection is unimodular. Note that the inverse of an elementary
transvection is another such: B;;(4)™' = By(— A); it follows that the inverse of
any transvection is also a transvection.

If 4 e GL(m, K), then B;;(4)A is the matrix obtained from A by adding 4
times its jth row to its ith row.

Lemma 8.7. Let K be a field. If A€ GL(iﬁ, K) and det A = p, then 4 =
UD(u), where U is a product of elementary transvections and D =
diag{1, 1,..., 1, u}.

Proof. We prove, by induction on t <m — 1, that A4 can be transformed, by
a sequence of elementary operations which add a multiple of one row to
another, into a matrix of the form

A_E,*
Y10 ¢V

where E, is the ¢t x ¢t identity matrix.

For the base step, note that the first column of A4 is not zero (4 is non-
singular). Adding some row to the second row if necessary, we may assume
that a,, 5 0. Now add a;; (1 — «,,) times row 2 to row 1 get entry 1 in the
upper left corner. We may now make the other entries in column 1 equal
corner. We may now make the other entries in column 1 equal to zero by
adding suitable multiples of row 1 to the other rows, and so 4 has been
transformed into A4;.

For the inductive step, we may assume that 4 has been transformed into a
matrix A4, as displayed above. Note that C is nonsingular (for det 4, = det C).
Assuming that C has at least two rows, we may further assume, as in the base
step, that its upper left corner y,,; ,4+; = 1 (this involves only the rows of C,
hence does not disturb the top t rows of 4,). Adding on a suitable multiple of
row t + 1 to the other rows of 4, yields a matrix 4,,,.

We may now assume that 4 has been transformed into

E, *]
[0 Iz
where y € K and p # 0. Adding suitable multiples of the last row to the other
rows cleans out the last column, leaving D(p).
In terms of matrix multiplication, we have shown that there is a matrix P,
which is a product of elementary transvections, with PA = D(u). Therefore,

A = P71D(u); this completes the proof because the inverse of an elementary
transvection is another such. {3
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Theorem 8.8.

(i) GL(m, K) is a semidirect product of SL(m, K) by K*.
(i) SL(m, K) is generated by elementary transvections.

Proof. (i) We know that SL < GL (because SL = ker det), and it is easy to see
that A = {D(u): pe K*} (= K*)is a complement of SL.

(i) By (i), each 4 € GL has a unique factorization 4 = UD(u), where
UeSL, D(p) € A, and det A = u. Therefore, A is unimodular if and only if
A = U. The result now follows from Lemma 8.7. &

Notation. If V' is an m-dimensional vector space over a field X, let Z(V') denote
the subgroup of GL(V) consisting of all scalar transformations, and let SZ(V)
be the subgroup of Z(¥) consisting of all unimodular scalar transformations.

Let Z(m, K) =~ Z(V) denote the subgroup of all m x m scalar matrices oE,
and let SZ(m, K) = SZ(V) denote the subgroup of all aE with «™ = 1. If
K = GF(q), we may also denote these subgroups by Z(m, gq) and SZ(m, g),
respectively.

Theorem 8.9.

(i) The center of GL(V) is Z(V).
(ii) The center of SL(m, K) is SZ(m, K).

Proof. (i) If T € GL(V) is not a scalar transformation, then there is v € V with
{v, Tv} independent; extend this to a basis {v, Tv, us, ..., u,,} of V. It is easy to
see that {v, v + Tv, us, ..., u,,} is also a basis of ¥, so that there is a (non-
singular) linear transformation S: V — V with Sv = v, S(Tv) = v + Tv, and
Su; = y; for all i > 3. Now T and S do not commute, for TS(v) = Tv while
ST(v) = v + TV. Therefore, T ¢ Z(GL(V)), and it follows that Z(GL(V)) =
Z).

(if) Assume now that T e SL(V), that T is not scalar, and that S is the
linear transformation constructed in (i). The matrix of § relative to the basis
{v, Tv, u3, ..., u,} is the elementary transvection B,,(1), so that det(S) =1
and S e SL(V). As in (i), T ¢ Z(SL(V)); that is, if T € Z(SL(V)), then T = oE
for some a € K. Finally, det(@E) = a™, and so o™ =1, so that SZ(V) =
Z(SL(V)).

Theorem 8.10. |SZ(m, q)| = d, where d = (m, g — 1).

Proof. Let K = GF(q). We first show, for all « € K*, that ™ = 1 if and only
if «? = 1. Since d divides m, a? = 1 implies a™ = 1. Conversely, there are
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integers a and b with d = am + b(q — 1). Thus

ad — aam+b(q'—l) — amaa(q-—l)b — ama’

because 97! = 1. Hence o™ = 1 gives 1 = o™ = o

It follows that SZ(m, q) = {x € K*: a" = 1} = {a € K*: o = 1}. Therefore,
if m is a generator of K*, then SZ(m, q) = {zn"*)> and hence |SZ(m, q)| =
i @

Our preceding discussion allows us to lengthen the normal series in
Lemma 8.6 as follows: N

GL(m, q > M(p,) > M(p,p,) > > SL(m, q) > SZ(m, q) > 1.

The center SZ(m, q) is abelian and so its composition factors are no secret
(they are cyclic groups of prime order, occurring with multiplicity, for all
primes dividing g — 1). We now consider the last factor group in this series.

Defimition. If V is an m-dimensional vector spaces over a field K, the projec-
tive unimodular group PSL(V) is the group SL(V)/SZ(V).

A choice of ordered basis of V induces an isomorphism ¢:SL(V) >
SL(m, K) with @(SZ(V)) = SZ(m, K), so that PSL(V) = SL(m, K)/SZ(m, K).
The latter group is denoted by PSL(m, K). When K = GF(g), we may denote
PSL(m, K) by PSL(m, g).

We shall see, in Chapter 9, that these groups are intimately related to
projective geometry, whence their name.

Theorem 8.11. If d = (m, ¢ — 1), then

|PSL(m, )l = (g™ — D)(@" — q)...(qg" — q"*)/d.

Proof. Immediate from Theorems 8.5 and 8.10.

EXERCISES
8.1. Let H <« SL(2, K), and let 4 € H. Using the factorization 4 = UD(y) (in the
proof of Theorem 8.8), show that if A is similar to [a g], then there is p e K*
Y

-1
such that H contains [a “ ﬁ].
wy 0
8.2. Let B = B;j(1) € GL(m, K) = G. Prove that C4(B) consists of all those nonsingu-
lar matrices 4 = [a,;;] whose ith column, aside from a;;, and whose jth row, aside

from a;;, consist of all 0’s.
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8.3. Let A < GL(m, K) be the subgroup of all nonsingular diagonal matrices.
(1) Show that A is an abelian self-centralizing subgroup; that is, if 4 € GL(m, K)
commutes with every D € A, then 4 € A.
(ii) Use part (i) to give another proof that Z(GL(m, K)) = Z(m, K) consists of the
scalar matrices.

PSL(2, K)

In this section, we concentrate on the case m = 2 with the aim of proving that
PSL(2, q) is simple whenever g > 3. We are going to see that elementary
transvections play the same role here that 3-cycles play in the analysis of the
alternating groups.

Definition. A field K is perfect if either it has characteristic 0 or it has prime
characteristic p and every A € K has a pth root in K.

If K has prime characteristic p, then the map F: K — K, given by A+— 17, is
an injective homomorphism. If K is finite, then F must be surjective; that is,
every finite field is perfect. Clearly, every algebraically closed field K is per-
fect. An example of a nonperfect field is K = Z (x), the field of all rational
functions with coefficients in Z ;; the indeterminate x does not have a pth root
in Z ,(x).

Lemma 8.12. Let K be a field which either has characteristic # 2 or is perfect
of characteristic 2. If a normal subgroup H of SL(2, K) contains an elementary
transvection By,(4) or B,,(4), then H = SL(2, K).

Proof. Note first that if B,,(4) € H, then UB, (1)U~ = B,,(— p), where

U_0—1
11 0l

By Theorem 8.8(ii), it suffices to prove that H contains every elementary
transvection. Conjugate B;,(4) by a unimodular matrix:

[a B [1 Ai‘[é —ﬁ]_ 1 —Aay  Ac®
Y 5]01 A _[—W 1+lav:|'

In particular, if y = 0, then « # 0 and this conjugate is B,,(4a?). Since H is
normal in SL, these conjugates lie in H. Define

I'= {0} u {pueK:By,(w e H},

It is easy to see that I' is a subgroup of the additive group K, and so it
contains all elements of the form A(x? — f?), where o, € K.
We claim that I = K, and this will complete the proof. If K has character-
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istic # 2, then each u € K is a difference of squares:
p=[p+ 11— - DI~

For each pe K, therefore, there are o, f € K with A7y = o®* — 2, so that

u=Ao* —p%)eTl,and I = K. If K has characteristic 2 and is perfect, then

every element in K has a square root in K. In particular, there is « € K with
A7y = o2, and T contains Ao = p.

The next theorem was proved by C. Jordan (1870) for g prime. In 1893,
after F. Cole had discovered a simple group G of order 504, E.H. Moore
recognized G as PSL(2, 8), and then proved the'simplicity of PSL(2, q) for all
prime powers g > 3.

Theorem 8.13 (Jordan—Moasre). The groups PSL(2, q) are simple if and only if
q>3.

Proof. By Theorem 8.11,

@ —1D(@*—q) ifg=2"

PSL(2 =
PSLC. 1= {0 16 "0 i 4= ot e

Therefore, PSL(2, 2) has order 6 and PSL(2, 3) has order 12, and there are no
simple groups of these orders.
Assume now that g > 4. It suffices to prove that a normal subgroup H of
SL(2, q) which contains a matrix not in SZ(2, g) must be all of SL(2, g).
Suppose that H contains a matrix

4= « 0
= 2]

where o # + 1; thatis, a®> # 1.If B = B,,(1), then H contains the commutator
BAB™'A™' = B,,(1 — a~?), which is an elementary transvection. Therefore,
H = SL(2, q), by Lemma 8.12.

To complete the proof, we need only display a matrix in H whose top row
is [ 0], where.a # + 1. By hypothesis, there is a matrix M in H, not in
SZ(2, q),and M is similar to either a diagonal matrix or a matrix of the form

0 -1
1 g7
for the only rational canonical forms for a 2 x 2 matrix are: two 1 x 1 blocks

(ie., a diagonal matrix) or a 2 x 2 companion matrix (which has the above
form because it is unimodular). In the first case, Exercise 8.1 shows that

ool 3o

since C is unimodular, aff = 1; since M is not in SZ(m, q), o # f. It follows
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that o ¢ + 1, and C is the desired matrix. In the second case, Exercise 8.1

shows that H contains
0 _ 1
D= [ # }
v B

If T = diag{a™", o}, where o is to be chosen, then H contains the commutator

U=TDpT'pt=| * .
[uﬁ(az 1) ]

We are done if ™2 # + 1; that s, if o* # 1. If ¢ > 5, then such an « exists, for
a field contains at most four roots of x* — 1. If g = 4, then every pe K
satisfies the equation x* — x = 0, so that o 5 1 implies a* # 1.

Only the case GF(5) = Z5 remains. Consider the factor f occurring in the
lower left corner 4 = uf(a® — 1) of U. If B # 0, choose « = [2] € Z; then
o> — 150 and U = B,;(4). Hence H contains the elementary transvection
U? = B,,(—24) and we are done. If § = 0, then

0 —u!
D = H.
[/«t 0 }E

Therefore, the normal subgroup H contains
v — vt — /«L”I]

* *

B2 (v)DBy,(—v) =[

for all ve Z5. If v = 2u71, then the top row of this last matrix is [2 0], and
the theorem is proved.

Corollary 8.14. If K is an infinite field which either has characteristic # 2 or
is perfect of characteristic 2, then PSL(2, K) is a simple group.

Proof. The finiteness of K in the proof of the theorem was used only to satisfy
the hypotheses of Lemma 8.12.

Remark. In Theorem 9.48, we will prove that PSL(2, K) is simple for every
infinite field.

Corollary 8.15. SL(2, 5) is not solvable.
Proof. Every quotient of a solvable group is solvable.

We have exhibited an infinite family of simple groups. Are any of its mem-
bers distinct from simple groups we already know? Using Theorem 8.11, we
see that both PSL(2, 4) and PSL(2, 5) have order 60. By Exercise 4.37, all

simple groups of order 60 are isomorphic:

PSL(2, 4) = A, = PSL(2, 5).
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If g = 7, however, then we do get a new simple group, for |PSL(2, 7)| = 168,
which is neither prime nor 3n!. If we take g = 8, we see that there is a simple
group of order 504; if g = 11, we see a simple group of order 660. (It is known
that the only other isomorphisms involving 4,’s and PSLs, aside from those
displayed above, are Exercise 8.12: PSL(2, 9) = A, (these groups have order
360); Exercise 9.26: PSL(2, 7) = PSL(3, 2) (these groups have order 168); The-
orem 9.73: PSL(4, 2) =~ A, (these groups have order 20, 160).)

EXERCISES

8.4. Show that the Sylow p-subgroups of SL(2, 5) are either cyclic (when p is odd) or
quaternion (when p = 2). Conclude that SL(2, 5) % Ss.

8.5. What is the Sylow 2-subgroup of SL(2, 3)?

8.6. (i) Show that PSL(2,2) = S;.
(i) Show that SL(2, 3) 2 S, but that PSL(2, 3) = A4,.

8.7. What are the composition factors of GL(2, 7)?

8.8. Show that if H <« GL(2, K), where K has more than three elements, then either
H < Z(GL(2, K))or SL(2, K) < H.

8.9. (i) What is the commutator subgroup of GL(2, 2)?
(i) What is the commutator subgroup of GL(2, 3)?
(i) If g > 3, prove that the commutator subgroup of GL(2, g) is SL(2, g).

8.10. Prove, for every field K, that all transvections are conjugate in GL(2, K).

8.11. Let A be a unimodular matrix. Show that 4 determines an involution in
PSL(2, K)if and only if 4 has trace 0, and that 4 determines an element of order
3 in PSL(2, K) if and only if 4 has trace + 1. (Hint. Use canonical forms.)

8.12. Prove that any two simple groups of order 360 are isomorphic, and conclude
‘that PSL(2, 9) = A¢. (Hint. Show that a Sylow 5-subgroup has six conjugates.)

PSL(m, K)

The simplicity of PSL(m, K) for all m > 3 and all fields K will be proved in
this section. In 1870, C. Jordan proved this theorem for K = Z,, and L.E.
Dickson extended the result to all finite fields K in 1897, four years after
Moore had proved the result for m = 2. The proof we present, due to E.
Artin, is much more elegant than matrix manipulations (though we prefer
matrices when m = 2).

An m x m elementary transvection B;;(4) represents a linear transforma-
tion T on an m-dimensional vector space V over K. There is an ordered basis
{vy, ..., v,} of V with To; = v, for all | # i and with Tv; = v; + Av;. Note that
T fixes every vector in the (m — 1)-dimensional subspace H spanned by all
v F U
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Definition. If V' is an m-dimensional vector space over a field K, then a
hyperplane H in V is a subspace of dimension m — 1.

The linear transformation T arising from an elementary transvection fixes
the hyperplane H pointwise. If w e V and w ¢ H, then {w) = {uw: pe K} is
a transversal of H in V: the vector space V, considered as an additive group,
is the disjoint union of the cosets H + uw. Hence, every vector v € V has a
unique expression of the form

v=uw+ h, ue K, heH.
Lemma 8.16. Let H be a hyperplane in V and let T € GL(V) fix H pointwise. If

we Vand wé¢ H, then
T(w) = uw + hy

for some ue K and hy € H. Moreover, given any v € V,
T(v) = puw + k',

for some h' € H.

Proof. We observed above that every vector in ¥ has an expression of the
form Aw + h. In particular, T(w) has such an expression. If v € V, then v =
Aw + h" for some A € K and h” € H. Since T fixes H,

Tw)=AT(w) + h" = A(uw + hy) + h"
= p(Aw + h") + [(A1 — ph" + Aho]
=puv+ h'.

The scalar p = p(T) in Lemma 8.16 is thus determined uniquely by any T
fixing a hyperplane pointwise.

Definition. Let T € GL(V) fix a hyperplane H pointwise, and let p = u(T). If
1 1, then T is called a dilatation; if u =1 and if T # 1, then T is called a
transvection.

The next theorem and its corollary show that the transvections just defined
are precisely those linear transformations arising from matrix transvections.

Theorem 8.17. Let T € GL(V) fix a hyperplane H pointwise, and let u = u(T).

() If T is a dilatation, then T has a matrix D(p) = diag{1, ..., 1, u} (relative
to a suitable basis of V).

@i1) If T is a transvection, then T has matrix B, ,(1) (relative to a suitable basis
of V). Moreover, T has no eigenvectors outside of H in this case.

Proof. Every nonzero vector in H is an eigenvector of T (with eigenvalue 1);
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are there any others? Choose w € V with w ¢ H; since T fixes H pointwise,
Tw = uw + h, where he H.
Ifve Vand v ¢ H, the lemma gives
To=puv+ h',

where h' = (1 — wh"” + Ahg € H. If v is an eigenvector of T, then Tv = fv for
some f§ € K. But Tv = fvif and only if § = g and Ah = (u — 1)h": sufficiency
is obvious; conversely, if fv = uv + b, then (f — v =h'e (o> N H=0.

(i) If T is a dilatation, then u — 1 # 0 and h” = A(u — 1)"'h. It follows
that v = w + (4 — 1)™'h is an eigenvector of T for the eigenvalue u. If
{vy,..., Um—1 } is a basis of H, then adjoining v gives a basis of ¥, and the
matrix of T relative to this basis is D(p) = diag{1, ..., 1, u}.

(i) If T is a transvection, then p = 1. Choose w ¢ H so that Tw = w + h,
where he H and h # 0. If v ¢ H is an eigenvector of T, then oo = To = v + h
for some o € K; hence, (x — 1)ve{v)nH =0,sothata=1and Tv=v. It
follows that T = 1,, contradicting the proviso in the definition of transvec-
tion excluding the identity. Therefore, T has no eigenvectors outside of H. If
{h, hs, ..., h,} is a basis of H, then adjoining w as the first vector gives an
ordered basis of V; and the matrix of T relative to this basis is B, ,(1).

Corollary 8.18. All transvections in GL(m, K) are conjugate.

Proof. Since transvections are, by definition, conjugates of elementary trans-
vections, it suffices to prove that any two elementary transvections are conju-
gate to B,;(1). Let ¥ be an m-dimensional vector space over K with basis
{v1,..%, v}, and let T be the linear transformation with Tv; = v, + v, and
Tv, =v,foralll > 2.1fi # j and A # O, define a new ordered basis {u,, ..., u,,}
of V. as follows: put v, in position i, put A7'v, in position j, and fill the
remaining m — 2 positions with vs, ..., v, in this order (e.g., if m =5, i = 2,
and j = 4, then {u,,..., us} = {v3, vy, v4, A7 1v,, v5}). The matrix of T rela-
tive to this new ordered basis is easily seen to be Bj;(1). Therefore B,, (1) and
By;(4) are similar, for they represent the same linear transformation relative to
different choices of ordered basis.

If Te GL(V) is a transvection fixing a hyperplane H and if w ¢ H, then
Tw =w + h for some nonzero he H. If ve V, then v = lw + h" for some
Ae K and h" € H, and (*) in the proof of Lemma 8.16 gives Tv = v + Ah
(because 1 — u = 0). The function ¢: V — K, defined by ¢(v) = ¢(Aw + h) =
Ais a K-linear transformation (i.e., it is a finear functional) with kernel H. For
each transvection T, there is thus a linear functional ¢ and a vector i € ker ¢
with

Tv=v+ @(h forall veV.

Notation. Given a nonzero linear functional ¢ on V and a nonzero vector
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h € ker ¢, define {¢@, h}: V — V by
{@,h}: v>v + @(V)h.

It is clear that {¢, h} is a transvection; moreover, for every transvection T,
there exist ¢ # 0 and h # 0 with T = {¢, h}.

Lemma 8.19. Let V be a vector space over K.

() If @ and y are linear functionals on V, and if h, | € V satisfy @(h) = y(h) =
o(l), then

{p.nyolo, l} ={p,h+1}  and  {o, h}o{d,h} ={p+, h}
(i1) Forallae K™,
{og, h} = {0, ah}.
(i) {@, h} = {Y, 1} if and only if there is a scalar o € K™ with
W= o and h=al

(iv) If S € GL(V), then
S{p,h}S™' = {©S™", Sh}.

Proof. All are routine. For example, let us prove half of (iii). If {¢, h} = {i,, I},
then @(v)h = Y(v)! for all v € V. Since ¢ # 0, there is v € .V with ¢(v) # 0, so
that h = @)Y ([©)]; if « = @(v) 1Y (v), then h = «l. To see that ¥ (u) = op(u)
for all u € ¥, note that ¢(u) = 0 if and only if Y/ (1) = 0 (because both h, [ 5 0).
If Y(u) and @(u) are nonzero, then h = @(u) "y (u)! implies ¢(u) 'y (u) =
o)W (v) = o, and so Y = ag.

Theorem 8.20. The commutator subgroup of GL(V) is SL(V) unless V is a
two-dimensional vector space over Z,.

Proof. Now det: GL — K™ has kernel SL and GL/SL = K*; since K* is
abelian, (GL) < SL.

For the reverse inclusion, let v: GL - GL/(GL) be the natural map. By
Corollary 8.18, all transvections are conjugate in GL, and so v(T) = v(T") for
all transvections T and T'; let d denote their common value. Let T = {¢, h}
be a transvection. If we avoid the exceptional case in the statement, then H
contains a nonzero vector ! (not necessarily distinct from h) with h + [ 54 0.
By the lemma, {¢, h} o {@, I} = {@, h + [} (these are transvections because
%0 and h + [ % 0). Applying v to this equation gives d*> = d in GL/(GLY,
whence d = 1. Thus, every transvection T € ker v = (GL). But SL is gener-
ated by the transvections, by Theorem 8.8(ii), and so SL < (GL).

If V is a two-dimensional vector space over Z,, then GL(V) is a genuine
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exception to the theorem. In this case,
GL(V)=SL(V)= SL(2,2) =~ PSL(2, 2) ~ S,,

and (S;3) = 45, a proper subgroup.
We have seen that any two transvections are conjugate in GL. It is easy to

see that
1 1 and 1 -1
0 1 0 1

are not conjugate in SL(2, 3); indeed, these transvections are not conjugate in
SL(2, K) for any field K in which —1 is not a square. The assumption m > 3
in the next result is thus essential.

Theorem 8.21. If m > 3, then all transvections are conjugate in SL(V).

Proof. Let {@, h} and {y, I} be transvections, and let H = ker ¢ and L =
ker Y be the hyperplanes fixed by each. Choose v, u e V with ¢(v) = 1 = /(1)
(hence v ¢ H and u ¢ L). There are bases {h, h,,..., h,— }and {L 15, ..., [}
of H and L, respectively, and adjoining v and u gives bases {v, h, h,, ..., I, }
and {u, 1, I, ..., L.} of V.If S € GL(V) takes the first of these ordered bases
to the second, then

(*) Sw)=u, S(H)=L, and Sk=1

Let,det S = d; we now show that we can force S to have determinant 1.
Since jn > 3, the first basis of ¥ constructed above contains at least one other
vector (say, h,,_,) besides v and h. Redefine S so that S(h,_,)=d™l,_,.
Relative to the basis {v, h, h,, ..., h,_,}, the matrix of the new transforma-
tion differs from the matrix of the original one in that its last column is
multiplied by d~!. The new S thus has determinant 1 as well as the other
properties (x) of S.

Now S{o, h}S7' = {¢S™", Sh} = {¢S7', I}, by Lemma 8.19(iv). Since ¢ S™*
and ¥ agree on the basis {u, 1, 15,..., 1,1} of V, they are equal. Therefore
{o, h} and {y, I}. are conjugate in SL, as desired.

Notation. If H is a hyperplane in a vector space V, then
' J (H) = {all transvections fixing H} u {1, }.
Lemma 8.22. Let H be a hyperplane in an m-dimensional vector space V over
K.
(i) There is a linear functional ¢ with H = ker ¢ so that
T H) = {{p,h}:he H} L {l,}.

(i) J (H) is an (abelian) subgroup of SL(V), and 9 (H) = H.
(iii) The centralizer Cs (7 (H)) = SZ(V)J (H).
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Proof. (i) Observe that linear functionals ¢ and y have the same kernel if and
only if there is a nonzero o € K with y = ag. Clearly y = o implies ker iy =
ker . Conversely, if H is their common kernel, choose w € V with w ¢ H.
Now Y(w) = ap(w) for some aoe K*. If ve V, then v = Aw + h, for some
Ae Kand h e H, and ¢(v) = Ay (w) = Aop(w) = ap(dw + h) = ap(v).

If {o,h}, {Y,1} e T(H), then Lemma 8.19(ii) gives {y, I} = {ap, I} =
{p,al}. Since {¢p, h}™' = {p, —h}, Lemma 8.19(i) gives {¢, h} o {y, [} 7' =
{@, h — al} € T (H). Therefore, 7 (H) < SL(V).

(ii) Let ¢ be a linear functional with H = ker ¢. By (i), each T € J(H) has
the form T = {¢, h} for some he H, and this form is unique, by Lemma
8.19(iii). It is now easy to see that the function (H) — H, given by {¢, h} —
h, is an isomorphism.

(iii) Since J (H) is abelian, SZ(V)J (H) < Cs. (9 (H)). For the reverse in-
clusion, assume that S € SL(V) commutes with every {¢, h}: for all h e H,
S{p, h}S7" = {p, h}. By Lemma 8.19(iv), S{¢p, h}S™* = {¢S7!, Sh}, and so
Lemma 8.19(iii) gives o« € K™ with

(%) oSt =oap and Sh=a"th

Hence oS fixes H pointwise, so that a.S is either a transvection or a dilatation.
If «S is a transvection, then oS €  (H), and so S = o™ («S) e SZ(V)J (H). If
oS is a dilatation, then it has an eigenvector w outside of H, and aSw = uw,
where 1 # u = det aS = o™ (for det S = 1); hence, Sw = o™ 'w. But S~ 'w =
e w) = a7 1 p(w), so that (x+) give @(w) = a™p(w). Since @(w) = 0 (be-
cause w ¢ H), we reach the contradiction ™ = 1. H

Theorem 8.23 (Jordan—Dickson). If m > 3 and V is an m-dimensional vector
space over a field K, then the groups PSL(V) are simple.

Proof. We show that if N is a normal subgroup of SL(V) containing some A
not in SZ(V), then N = SL(V); by Theorem 8.17, it suffices to show that N
contains a transvection.

Since SL(V) is generated by transvections, there exists a transvection T
which does not commute with A: the commutator B= T™14A71TA4 # 1. Note
that N < SL gives Be N. Thus

B=TYA'TA) =T, T,,

where each T; is a transvection. Now T; = {¢;, h;}, where h; € H; = ker ¢; for
i =1, 2; that is,
T{v) = v + @i(v)h; forall velV.

Let W be the subspace {h;, h,) < V, so that dim W < 2. Since dim V > 3,
there is a hyperplane L of V containing W. We claim that B(L) < L. If [ e L,
then

B() = T, T,(l) = To() + o1(T())h,

=1+ @,(Ohy + @ (Ty()h, e L + W < L.
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We now claim that H; n H, # 0. This is surely true if H, = H,. If H, # H,,
then H, + H, = V (hyperplanes are maximal subspaces) and dim(H, + H,) =
m. Since

dim H, + dim H, = dim(H, + H,) + dim(H,; n H,),

we havedim(H, nH,)=m —~2 > 1.
If ze H n H, with z # 0, then

B(z) = T, T,(z) = z.
We may assume that B is not a transvection (or we are done); therefore,
B ¢ (L), which is wholly comprised of transvections. If B = «S, where
S e (L), then z is an eigenvector of S (z = Bz = Sz, and so Sz = a7'z). As
eigenvectors of transvections lie in the fixed hyperplane, z € L and so o = 1,
giving the contradiction S = B. Therefore, B ¢ SZ(V)J (L) = Cg (I (L)), so
there exists U € 4 (L) not commuting with B:

C—=UBU™'B™' # I:
of course, C = (UBU™)B™' e N. If [ € L, then
C(l) = UBU™'B~'(l) = UB(B~(l)) = |,

because B™!(/)e L and U™ € 7 (L) fixes L. Therefore, the transformation C
fixes the hyperplane L, and so C is either a transvection or a dilatation. But
C is not a dilatation because det C = 1. Therefore C is a transvection in N,
and the proof is complete.

We shall give different proofs of Theorems 8.13 and 8.22 in Chapter 9.
Observe that |PSL(3, 4)] = 20,160 = 18!, so that PSL(3,4) and A4 are
simple gr\oups of the same order.

Theorem 8.24 (Schottenfels, 1906). PSL(3, 4) and A4 are nonisomorphic simple
groups of the same order.

Proof. The permutations (1 2)(3 4)and (1 2)(3 4)(5 6)(7 8) are even (hence
lie in Ag), are involutions, and are not conjugate in A4 (indeed, they are not
even conjugate in Sg for they have different cycle structures). We prove the
theorem by showing that all involutions in PSL(3, 4) are conjugate.

A nonscalar matrix 4 € SL(3, 4) corresponds to an involution in PSL(3, 4)
if and only if A% is scalar, and A? is scalar if and only if (PAP™!)? is scalar for
every nousingular matrix P. Thus 4 can be replaced by anything similar to
it, and so we may assume that A is a rational canonical form. If 4 is a direct
sum of 1 x 1 companion matrices, then 4 = diag{a, 8, y}. But A? scalar im-
plies a2 = p? = y2; as GF(4) has characteristic 2, this gives x = f =y and 4
is scalar, a contradiction. If 4is a 3 x 3 companion matrix,

A=

S = R
—_ R O
R O O
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then A% has 1 as the entry in position (3, 1), and so A4? is not scalar. We
conclude that A4 is a direct sum of a 1 x 1 companion matrix and a 2 x 2
companion matrix:

Now det 4 = 1 = aff (remember that —1 = 1 here), so that f = ¢, and 4>
scalar forces y = 0. Thus,

There are only three such matrices; if 7 is a primitive element of GF(4), they
are

1 00 T 0 O 72 0 0
A={0 0 171; B={0 0 =% C=|0 0 =
010 01 0 0 1 0

Note that 42 = E, B> = n?E, and C? = nE. It follows that if M e SL(2, 3)
and M? = E (a stronger condition, of course, than M? being scalar), then M
is similar to A; thatis, M = PAP™! for some P € GL(3, 4). In particular, n*B
and nC are involutions, so there are P, Q € GL(3, 4) with

PAP' =n*B  and QAQ™!'=nC.

Since [GL(3, 4): SL(3, 4)] = 3 (for GL/SL = GF(4)*) and since the matrix
diag{m, 1, 1} of determinant = ¢ 1 commutes with 4, Exercise 3.7 allows us
to assume that P and Q lie in SL(3, 4). It follows that 4, B, and C become
conjugate in PSL(3, 4), as desired.

Theorem 8.24 can also be proved by showing that PSL(3, 4) contains no
element of order 15, while Ag; does contain such an element, namely,
(123)45678)

One can display infinitely many pairs of nonisomorphic simple groups
having the same finite order, but the classification of the finite simple groups
shows that there do not exist three nonisomorphic simple groups of the same
order.

Classical Groups

At the end of the nineteenth century, the investigation of solutions of systems
of differential equations led to complex Lie groups which are intimately re-
lated to simple Lie algebras of matrices over C. There are analogues of these



