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Proof. (i) The lemma shows that Hx is a block for every x € X. Since X
is primitive, either Hx = ¥ (plainly impossible), Hx = {x}, or Hx = X. If
Hx = {x} for some x € X, then H < G,. But if g € G, then normality of H
gives H = gHg™ < gG.g™ = G,,. Since X is transitive, H < [),.xG, =1,
for X is faithful, and this is a contradiction. Therefore Hx = X and X is a
transitive H-set.

(i) This follows from Theorem 9.2.

Using this theorem, we see that the GL(V)-set V'# in Example 9.4 is transi-
tive but not primitive.

Corollary 9.18. Let X be a faithful primitive G-set of degree n. If G is solvable,
then n = p™ for some prime divisor p of |G|; if G is nilpotent, then nis a prime
divisor of |G]|.

Proof. If G is solvable, a minimal normal subgroup H of G is elementary
abelian of order p*, by Theorem 5.24. The theorem now gives n a divisor of
p*, and so n, too, is a power of p. If G is nilpotent, then G has a normal
subgroup H of prime order p (e.g, take H = (g), where g is an element of
order p in Z(G)). The theorem gives n a divisor of p; that is, n = p.

EXERCISES

9.13. Let X be an imprimitive G-set and let B be a maximal nontrivial block of X;
that is, B is not a proper subset of a nontrivial block. Show that the imprimitive
system Y generated by B is a primitive G-set. Give an example with X faithful
and Y not faithful.

9.14. (i) Let X be a transitive G-set, let x € X, and let 4 be a nonempty subset of X.
Show that the intersection of all g4 containing x, where g € G, is a block.
(ii) Let X be a primitive G-set and let A be a nonempty proper subset of X. If x
and y are distinct elements of X, then there exists g € G with x € g4 and
y ¢ gA. (Hint. The block in part (i) must be {x}.)

9.15. (i) Prove that if a group G has a faithful primitive G-set, then its Frattini
subgroup ®(G) = 1.
(ii) Prove that a p-group G that is not elementary abelian has no faithful primi-
tive G-set. (Hint. Theorem 5.47.)

Simplicity Criteria

We now prepare the way for new proofs showing that the alternating groups
and the projective unimodular groups are almost always simple.

Definition. If X is a G-set and H <1 G, then H is a regular normal subgroup if
X is a regular H-set.
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If H is a regular normal subgroup, then |H| = | X|. Thus, all regular normal
subgroups have the same order.

Theorem 9.19. Let X be a faithful primitive G-set with G, a simple group. Then
either G is simple or every nontrivial normal subgroup H of G is a regular
normal subgroup.

Proof. If H < G and H # 1, then Theorem 9.17(i) says that X is a transitive
H-set. We have H n G, < G, for every x € X, so that simplicity of G, gives
either HN G, = 1 and X is regular or H n G, = G,; that is, G, < H for some
x € X. In the latter event, Theorem 9.15 gives G, a maximal subgroup of G,
so that either G, = H or H = G. The first case cannot occur because H acts
transitively, so that H = G and G is simple.

It is proved in Burnside (1911), p. 202, Theorem XIII, that if a group G has
a faithful doubly transitive G-set X whose degree is not a prime power, then
either G is simple or G has a simple normal subgroup. (This result may be
false when the degree is a prime power; S, is a counterexample.)

Here is the appropriate notion of homomorphism of G-sets.

Definition. If X and Y are G-sets, then a function f: X — Y is a G-map if
flgx) = gf(x) for all x e X and g € G; if f is also a bijection, then f'is called a
G-isomorphism. Two G-sets X and Y are isomorphic, denoted by X ~ Y, if
there is a G-isomorphism f: X — Y.

By Theorem 9.1, every G-set X determines a homomorphism ¢: G — Sy.
Usually there is no confusion in saying that X is a G-set and not displaying
@, but because we now wish to compare two G-sets, let us denote X more
precisely by (X, @). The action of ge G on xe X is now denoted by ¢,x
instead of by gx. The definition of G-map f: (X, ¢) — (Y, ) now reads, for all
geGand xe X, as

Hpe(3)) = Yy f())-

ExAMPLE 9.5. Let G be a group, and let A, p: G — S; be the left and right
regular representations of G (recall that A, x+—gx and p,: x+—xg~! for all
X, g € G). We claim that (G, 1) and (G, p) are isomorphic G-sets. Define
f:G— Gby f(x) = x™*; clearly f is a bijection. Let us see that f is a G-map.

FO0) = flgx) = x71g7" = f(x)g™" = p,(f(x)).
EXAMPLE 9.6. Chinese Remainder Theorem.

If S < G is any (not necessarily normal) subgroup, we denote the family of
all left cosets of S in G by G/S; it is a G-set with action g(xS) = (¢gx)S (as in
Theorem 3.12). If X and Y are G-sets, then their cartesian product X x Y
may be regarded as a G-set with diagonal action: g(x, y) = (gx, gy).
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If G is a (finite) group and H, K < G are such that HK = G, then there is a
G-isomorphism f: G/(H n K) 3 (G/H) x (G/K), where the latter has diagonal
action. Define f by x(H n K) — (xH, xK). It is straightforward to show
that f is a well defined injective G-map. Since HK = G, the product formula
|HK||H n K| = |H||K| gives |G|/|H||K| = 1/|H n K|; multiplying both sides
by |G| gives [G: H][G:K] =[G:Hn K], and so f must be surjective as
well. Therefore, f is a G-isomorphism.

Theorem 9.20. Every transitive G-set X is isomorphic to the G-set G/G, of all
left cosets of G, on which G acts by left multiplication.

Proof. Let X = {x,,..., x,},let H= G, , and, for each i, choose g; € G with
g,x; = x; (which is possible because X is transitive). The routine argument
that f: X — G/H, given by f(x;) = g;H, is a well defined bijection is left to the
reader (recall that n = |O(x,)| = [G: H]). To check that f is a G-map, note
that if g € G, then for all i there is j with gx; = x;, and so

flgx:) = f(x) = g;H.
On the other hand,
af (x;) = g9:H.

But gg,x;, = gx; = x; = g;x,; hence g;'gg: € G,, = H, and so g;H = gg;H, as
desired.

Theorem 9.21.

() If H, K < G, then the G-sets G/H and G/K (with G acting by left multipli-
cation) are isomorphic if and only if H and K are conjugate in G.

(ii) Two transitive G-sets (X, @) and (Y, ) are isomorphic if and only if stabi-
lizers of points in each are conjugate in G.

Proof. (i) Assume that there is a G-isomorphism f: G/H — G/K. In particular,
there is g € G with f(H) = gK. If h € H, then

gK = f(H) = f(hH) = hf (H) = hgK.

Therefore, g7*hg € K and g "*Hg < K. Now f(g*H) = g"f(H) =g 'gK =
K gives f7!(K) = g~'H. The above argument, using f ! instead of f, gives
the reveérse inclusion gKg™* < H.

Conversely, if g7 Hg = K, define f: G/H — G/K by f(aH) = agK. It is rou-
tine to check that f is a well defined G-isomorphism.

(ii) Let H and K be stabilizers of points in (X, @) and (Y, y), respectively.
By Theorem 9.20, (X, ¢) = G/H and (Y, ¥) = G/K. The result now follows
from part (i). @

Corollary 9.22. If G is solvable, then every maximal subgroup has index a prime
power; if G is nilpotent, then every maximal subgroup has prime index.
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Remark. The second statement was proved in Theorem 5.40.

Proof. f H < G, then the stabilizer of the point {H} in the transitive
G-set G/H is the subgroup H. If H is a maximal subgroup of G, then G/H
is a primitive G-set, by Theorem 9.15, and so |G/H| = [G: H] is a prime
power, by Corollary 9.18. A similar argument gives the result when G is
nilpotent.

Lemma 9.23. Let X be a transitive G-set and let H be a regular normal sub-
group of G. Choose x € X and let G, act on H* by conjugation. Then the
G,-sets H* and X — {x} are isomorphic.

Proof. Define f: H* — X — {x} by f(h) = hx (notice that hx # x because H
is regular). If f(h) = f(k), then h™*k e H, = 1 (by regularity), and so f is injec-
tive. Now | X| = |H| (regularity again), |H*| = |X — {x}|, and so f is surjec-
tive. It remains to show that f is a G,-map. If g € G, and h € H*, denote the
action of g on h by g+ h = ghg™*. Therefore,

flg*h) = flghg™) = ghg™'x = ghx,

because g~'e G,; on the other hand, g-f(h) = g(hx), and so f(g+«h)=
g-f(h).

Lemma 9.24. Let k > 2 and let X be a k-transitive G-set of degree n. If G has
a regular normal subgroup H, then k < 4. Moreover:

() if k > 2, then H is an elementary abelian p-group for some prime p and n
is a power of p;
(i) if k>3, then either H = Z5 and n=3 or H is an elementary abelian
2-group and n is a power of 2; and
(i) if k >4, then H~V and n=4.

Proof. By Lemma 9.5, the G,-set X — {x} is (k — 1)-transitive for each fixed
x e X; by Lemma 9.23, H* is a (k — 1)-transitive G,-set, where G, acts by
conjugation.

(i) Since k > 2, H* is a transitive G,-set. The stabilizer G, acts by conjuga-~
tion, which is an automorphism, so that all the elements of H* have the same
(necessarily prime) order p, and H is a group of exponent p. Now Z(H) <t G,
because Z(H) is a nontrivial characteristic subgroup, so that | X| = |Z(H)| =
|H|, for Z(H) and H are regular normal subgroups of G’. Therefore, Z(H) =
H, H is elementary abelian, and | X| is a power of p.

(ii) If h e H#, then it is easy to see that {h, h™'} is a block. If k > 3, then
H* is a doubly transitive, hence primitive, G,-set, so that either {h, ™'} =
H?* or {h, h™'} = {h}. In the first case, |H| =3, H =~ Z,, and n = 3. In the
second case, h has order 2, and so the prime p in part (i) must be 2.

(i) If k >4, k—1>3 and |H?| > 3; it follows that both H =~ Z; and
H =~ 7, are excluded. Therefore, H contains a copy of V; say, {1, h, k, hk}.
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Now (G,), acts doubly transitively, hence primitively, on H* — {h}. It is easy
to see, however, that {k, hk} is now a block, and so H* — {h} = {k, hk}. We
conclude that H = {1, h, k, hk} ~ Vand n = 4.

Finally, we cannot have k > 5 because n < 4.

Of course, the case k = 4 does occur (G = S, and H = V). Compare the
case k = 2 with Theorem 9.11.

Theorem 9.25. Let X be a faithful k-transitive G-set, where k > 2, and assume
that G, is simple for some x € X.

@) If k > 4, then G is simple.
(i) If k = 3 and | X| is not a power of 2, then either G = S5 or G is simple.
(iii) If k > 2 and | X| is not a prime power, then G is simple.

Proof. By Theorem 9.19, either G is simple or G has a regular normal sub-
group H. In the latter case, Lemma 9.24 gives k < 4; moreover, if k = 4, then
H = V and | X| = 4. Now the only 4-transitive subgroup of S, is S, itself, but
the stabilizer of a point is the nonsimple group S;. Therefore, no such H
exists, and so G must be simple. The other two cases are also easy conse-
quences of the lemma (note that the stabilizer of a point of an S;-set is the
simple group S, = Z, so that S; is a genuine exception in part (ii)). &

Here is another proof of the simplicity of the large alternating groups.
Theorem 9.26. A, is simple for alln > 5.

Proof. The proof is by induction on n > 5. If n = 5, then the result is Lemma
3.8. By Theorem 9.9, 4, acts (n — 2)-transitively on X = {1, 2, ..., n}; hence,
if n > 6,"then A, acts k-transitively, where k > 4. The stabilizer (4,), of n is
just 4,_, (for it consists of all the even permutations of {1,...,n — 1}), and
so it is simple, by induction. Therefore, 4, is simple, by Theorem 9.25(). E

Here is another simplicity criterion. It shall be used later to give another
proof of the simplicity of the PSLs.

Theorem 9.27 (Iwasawa, 1941). Let G = G’ (such a group is called perfect) and
let X be a faithful primitive G-set. If there is x € X and an abelian normal
subgroup K < G, whose conjugates {gKg™': g € G} generate G, then G is
simple.

Proof. Let H # 1 be a normal subgroup of G. By Theorem 9.17, H acts
transitively on X. By hypothesis, each g € G has the form g = []g:k;g;",
where g; € G and k; € K. Now G = HG,, by Exercise 4.9(i), so that g; = Is;
for each i, where h; € H and s; € G,. Normality of K in G, now gives

g =[1Mskisi'hi' e HKH < HK
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(because H lies in the subgroup HK), and so G = HK. Since K is abelian,
G/H = HK/H = K/(H nK) is abelian, and H > G’ = G. Therefore, G is
simple.

EXERCISES

9.16. If X is a G-set, let Aut(X) be the group of all G-isomorphisms of X with itself.
Prove that if X is a transitive G-set and x € X, then Aut(X) = N4(G,)/G,. (Hint.
If ¢ e Aut(X), there is ge G with gx = ¢(x); the desired isomorphism is
@g7'Gy)

9.17. Let X be a transitive G-set, and let x, y € X. Prove that G, = G, if and only if
there is ¢ € Aut(X) with ¢(x) = y.

Affine Geometry
All vector spaces in this section are assumed to be finite-dimensional.

Theorem 9.28. If V is an n-dimensional vector space over a field K, then
V* =V — {0} is a transitive GL(V)-set that is regular when n = 1. If n > 2,
then V* is doubly transitive if and only if K = Z,.

Proof. GL(V) acts transitively on V'#, for every nonzero vector is part of a
basis and GL(V) acts transitively on the set of all ordered bases of V.If n = 1,
only the identity can fix a nonzero vector, and so ¥* = K* is regular.

Assume that n > 2, and that {y,z} is a linearly independent subset. If
K # Z,, there exists A € K with 4 0, 1; if x € V'#, then {x, Ax} is a linearly
dependent set, and there is no g € G with gx = y and gAx = z. Therefore,
GL(V) does not act doubly transitively in this case. If K = Z,, then every
pair of distinct nonzero vectors is linearly independent, hence is part of a
basis, and double transitivity follows from GL(V) acting transitively on the
set of all ordered bases of V.

Definition. If V is a vector space and y € V, then #ranslation by y is the func-
tion t,: ¥ — V defined by

Lx)=x+y
for all x e V. Let Tr(V) denote the group of all translations under composi-
tion (we may also write Tr(n, K) or Tr(n, g)).

Definition. If V is a vector space over K, then the affine group, denoted by
Aff(V), is the group (under composition) of all functions a: ¥V — V (called
affinities) for which there is y € ¥ and g € GL(V) such that

a(x)=gx+y



