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9.33. Show that M,, = {oy, 03, 03, 04, 05, Where
o (A) = —1/4, aA)=4+1, g3(A) =4+,
g A) =724, os(d) = A’

9.34. Prove that M, consists of even permutations of P*(9). (Hint. Write each of the
generators o;, 1 <i < 5, as a product of disjoint cycles.)

9.35. Let g5 and g be the permutations of GF(9) defined by g¢(4) = 7?4 + n4* and
a,(4) = 23. Regarding GF(9) as a vector space over Z, prove that g¢ and g are
linear transformations.

9.36. Prove that GL(2, 3) (a4, 05, 06, d;) {(Where o, and o5 are as in Exercise 9.33,
and o, and o, are as in Exercise 9.35). (Hint. Using the coordinates in Exercise

9.32, one has
1 -t o -1
0y = 1 -1/ as = 1 ol
ot 1ot
%=lo -1 o -1

Mathieu Groups

We have already seen some doubly and triply transitive groups. In this sec-
tion, we construct the five simple Mathieu groups; one is 3-transitive, two
are 4-transitive, and two are 5-transitive. In 1873, Jordan proved there are
no sharply 6-transitive groups (other than the symmetric and alternating
groups). One consequence of the classification of all finite simple groups is
that no 6-transitive groups exist other than the symmetric and alternating
groups; indeed, all multiply transitive groups are now known (see the survey
article [P.J. Cameron, Finite permutation groups and finite simple groups,
Bull. London Math. Soc. 13 (1981), pp. 1-22]).

All G-sets in this section are faithful and, from now on, we shall call such
groups G permutation groups; that is, G < Sy for some set X. Indeed, we
finally succumb to the irresistible urge of applying to groups G those adjec-
tives heretofore reserved for G-sets. For example, we will say “G is a doubly
transitive group of degree n” meaning that there is a (faithful) doubly transi-
tive G-set X having n elements.

We know that if X is a k-transitive G-set and if x € X, then X — {x} isa
(k — 1)-transitive G,-set. Is the converse true? Is it possible to begin with a
k-transitive G,-set X and construct a (k + 1)-transitive G-set X U {y}?

Definition. Let G be a permutation group on X and let ¥ = X U {c0}, where
o¢X .~A tran~sitive permutation group G on X is a transitive extension of G
ifG<Gand G, =G.
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_ Recall Lemma 9.5: If X is a k-transitive G-set, then X is a (k + 1)-transitive
G-set (should X exist).

Theorem 9.51. Let G be a doubly transitive permutation group on a set X.
Suppose there is x € X, o0 ¢ X, g € G, and a permutation h of X = X U {00}
such that:

(@) g€ Gy

(i) h(e0) € X;
(iii) h* € G and (gh)® € G; and
(iv) hG.h = G,.

Then G = {G, h) < Sy is a transitive extension of G.
Proof. Condition (i) shows that G acts transitively on~)~(. It suffices to prove,
as Theorem 9.4 predicts, that G = G u GhG, for then G,, = G (because noth-
ing in GhG fixes o).

By Corollary 2.4, G U GhG is a group if it is closed under multiplication.

Now
(G u GhG)(G U GhG) = GG U GGhG L GhGG U GhGGhG

< Gu GhG U GhGhG,

because GG = G. It must be shown that GhGhG = G U GhG, and this will
follow if we show that hGh = G U GhG.

Since G acts doubly transitively on X, Theorem 9.4 gives G = G, u G, gG,
(for g ¢ G,). The hypothesis gives y, 6 € G with h? = y and (gh)® = 6. It fol-
lows that hy™ = h™ = y~'h and hgh = g~'h~'g™'5. Let us now compute.

hGh = h(G, v G,gG,)h
= hG.huhG, gG.h
= hG.hu (hG W)k gh™ (hG,h)
= G,uG,h™lgh™ G, (condition (iv))
= G, v G hghy™)G,
=G, UGy Mg h g8y TG,
= GuGh™G
=Gu Gy 'hG
=GuGhG. B
One can say a bit about the cycle structure of h. If h(c0) = a € X, then
h* e G = G,, implies h(a) = h*(o0) = o0; hence, h = (00 a)h’, where h' € G, ,

is disjoint from (co a). Similarly, one can see that gh has a 3-cycle in its
factorization into disjoint cycles.
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The reader will better understand the choices in the coming constructions
once the relation between the Mathieu groups and Steiner systems is seen.

Theorem 9.52. There exists a sharply 4-transitive group My, of degree 11 and
order 7920 = 11-10-9-8 = 2432511 such that the stabilizer of a point is
My,

Proof. By Theorem 9.49, M, acts sharply 3-transitively on X = GF(9) v
{o0}. We construct a transitive extension of M,, acting on X = {X, w},
where « is a new symbol. If = is a primitive element of GF(9) with
12 + n = 1, define

X = 00,

g =0 ) 2")x* ®)(n* n°) = 1/4,
and

h=(c0 @)(r n?)(@> 77)(x® 7 = (0 o),
where o4(1) = n*A 4+ 72 (use Exercise 9.32 to verify this).

The element g lies in M,,, for det(g) = —1 = =n*, which is a square in
GF(9). It is clear that g ¢ (M), (for g(co) = 0), h(w) = 0 € X, and h* =
1 € G. Moreover, (gh)® = 1 because gh = (w 0 co)(z n° 73)(n? =7 n°).

To satisfy the last condition of Theorem 9.51, observe that if /€ (Mg),
then

hfh(e0) = hf(w) = h(w) = oo,
so that 1(M )7 = (M,),, if we can show that hfl e M;o. Now (Mo), =
S, u T, so that either f= 7%+« or f=nr**23+ o, where i >0 and
o € GF(9). In the first case (computing with the second form of h = (w ©0)0y),
}?ﬂl(’l) = (nzi+4 + TL‘6H4)11 + (n2i+3 + n6i+7)/13 + 2a + 7!0:3.

The coefficients of 2 and A% are n?**(1 + n*) and #?'*3(1 + n**4), respec-
tively. When i = 2j is even, the second coefficient is 0 and the first coefficient
is w**4, which is a square; hence, hifhe S, < M,, in this case. When
i=2j+1 is odd, the first coefficient is 0 and the second coefficient is
n%73, which is a nonsquare, so that hfhe T, = M;,. The second case
(f = =**1)3 + o) is similar; the reader may now calculate that

hfh(l) = 72751 4+ ¥ + n2 U1 + 7423 + nPa + mod,
an expression which can be treated as the similar expression in the first case.

It follows from Theorem 9.8(v) that M, ,, defined as (M, h), acts sharply
4-transitively on X, and so |M, ] = 7920.

Note, for later use, that both g and h are even permutations, so that Exer-
cise 9.34 gives M, < A4,;.

This procedure can be repeated; again, the difficulty is discovering a good
permutation to adjoin.
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Theorem 9.53. There exists a sharply S-transitive group M,, of degree 12
and order 95,040 = 12-11-10-9-8 = 25-33-5- 11 such that the stabilizer of a
point is M.

Proof. By Theorem 9.52, M,, acts sharply 4-transitively on Y =
{GF(9), w0, w}. We construct a transitive extension of M, acting on ¥ =
{Y, Q3}, where Q is a new symbol. If = is a primitive element of GF(9) with
2 + n = 1, define

X = o,
h= (w0 w)r w?)(#* 27) (x> =%,
and
k= (0 Q@ n®)x* 7% x° 7)) = (0 Y1* = (0 Qo,

(note that this is the same h occurring in the construction of Mi,).
Clearly k(Q)=weY and h¢ (M), =M, Also, k* =1 and hk =
(@ Q@ w)(x 7" =n8)(x?® n° =) has order 3. To satisfy the last condition of
Theorem 9.51, observe first that if fe (M,,), = Mo = Su T, then kfk also
fixes w. Finally, kfk e M,,: if f(1) = (al + b)/(cA + d) € S, then kfk(1)=
(@2 + b3)/(c®) + d°) has determinant a*d> — b>c* = (ad — bc)?, which is a
square because ad — be is; a similar argument holds when fe T. Thus,
kM, ok = M,,.

1t follows from Theorem 9.8(v) that M, ,, defined as (M, k), acts sharply
S-transitively on ¥, and so |M,| = 95,040.

Note that k is an even permutation, so that M, < A4,,.

The theorem of Jordan mentioned at the beginning of this section can now
be stated precisely: The only sharply 4-transitive groups are S,, Ss, A, and
M, ; the only sharply 5-transitive groups are Ss, Sg, A, and M, ,; if k > 6,
then the only sharply k-transitive groups are Sy, S;+;, and A,.,. We remind
the reader that Zassenhaus (1936) classified all sharply 3-transitive groups
(there are only PGL(2, q) and M(p®") for odd primes p). If p is a prime
and g = p", then Aut(l, g) is a solvable doubly transitive group of degree g.
Zassenhaus (1936) proved that every sharply 2-transitive group, with only
finitely many exceptions, can be imbedded in Aut(l, g) for some g; Huppert
(1957) generalized this by proving that any faithful doubly transitive solvable
group can, with only finitely many more exceptions, be imbedded in Aut(1, g)
for some q. Thompson completed the classification of sharply 2-transitive
groups as certain Frobenius groups. The classification of all finite simple
groups can be used to give an explicit enumeration of all faithful doubly
transitive groups. The classification of all sharply 1-transitive groups, that is,
of all regular groups, is, by Cayley’s theorem, the classification of all finite
groups.

The “large” Mathieu groups are also constructed as a sequence of transi-
tive extensions, but now beginning with PSL(3, 4) (which acts doubly transi-
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tively on P?(4)) instead of with M,. Since |P*(4)] =42+ 4 + 1 =21, one
begins with a permutation group of degree 21. We describe elements of P*(4)
by their homogeneous coordinates.

Lemma 9.54. Let f8 be a primitive element of GF(4). The functions f;: P*(4) —
P%(4), for i = 1, 2, 3, defined by

S0 mv] = [A% + v, p%v?),

L0 pv] =022 42, B,

f3lA w vl =[A%, 12, 97],
are involutions which fix [1, 0, 0). Moreover,

(PSL(3, 4), f5, f3» = PT'L(3, 4).
Proof. The proof is left as an exercise for the reader (with the reminder that
all 3-tuples are regarded as column vectors). A hint for the second statement

is that PSL(3, 4) < PT'L(3, 4), PT'L(3, 4)/PSL(3, 4) = S5, and, if the unique
nontrivial automorphism of GF(4) is 0: A A% then f; = o, and

100
fi=101 0o, B
00 p

Theorem 9.55. There exists a 3-transitive group M,, of degree 22 and order
443,520 = 22-21-20-48 = 27-32-5-7-11 such that the stabilizer of a point is
PSL(3, 4).

Proof. We show that G = PSL(3, 4) acting on X = P%(4) has a transitive
extension. Let
x=[1,0,0],

gl4, g v] = [ A4 v],
hy = (0 [1,0,00)f;-

In matrix form,

so thatdet(g) = —1 = 1 € GF(4) and g € PSL(3, 4). It is plain that g does not
fix x = [1, 0, 0] and, by the lemma, that h? = 1. The following computation
shows that (gh,)® = 1. If [4, &, v] # o0, [1, 0, 0], or {0, 1, 0], then

(gh)* [ 1 v] = [Av + p2(% + 1), gy + A2 + 1),v7 1
If v % 0, then v> = 1 and v® + 1 =0, so that the right side is [1v, pv, v*] =
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[% u, v]. If v = 0, then the right side is [ 1%, 12, 0]; since Au # 0, by our initial
choice of [4, p, v], we have [u?, 22, 0] = [(A)u?, (Ap) 4%, 0] = [A, 1, 0. The
reader may show that (gh,)? also fixes oo, [1,0,0], and [0, 1, 0], so that
(ghy)* = 1.
Finally, assume that k € G, < PSL(3, 4), so that k is the coset (mod scalar
matrices) of
*

1 #*
k=10 a b
0 ¢ d

(because k fixes [1, 0, 0]). Now det(k) = 1 = ad — bc. The reader may now
calculate that h kh,, mod scalars, is

1 % *
hikh,=|0 a* b?
0 ¢ 42

which fixes [1, 0, 0] and whose determinant is a?d® — b?c* = (ad — bc)® = 1.
Thus h,G.h, = G,, and Theorem 9.51 shows that M,, = (PSL(3, 4), h,>
acts 3-transitively on X = P2(4) U {0} with (M,,),, = PSL(3, 4).

By Theorem 9.7, |M,,| = 22-21-20-|H|, where H is the stabilizer in M,,
of three points. Since (M,,), = PSL(3,4), we may consider H as the
stabilizer in PSL(3, 4) of two points, say, [1,0,0] and [0, 1, 0]. If A € SL(3, 4)
sends (1, 0, 0) to («, 0, 0) and (0, 1, 0) to (0, , 0), then A has the form

o« 0 vy
A=10 B o/,
0 0 g

where 1 = (o). There are 3 choices for each of « and f, and 4 choices for
each of y and J, so that there are 144 such matrices 4. Dividing by SZ(3, 4)
(which has order 3), we see that |H| = 48.

Theorem 9.56. There exists a 4-transitive group M, of degree 23 and order
10,200,960 = 23-22-21:20-48 = 27-32-5-7-11-23 such that the stabilizer
of a point is M, ,.

Proof. The proof is similar to that for M,,, and so we only provide the
necessary ingredients. Adjoin a new symbol w to P%(4) U {c0}, and let

X = o0,
g = (o0 [1,0,0])f; = the former h,,
hy =(w )/

The reader may apply Theorem 9.51 to show that M,y = (M,,, h,) is a
transitive extension of M,,.
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Theorem 9.57. There exists a S5-transitive group M,, of degree 24 and order
244,823,040 = 24-23-22-21-20-48 = 2'°-33-5-7-11-23 such that the stabi-
lizer of a point is M ;5.

Proof. Adjoin a new symbol Q to P?(4) U {0, w}, and define
X = w,
g =(w oo)f, = the former h,,
hy=(Q )fs.

The reader may check that Theorem 9.51 gives M, = {M,3, h;) a transitive
extension of M.

Theorem 9.58 (Miller, 1906). The Mathieu groups M,,, M,;, and M,, are
simple groups.

Proof. Since M,, is 3-transitive of degree 22 (which is not a power of 2) and
since the stabilizer of a point is the simple group PSL(3, 4), Theorem 9.25(ii)
gives simplicity of M,,. The group M, is 4-transitive and the stabilizer of a
point is the simple group M,,, so that Theorem 9.25(i) gives simplicity of
M,5. Finally, M,, is S-transitive and the stabilizer of a point is the simple
group M,;, so that Theorem 9.25(i) applies again to give simplicity of
My,

Theorem 9.59 (Cole, 1896; Miller, 1899). The Mathieu groups M, and M,
are simple.

Proof. Theorem 9.25(i) will give simplicity of M,, once we prove that M, is
simple. The simplicity of M;, cannot be proved in this way because the
stabilizer of a point is M4, which is not a simple group.

Let H be a nontrivial normal subgroup of M,,. By Theorem 9.17, H is
transitive of degree 11, so that |H| is divisible by 11. Let P be a Sylow
11-subgroup of H. Since (11)? does not divide |M,,|, P is also a Sylow 11~
subgroup of M, and P is cyclic of order 11.

We claim that P s Ny(P). Otherwise, P abelian implies P < Cy(P) <
Ny(P) and Ny(P)/Cy(P) = 1. Burnside’s normal complement theorem (Theo-
rem 7.50) applies: P has a normal complement Q in H. Now | Q| is not divisi-
ble by 11, so that Qchar H; as H < M, Lemma 5.20(ii) gives Q < M. If
Q # 1, then Theorem 9.17 shows that |Q] is divisible by 11, a contradiction.
If Q = 1, then P = H. In this case, H is abelian, and Exercise 9.10 gives H a
regular normal subgroup, contradicting Lemma 9.24.

Let us compute Ny, (P). In S,,, there are 11!/11 = 10! 11-cycles, and
hence 9! cyclic subgroups of order 11 (each of which consists of 10 11-
cycles and the identity). Therefore [S,, : Ns, (P)] = 9! and [N;, (P)| = 110.
Now Ny, ,(P) = N5, (P)n M, ,. We may assume that P = (o), where ¢ =
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(12...10 11y if r=(1 11)(2 10)(3 9)(4 8)(5 7), then 7 is an involution
with tgt = 0™ and 7 € N, (P). But 7 is an odd permutation, whereas M, <
Ay, 50 that [Ny (P)| = 11 or 55. Now P < Ny(P) < Ny, (P), so that either
P = Ny(P) or Ny(P) = Ny, (P). The first paragraph eliminated the first pos-
sibility, and so Ny(P) = Ny, (P) (and their common order is 55). The Frattini
argument now gives M, = HNy; (P) = HNy(P) = H (for Ny(P) < H), and
so M, is simple.

EXERCISES

9.37. Show that the 4-group V has no transitive extension. (Hint. If h € S5 has order
5,then (V, h) = A4s)

9.38. Let W = {ge M,,: g permutes {oc, w Q}}. Show that there is a homomor-
phism of W onto S; with kernel (M ;) ,0,0- Conclude that |W| =6 x 72.

9.39. Prove that Aut(2, 3), the group of all affine automorphisms of a two-dimen-
sional vector space over Z3, is isomorphic to the subgroup W of M, in the
previous exercise. (Hint. Regard GF(9) as a vector space over Z5.)

9.40. Show that (PSL(3, 4), h,, h3) < M,, is isomorphic to PT'L(3, 4). (Hint. Lemma
9.54.)

Steiner Systems

A Steiner system, defined below, is a set together with a family of subsets
which can be thought of as generalized lines; it can thus be viewed as a kind
of geometry, generalizing the notion of affine space, for example. If X is a set
with | X| = v,and if k < v, then a k-subset of X is a subset B = X with |B| = k.

Definition. Let 1 <t < k < v be integers. A Steiner system of type S(t, k, v) is
an ordered pair (X, %), where X is a set with v elements, & is a family of
k-subsets of X, called blocks, such that every ¢ elements of X lie in a unique
block. )

ExaMPLE 9.12. Let X be an affine plane over the field GF(g), and let & be the
family of all affine lines in X. Then every line has g points and every two
points determine a unique line, so that (X, #) is a Steiner system of type
5. 9, 9%).

ExaMpLE 9.13. Let X = P?(g) and let & be the family of all projective lines in
X. Then every line has g + 1 points and every two points determine a unique
line, so that (X, #) is a Steiner system of type S(2,q + 1,¢*> + g + 1).

ExaMPLE 9.14. Let X be an m-dimensional vector space over Z,, where m >
3, and let # be the family of all planes (affine 2-subsets of X). Since three



