Proof. (i) The lemma shows that Hx is a block for every $x \in X$. Since X is primitive, either $Hx = \emptyset$ (plainly impossible), $Hx = \{x\}$, or Hx = X. If $Hx = \{x\}$ for some $x \in X$, then $H \le G_x$. But if $g \in G$, then normality of H gives $H = gHg^{-1} \le gG_xg^{-1} = G_{gx}$. Since X is transitive, $H \le \bigcap_{y \in X} G_y = 1$, for X is faithful, and this is a contradiction. Therefore Hx = X and X is a transitive H-set.

(ii) This follows from Theorem 9.2.

Using this theorem, we see that the GL(V)-set $V^{\#}$ in Example 9.4 is transitive but not primitive.

Corollary 9.18. Let X be a faithful primitive G-set of degree n. If G is solvable, then $n = p^m$ for some prime divisor p of |G|; if G is nilpotent, then n is a prime divisor of |G|.

Proof. If G is solvable, a minimal normal subgroup H of G is elementary abelian of order p^k , by Theorem 5.24. The theorem now gives n a divisor of p^k , and so n, too, is a power of p. If G is nilpotent, then G has a normal subgroup H of prime order p (e.g., take $H = \langle g \rangle$, where g is an element of order p in Z(G)). The theorem gives n a divisor of p; that is, n = p.

EXERCISES

- 9.13. Let X be an imprimitive G-set and let B be a maximal nontrivial block of X; that is, B is not a proper subset of a nontrivial block. Show that the imprimitive system Y generated by B is a primitive G-set. Give an example with X faithful and Y not faithful.
- 9.14. (i) Let X be a transitive G-set, let $x \in X$, and let A be a nonempty subset of X. Show that the intersection of all gA containing x, where $g \in G$, is a block.
 - (ii) Let X be a primitive G-set and let A be a nonempty proper subset of X. If x and y are distinct elements of X, then there exists g∈ G with x∈gA and y ∉ gA. (Hint. The block in part (i) must be {x}.)
- 9.15. (i) Prove that if a group G has a faithful primitive G-set, then its Frattini subgroup $\Phi(G) = 1$.
 - (ii) Prove that a p-group G that is not elementary abelian has no faithful primitive G-set. (Hint. Theorem 5.47.)

Simplicity Criteria

We now prepare the way for new proofs showing that the alternating groups and the projective unimodular groups are almost always simple.

Definition. If X is a G-set and $H \triangleleft G$, then H is a regular normal subgroup if X is a regular H-set.

Permutations and the Mathieu Groups

If H is a regular normal subgroup, then |H| = |X|. Thus, all regular normal subgroups have the same order.

260

Theorem 9.19. Let X be a faithful primitive G-set with G_x a simple group. Then either G is simple or every nontrivial normal subgroup H of G is a regular normal subgroup.

Proof. If $H \triangleleft G$ and $H \neq 1$, then Theorem 9.17(i) says that X is a transitive H-set. We have $H \cap G_x \triangleleft G_x$ for every $x \in X$, so that simplicity of G_x gives either $H \cap G_x = 1$ and X is regular or $H \cap G_x = G_x$; that is, $G_x \leq H$ for some $x \in X$. In the latter event, Theorem 9.15 gives G_x a maximal subgroup of G_x , so that either $G_x = H$ or H = G. The first case cannot occur because H acts transitively, so that H = G and G is simple.

It is proved in Burnside (1911), p. 202, Theorem XIII, that if a group G has a faithful doubly transitive G-set X whose degree is not a prime power, then either G is simple or G has a simple normal subgroup. (This result may be false when the degree is a prime power; S_4 is a counterexample.)

Here is the appropriate notion of homomorphism of G-sets.

Definition. If X and Y are G-sets, then a function $f: X \to Y$ is a G-map if f(gx) = gf(x) for all $x \in X$ and $g \in G$; if f is also a bijection, then f is called a G-isomorphism. Two G-sets X and Y are isomorphic, denoted by $X \cong Y$, if there is a G-isomorphism $f: X \to Y$.

By Theorem 9.1, every G-set X determines a homomorphism $\varphi \colon G \to S_X$. Usually there is no confusion in saying that X is a G-set and not displaying φ , but because we now wish to compare two G-sets, let us denote X more precisely by (X, φ) . The action of $g \in G$ on $x \in X$ is now denoted by $\varphi_g x$ instead of by gx. The definition of G-map $f \colon (X, \varphi) \to (Y, \psi)$ now reads, for all $g \in G$ and $x \in X$, as

$$f(\varphi_a(x)) = \psi_a(f(x)).$$

EXAMPLE 9.5. Let G be a group, and let λ , $\rho: G \to S_G$ be the left and right regular representations of G (recall that $\lambda_g: x \mapsto gx$ and $\rho_g: x \mapsto xg^{-1}$ for all $x, g \in G$). We claim that (G, λ) and (G, ρ) are isomorphic G-sets. Define $f: G \to G$ by $f(x) = x^{-1}$; clearly f is a bijection. Let us see that f is a G-map.

$$f(\lambda_g(x)) = f(gx) = x^{-1}g^{-1} = f(x)g^{-1} = \rho_g(f(x)).$$

Example 9.6. Chinese Remainder Theorem.

If $S \le G$ is any (not necessarily normal) subgroup, we denote the family of all left cosets of S in G by G/S; it is a G-set with action g(xS) = (gx)S (as in Theorem 3.12). If X and Y are G-sets, then their cartesian product $X \times Y$ may be regarded as a G-set with *diagonal action*: g(x, y) = (gx, gy).

If G is a (finite) group and H, $K \leq G$ are such that HK = G, then there is a G-isomorphism $f \colon G/(H \cap K) \cong (G/H) \times (G/K)$, where the latter has diagonal action. Define f by $x(H \cap K) \mapsto (xH, xK)$. It is straightforward to show that f is a well defined injective G-map. Since HK = G, the product formula $|HK||H \cap K| = |H||K|$ gives $|G|/|H||K| = 1/|H \cap K|$; multiplying both sides by |G| gives $[G \colon H][G \colon K] = [G \colon H \cap K]$, and so f must be surjective as well. Therefore, f is a G-isomorphism.

Theorem 9.20. Every transitive G-set X is isomorphic to the G-set G/G_x of all left cosets of G_x on which G acts by left multiplication.

Proof. Let $X = \{x_1, \dots, x_n\}$, let $H = G_{x_1}$, and, for each i, choose $g_i \in G$ with $g_i x_1 = x_i$ (which is possible because X is transitive). The routine argument that $f \colon X \to G/H$, given by $f(x_i) = g_i H$, is a well defined bijection is left to the reader (recall that $n = |\mathcal{O}(x_1)| = [G : H]$). To check that f is a G-map, note that if $g \in G$, then for all i there is j with $gx_i = x_b$ and so

$$f(gx_i) = f(x_j) = g_jH.$$

On the other hand,

$$qf(x_i) = qg_iH.$$

But $gg_ix_1=gx_i=x_j=g_jx_1$; hence $g_j^{-1}gg_i\in G_{x_1}=H$, and so $g_jH=gg_iH$, as desired.

Theorem 9.21.

- (i) If H, K ≤ G, then the G-sets G/H and G/K (with G acting by left multiplication) are isomorphic if and only if H and K are conjugate in G.
- (ii) Two transitive G-sets (X, φ) and (Y, ψ) are isomorphic if and only if stabilizers of points in each are conjugate in G.

Proof. (i) Assume that there is a G-isomorphism $f: G/H \to G/K$. In particular, there is $g \in G$ with f(H) = gK. If $h \in H$, then

$$qK = f(H) = f(hH) = hf(H) = hqK.$$

Therefore, $g^{-1}hg \in K$ and $g^{-1}Hg \leq K$. Now $f(g^{-1}H) = g^{-1}f(H) = g^{-1}gK = K$ gives $f^{-1}(K) = g^{-1}H$. The above argument, using f^{-1} instead of f, gives the reverse inclusion $gKg^{-1} \leq H$.

Conversely, if $g^{-1}Hg = K$, define $f: G/H \to G/K$ by f(aH) = agK. It is routine to check that f is a well defined G-isomorphism.

(ii) Let H and K be stabilizers of points in (X, φ) and (Y, ψ) , respectively. By Theorem 9.20, $(X, \varphi) \cong G/H$ and $(Y, \psi) \cong G/K$. The result now follows from part (i).

Corollary 9.22. If G is solvable, then every maximal subgroup has index a prime power; if G is nilpotent, then every maximal subgroup has prime index.

Remark. The second statement was proved in Theorem 5.40.

262

Proof. If $H \le G$, then the stabilizer of the point $\{H\}$ in the transitive G-set G/H is the subgroup H. If H is a maximal subgroup of G, then G/H is a primitive G-set, by Theorem 9.15, and so |G/H| = [G:H] is a prime power, by Corollary 9.18. A similar argument gives the result when G is nilpotent.

Lemma 9.23. Let X be a transitive G-set and let H be a regular normal subgroup of G. Choose $x \in X$ and let G_x act on $H^\#$ by conjugation. Then the G_x -sets $H^\#$ and $X - \{x\}$ are isomorphic.

Proof. Define $f: H^\# \to X - \{x\}$ by f(h) = hx (notice that $hx \neq x$ because H is regular). If f(h) = f(k), then $h^{-1}k \in H_x = 1$ (by regularity), and so f is injective. Now |X| = |H| (regularity again), $|H^\#| = |X - \{x\}|$, and so f is surjective. It remains to show that f is a G_x -map. If $g \in G_x$ and $h \in H^\#$, denote the action of g on h by $g * h = ghg^{-1}$. Therefore,

$$f(g*h) = f(ghg^{-1}) = ghg^{-1}x = ghx,$$

because $g^{-1} \in G_x$; on the other hand, $g \cdot f(h) = g(hx)$, and so $f(g * h) = g \cdot f(h)$.

Lemma 9.24. Let $k \ge 2$ and let X be a k-transitive G-set of degree n. If G has a regular normal subgroup H, then $k \le 4$. Moreover:

- (i) if k ≥ 2, then H is an elementary abelian p-group for some prime p and n is a power of p;
- (ii) if $k \ge 3$, then either $H \cong \mathbb{Z}_3$ and n = 3 or H is an elementary abelian 2-group and n is a power of 2; and
- (iii) if $k \ge 4$, then $H \cong V$ and n = 4.

Proof. By Lemma 9.5, the G_x -set $X - \{x\}$ is (k-1)-transitive for each fixed $x \in X$; by Lemma 9.23, $H^\#$ is a (k-1)-transitive G_x -set, where G_x acts by conjugation.

- (i) Since $k \geq 2$, $H^{\#}$ is a transitive G_x -set. The stabilizer G_x acts by conjugation, which is an automorphism, so that all the elements of $H^{\#}$ have the same (necessarily prime) order p, and H is a group of exponent p. Now $Z(H) \lhd G$, because Z(H) is a nontrivial characteristic subgroup, so that |X| = |Z(H)| = |H|, for Z(H) and H are regular normal subgroups of G'. Therefore, Z(H) = H, H is elementary abelian, and |X| is a power of p.
- (ii) If $h \in H^{\#}$, then it is easy to see that $\{h, h^{-1}\}$ is a block. If $k \geq 3$, then $H^{\#}$ is a doubly transitive, hence primitive, G_x -set, so that either $\{h, h^{-1}\} = H^{\#}$ or $\{h, h^{-1}\} = \{h\}$. In the first case, |H| = 3, $H \cong \mathbb{Z}_3$, and n = 3. In the second case, h has order 2, and so the prime p in part (i) must be 2.
- (iii) If $k \ge 4$, $k-1 \ge 3$ and $|H^{\#}| \ge 3$; it follows that both $H \cong \mathbb{Z}_3$ and $H \cong \mathbb{Z}_2$ are excluded. Therefore, H contains a copy of V; say, $\{1, h, k, hk\}$.

Simplicity Criteria 263

Now $(G_x)_h$ acts doubly transitively, hence primitively, on $H^\# - \{h\}$. It is easy to see, however, that $\{k, hk\}$ is now a block, and so $H^\# - \{h\} = \{k, hk\}$. We conclude that $H = \{1, h, k, hk\} \cong \mathbb{V}$ and n = 4.

Finally, we cannot have $k \ge 5$ because $n \le 4$.

Of course, the case k=4 does occur ($G=S_4$ and $H=\mathbb{V}$). Compare the case k=2 with Theorem 9.11.

Theorem 9.25. Let X be a faithful k-transitive G-set, where $k \ge 2$, and assume that G_x is simple for some $x \in X$.

- (i) If $k \ge 4$, then G is simple.
- (ii) If $k \ge 3$ and |X| is not a power of 2, then either $G \cong S_3$ or G is simple.
- (iii) If $k \ge 2$ and |X| is not a prime power, then G is simple.

Proof. By Theorem 9.19, either G is simple or G has a regular normal subgroup H. In the latter case, Lemma 9.24 gives $k \le 4$; moreover, if k = 4, then $H \cong V$ and |X| = 4. Now the only 4-transitive subgroup of S_4 itself, but the stabilizer of a point is the nonsimple group S_3 . Therefore, no such H exists, and so G must be simple. The other two cases are also easy consequences of the lemma (note that the stabilizer of a point of an S_3 -set is the simple group $S_2 \cong \mathbb{Z}_2$ so that S_3 is a genuine exception in part (ii)).

Here is another proof of the simplicity of the large alternating groups.

Theorem 9.26. A_n is simple for all $n \ge 5$.

Proof. The proof is by induction on $n \ge 5$. If n = 5, then the result is Lemma 3.8. By Theorem 9.9, A_n acts (n-2)-transitively on $X = \{1, 2, ..., n\}$; hence, if $n \ge 6$, then A_n acts k-transitively, where $k \ge 4$. The stabilizer $(A_n)_n$ of n is just A_{n-1} (for it consists of all the even permutations of $\{1, ..., n-1\}$), and so it is simple, by induction. Therefore, A_n is simple, by Theorem 9.25(i).

Here is another simplicity criterion. It shall be used later to give another proof of the simplicity of the PSLs.

Theorem 9.27 (Iwasawa, 1941). Let G = G' (such a group is called **perfect**) and let X be a faithful primitive G-set. If there is $x \in X$ and an abelian normal subgroup $K \lhd G_x$ whose conjugates $\{gKg^{-1} : g \in G\}$ generate G, then G is simple.

Proof. Let $H \neq 1$ be a normal subgroup of G. By Theorem 9.17, H acts transitively on X. By hypothesis, each $g \in G$ has the form $g = \prod g_i k_i g_i^{-1}$, where $g_i \in G$ and $k_i \in K$. Now $G = HG_x$, by Exercise 4.9(i), so that $g_i = h_i s_i$ for each i, where $h_i \in H$ and $s_i \in G_x$. Normality of K in G_x now gives

$$g = \prod h_i s_i k_i s_i^{-1} h_i^{-1} \in HKH \le HK$$

9. Permutations and the Mathieu Groups

(because H lies in the subgroup HK), and so G = HK. Since K is abelian, $G/H = HK/H \cong K/(H \cap K)$ is abelian, and $H \ge G' = G$. Therefore, G is simple.

EXERCISES

264

- 9.16. If X is a G-set, let $\operatorname{Aut}(X)$ be the group of all G-isomorphisms of X with itself. Prove that if X is a transitive G-set and $x \in X$, then $\operatorname{Aut}(X) \cong N_G(G_x)/G_x$. (Hint. If $\varphi \in \operatorname{Aut}(X)$, there is $g \in G$ with $gx = \varphi(x)$; the desired isomorphism is $\varphi \mapsto g^{-1}G_{r}$.)
- 9.17. Let X be a transitive G-set, and let $x, y \in X$. Prove that $G_x = G_y$ if and only if there is $\varphi \in \text{Aut}(X)$ with $\varphi(x) = y$.

Affine Geometry

All vector spaces in this section are assumed to be finite-dimensional.

Theorem 9.28. If V is an n-dimensional vector space over a field K, then $V^* = V - \{0\}$ is a transitive GL(V)-set that is regular when n = 1. If $n \ge 2$, then V^* is doubly transitive if and only if $K = \mathbb{Z}_2$.

Proof. GL(V) acts transitively on $V^{\#}$, for every nonzero vector is part of a basis and GL(V) acts transitively on the set of all ordered bases of V. If n=1, only the identity can fix a nonzero vector, and so $V^{\#} = K^{\times}$ is regular.

Assume that $n \ge 2$, and that $\{y,z\}$ is a linearly independent subset. If $K \ne \mathbb{Z}_2$, there exists $\lambda \in K$ with $\lambda \ne 0$, 1; if $x \in V^\#$, then $\{x, \lambda x\}$ is a linearly dependent set, and there is no $g \in G$ with gx = y and $g\lambda x = z$. Therefore, GL(V) does not act doubly transitively in this case. If $K = \mathbb{Z}_2$, then every pair of distinct nonzero vectors is linearly independent, hence is part of a basis, and double transitivity follows from GL(V) acting transitively on the set of all ordered bases of V.

Definition. If V is a vector space and $y \in V$, then *translation by y* is the function $t_v \colon V \to V$ defined by

$$t_{y}(x) = x + y$$

for all $x \in V$. Let Tr(V) denote the group of all translations under composition (we may also write Tr(n, K) or Tr(n, q)).

Definition. If V is a vector space over K, then the *affine group*, denoted by Aff(V), is the group (under composition) of all functions $a: V \to V$ (called *affinities*) for which there is $v \in V$ and $g \in GL(V)$ such that

$$a(x) = gx + y$$