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(12...1011)ifr=( 11)(2 10)(3 9)(4 8)(5 7), then 7 is an involution
with ot = 07" and 7 € Ny, (P). But 7 is an odd permutation, whereas M, <
Ay, so that [Ny (P)| = 11 or 55. Now P < Ny(P) < Ny, (P), so that either
P = Ny(P) or Ny(P) = Ny, (P). The first paragraph eliminated the first pos-
sibility, and so Ny(P) = Ny (P) (and their common order is 55). The Frattini
argument now gives M, = HN,, (P) = HNy(P) = H (for Ny(P) < H), and
so M, is simple. £

EXERCISES

9.37. Show that the 4-group V has no transitive extension. (Hint. If h € S, has order
5,then <V, ) = 45)

9.38. Let W = {ge M,,: g permutes {cc, w Q}}. Show that there is a homomor-
phism of W onto S; with kernel (M, ,)q,,q- Conclude that |[W| = 6 x 72.

9.39. Prove that Aut(2, 3), the group of all affine automorphisms of a two-dimen-
sional vector space over Z, is isomorphic to the subgroup W of M, in the
previous exercise. (Hint. Regard GF(9) as a vector space over Z3.)

9.40. Show that (PSL(3, 4), h,, h3) < M,, is isomorphic to PI'L(3, 4). (Hint. Lemma
9.54,)

Steiner Systems

A Steiner system, defined below, is a set together with a family of subsets
which can be thought of as generalized lines; it can thus be viewed as a kind
of geometry, generalizing the notion of affine space, for example. If X is a set
with | X| = v,and if k < v, then a k-subset of X is a subset B « X with |B| = k.

Definition. Let 1 <t < k < v be integers. A Steiner system of type S(t, k, v) is
an ordered pair (X, %), where X is a set with v elements, & is a family of
k-subsets of X, called blocks, such that every ¢ elements of X lie in a unique
block.

ExaMPLE 9.12. Let X be an affine plane over the field GF(g), and let & be the
family of all affine lines in X. Then every line has g points and every two
points determine a unique line, so that (X, &) is a Steiner system of type
524, 9%)

ExaMpLE 9.13. Let X = P?(g) and let & be the family of all projective lines in
X. Then every line has g + 1 points and every two points determine a unique
line, so that (X, 2) is a Steiner system of type S(2, ¢ + 1, 4% + q + 1).

EXAMPLE 9.14. Let X be an m-dimensional vector space over Z,, where m >
3, and let & be the family of all planes (affine 2-subsets of X). Since three
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distinct points cannot be collinear, it is easy to see that (X, %) is a Steiner
system of type S(3, 4, 2™).

One assumes strict inequalities 1 < ¢ < k < v to eliminate uninteresting
cases. If £ =1, every point lies in a unique block, and so X is just a set
partitioned into k-subsets; if t = k, then every t-subset is a block; if k = v, then
there is only one block. In the first case, all “lines” (blocks) are parallel; in the
second case, there are too many blocks; in the third case, there are too few
blocks.

Given parameters 1| <t < k < v, it is an open problem whether there exists
a Steiner system of type S(t, k, v). For example, one defines a projective plane
of order n to be a Steiner system of type S(2, n + 1, n* + n + 1). It is conjec-
tured that n must be a prime power, but it is still unknown whether there
exists a projective plane of order 12. (There is a theorem of Bruck and Ryser
(1949) saying that if n = 1 or 2 mod 4 and n is not a sum of two squares, then
there is no projective plane of order n; note that n = 10 is the first integer
which neither satisfies this hypothesis nor is a prime power. In 1988, C. Lam
proved, using massive amounts of computer time, that there is no projective
plane of order 10.)

Definition. If (X, #) is a Steiner system and x € X, then
star(x) = {Be B: x € B).

Theorem 9.60. Let (X, %) be a Steiner system of type S(t, k, v), where t > 3. If
x e X, define X' = X — {x} and B = {B — {x}: Bestar(x)}. Then (X', #') is
a Steiner system of type S(t — 1, k — 1, v — 1) (called the contraction of (X, %)
at x).

Proof. The routine proof is left to the reader.

A contraction of (X, #) may depend on the point x.
Let Y and Z be finite sets, and let W < Y x Z. For each y € Y, define
#(y, )=1{z € Z: (y, z) e W}| and define #( , 2)=|{y € Y: (3, z) € W}|. Clearly,

yeY zelZ

We deduce a counting principle: If #(y, )=mforallye Yandif #( ,z)=n
for all z € Z, then
m|Y| = n|Z|.

Theorem 9.61. Let (X, ) be a Steiner system of type S(t, k, v). Then the num-
ber of blocks is
vo—Dw—2)...0—t+1)

B = kD=2 =t x 1)

if r is the number of blocks containing a point x € X, then r is independent of x
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and
- De-2)p—t+ 1)
T hk—=Dk—2) - (k—t+1)

r

Proef. If Y is the family of all t-subsets of X, then |Y| = “v choose t” =
v(v— 1)+ (v — ¢ + 1)/t!. Define W < Y x & to consist of all ({x,, ..., X}, B)
with {xi,...,x,} = B. Since every t-subset lies in a unique block,
#({xy,...,x,}, ) = 1; since each block B is a k-subset, #( , B) = “k choose
t” =k(k — 1)---(k — t + 1)/t!. The counting principle now gives the desired
formula for |4|. -

The formula for r follows from that for |#| because r is the number of
blocks in the contraction (X', #') (where X’ = X — {x}), which is a Steiner
system of type S(t — 1, k — 1, v — 1). It follows that r does not depend on the
choice of x.

Remarks. 1. The proof just given holds for all ¢ > 2 (of course, (X', ') is not
a Steiner system when ¢t = 2 since t — 1 = 1).

2. The same proof gives a formula for the number of blocks in a Steiner
system of type S(t, k, v) containing two points x and y. If (X', #') is the
contraction (with X’ = X — {x}), then the number r’ of blocks in (X', &)
containing y is the same as the number of blocks in (X, #) containing x and
y. Therefore,

,_ =23 v—t+1
T k=, —3)k—t+1)

Similarly, the number r of blocks in (X, %) containing p points, where
1<p<t,is

r

= Pe—p-D—t+]
k—pk—p—1k—t+1)

3. That the numbers || =r, 7, ..., ..., 9 are integers is, of course, a
constraint on ¢, k, v.

Definition. If (X, #) and (Y, %) are Steiner systems, then an isomorphism is a
bijection f: X — Y such that B € # if and only if f(B) € . If (X, %) = (Y, %),
then f is called an automorphism.

For certain parameters ¢, k, and v, there is a unique, to isomorphism,
Steiner system of type S(t, k, v), but there may exist nonisomorphic Steiner
systems of the same type. For example, it is known that there are exactly four
projective planes of order 9; that is, there are exactly four Steiner systems of
type S(2, 10, 91).

Theorem 9.62. All the automorphisms of a Steiner system (X, B) form a group
Aut(X, B) < Sy.
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Proof. The only point needing discussion is whether the inverse of an auto-
morphism 4 is itself an automorphism. But Sy is finite, and so h™* = k™ for
some m > 1. The result follows, for it is obvious that the composite of auto-
morphisms is an automorphism.

Theorem 9.63. If (X, %) is a Steiner system, then Aut(X, %) acts faithfully on
B.

Proof. If ¢ € Aut(X, %) and ¢(B) = B for all blocks B, then it must be shown
that ¢ = 1.

For x € X, let r = |star(x)|, the number of blocks containing x. Since ¢ is an
automorphism, g(star(x)) = star(¢(x)); since ¢ fixes every block, ¢(star(x)) =
star(x), so that star(x) = star(¢(x)). Thus, ¢(x) and x lie in exactly the same
blocks, and so the number r’ of blocks containing {¢(x), x} is the same as the
number r of blocks containing x. If ¢(x) # x, however, ¥’ = r gives k=v
(using the formulas in Theorem 9.61 and the remark thereafter), contradict-
ing k < v. Therefore, @(x) = x for all x € X.

Corollary 9.64. If (X, B) is a Steiner system and x € X, then (g gariy B = {x}.

Proof. Let x, y € X. If star(x) = star(y), then the argument above gives the
contradiction r’ = r. Therefore, if y # x, there is a block B with x € B and

y ¢ B! SO that y ¢ mﬂsslar(x) B. @

We are going to see that multiply transitive groups may determine Steiner
systems.

Notation. If X is a G-set and U < G is a subgroup, then
FU)={xeX:gx=xforallge U}.
Recall that if U < G and g € G, then the conjugate gUg ™! may be denoted
by U
Lemma 9.65. If X is a G-set and U < G is a subgroup, then
F (U9 =gF(U) forall geG.
Proof. The following statements are equivalent for x e X:xe F(U9),

gug(x) = x for all ue U; ug™'(x) =g~ '(x) for all ue U; g7'(x) e F(U);
x e g#(U).

Theorem 9.66. Let X be a faithful t-transitive G-set, where t > 2, let H be the
stabilizer of t points Xy, ..., x, in X, and let U be a Sylow p-subgroup of H for
some prime p.
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(i) Ng(U) acts t-transitively on & (U).

(il) (Carmichael, 1931; Witt, 1938). If k = |F(U)| > t and U is a nontrivial
normal subgroup of H, then (X, %) is a Steiner system of type S(t, k, v),
where | X| = v and

A = {gF(U). ge G} = {F(U%): g€ G)}.

Proof. (i) Note that #(U) is a Ng(U)-set: if g e Ng(U), then U = U? and
F(U) = F(U?) = gF(U). Now {xy, ..., x,} < F(U) because U < H, the sta-
bilizer of x, ..., x,; hence k = |#(U)| > t. If yy, ..., y, are distinct elements
of #(U), then t-transitivity of G gives g € G with gy; = x; for alli. If u e U,
then gug™x; = guy; = gy; = x; (because y, € #(U)); that is, U? < H. By the
Sylow theorem, there exists & € H with U? = U*. Therefore h™'g € N;(U) and
(W g)y; = h'x; = x; for all i.

(i) The hypothesis gives 1 <t <k <v. If k = v, then Z(U) = X; but U #
1, contradicting G acting faithfully on X. It is also clear that k = |#(U)| =
lg# (U)| forallg e G.

Ify,, ..., y, are distinct elements of X, then there is g € G with gx; = y; for
all 4, and so {y,...,y,} © gZ(U). It remains to show that g% (U) is the
unique block containing the y;. If {y,, ..., y.} = h# (U), then there are zy, ...,
z, € #(U) with y, = hz, for all i. By (i), there is ¢ € Ng(U) with z; = ox; for all
i,and so gx; = y; = hox; for all i. Hence g ' ho fixes all x; and g~*ho € H. Now
H < Ng(U), because U < H, so that g"he € Ng(U) and g~*h € Ng(U). There-
fore, U? = U" and g% (U) = F(U?) = F(U") = h# (U), as desired. H

Lemma 9.67. Let H < M, be the stabilizer of the five points

o0, w, , [1, 0,07, and [0, 1, 0].

(1) H is a group of order 48 having a normal elementary abelian Sylow 2-
subgroup U of order 16.
(i) F(U)=¢u{w,w, Q}, where ¢ is the projective line v=0, and so
|[F(U)] = 8.
(ili) Only the identity of M,, fixes more than 8 points.

Proof. (i) Consider the group H of all matrices over GF(4) of the form

1 0 «
A=20 9y B 1,
0 0 y¢

where A, y # 0. There are 3 choices for each of A and y, and 4 choices for each
of a and B, so that |H| =3 x 48. Clearly H/Z(3, 4) has order 48, lies in
PSL(3, 4) < M,,, and fixes the five listed points, so that H = H/Z(3, 4) (we
know that |H| = 48 from Theorem 9.57). Define U < H to be all those matri-
ces 4 above for which y = 1. Then U = U/Z(3, 4) has order 16 and consists
of involutions; that is, U is elementary abelian. But U < A, being the kernel
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of the map H — SL(3, 4) given by

A0 0
A—|0 Jy 0 |,
0 0 2t

so that U < H.
(if) Assume that [A, u, v] € F(U).If he U, then y = 1 and

A 10 afli A+ oy EA

hlpl=10 1 Bllul=|p+pBv|=1&u
v 0 0 1{lv v &y

for some ¢ € GF(4)*. If v = 0, then all projective points of the form [/, g, 0]
(which form a projective line £ having 4 + 1 = 5 points) are fixed by h. If
v # 0, then these equations have no solution, and so  fixes no other projec-
tive points. Therefore, every h € U fixes ¢, o0, w, £, and nothing else, so that
F(U) = ¢ v {00, 0, Q} and |F (V)| = 8.

(iii) By 5-transitivity of M,,, it suffices to show that h € H* can fix at most
3 projective points in addition to [1, 0, 0] and [0, 1, 0]. Consider the equa-
tions for & € GF(4)*:

A 1 0 « A A+ av &r
hiui=10 vy B [lu|=|wm+b|=|Ln|
v 00 y{lv 7y &y

If v = 0, then we may assume that J 3 0 (for [0, 1, 0] is already on the list of
five). Now A= +oav=¢Lland u=yu+ fv=_Ep give y=1; hence he U
and h fixes exactly 8 elements, as we saw in (i). If v % 0, then v =y 7!y = &y
implies ¢ = y7!; we may assume that y # 1lest h € U. The equations can now
be solved uniquely for Land 4 (A = (™! — D7'aw and g = (y™* — )7 pv), so
that i ¢ U can fix only one projective point other than [1, 0, 0] and [0, 1, 0J;
that is, such an h can fix at most 6 points.

Theorem 9.68. Neither M, , nor M,, has a transitive extension.

Proof. In order to show that M,, has no transitive extension, it suffices to
show that there is no sharply 6-transitive group G of degree 13. Now such a
group G would have order 13-12-11-10-9-8. If g € G has order 5, then g is
a product of two 5-cycles and hence fixes 3 points (g cannot be a 5-cycle lest
it fix 8 > 6 points). Denote these fixed points by {a, b, c}, and let H = G, ;..
Now (g is a Sylow 5-subgroup of H ({g) is even a Sylow S-subgroup of G),
so that Theorem 9.66(i) gives N = N({ g)) acting 3-transitively on #({g)>) =
{a, b, c}; that is, there is a surjective homomorphism ¢: N — S;. We claim
that C = C4({g)) £ ker ¢. Otherwise, ¢ induces a surjective map ¢,: N/C —
S;. By Theorem 7.1, N/C < Aut({g)), which is abelian, so that N/C and
hence S5 are abelian, a contradiction. Now C <1 N forces ¢(C) < ¢(N) = Ss,
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so that ¢(C) = A3 (we have just seen that ¢(C) 1) and so 3 divides |C|.
There is thus an element & € C of order 3. Since g and h commute, the element
gh has order 15. Now gh cannot be a 15-cycle (G has degree 13), and so its
cycle structure is either (5, 5, 3), (5, 3, 3), or (5, 3). Hence (gh)°, being either a
3-cycle or a product of 2 disjoint 3-cycles, fixes more than 6 points. This
contradiction shows that no such G can exist.

A transitive extension G of M,, would have degree 25 and order 25-24-
23-22-21-20-48. If g e G has order 11, then g is a product of 2 disjoint
11-cycles (it cannot be an 11-cycle lest it fix 14 > 8 points, contradicting
Lemma 9.67(iii)). Arguing as above, there is an element 4 € G of order 3
commuting with g, and so gh has order 33. Since G has degree 25, gh is not a
33-cycle, and so its cycle structure is either of the form (11, 11, 3) or one
11-cycle and several 3-cycles. In either case, (gh)'! has order 3 and fixes more
than 8 points, contradicting Lemma 9.67.

Theorem 9.69.

(i) Let X = P2(4) v {0, w, Q} be regarded as an M, ,-set, let U be a Sylow
2-subgroup of H (the stabilizer of 5 points), and let B = {gF(U):ge
My, }. Then (X, B) is a Steiner system of type S(5, 8, 24).

(i) If & (U) contains {0, w, Q}, then its remaining 5 points form a projective
line. Conversely, for every projective line ¢’, there is g e PSL(3,4) < M,,
with gF (U) = ¢’ v {0, 0, Q}.

Progf. (i) Lemma 9.67 verifies that the conditions stated in Theorem 9.66 do
hold.

(ii)*The remark after Theorem 9.61 gives a formula for the number r”
of blocks containing 3 points; in particular, there are 21 blocks containing
{o0, 0, Q}. If £ =« F#(U) is the projective line v =0, and if g € PSL(3,4) =
(M14)w. 0.0, then gZ (U) = g(¢) U {0, w, }. But PSL(3, 4) acts transitively
on the lines of P2(4) (Exercise 9.23) and P?(4) has exactly 21 lines (Theorem
9.40(ii)). It follows that the 21 blocks containing the 3 infinite points co, w, Q
are as described.

The coming results relating Mathieu groups to Steiner systems are due to
R.D. Carmichael and E. Witt.

Theorem 9.70. M,, = Aut(X, #), where (X, B) is a Steiner system of type
S(5, 8, 24).

Remark. There is only one Steiner system with these parameters.
Proof. Let (X, B) be the Steiner system of Theorem 9.69: X = P?(4)u

{00, w,Q} and B = {gF (U): g € M,,}, where F(U) = £ U {0, w, Q} (here £
is the projective line v = 0).
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It is clear that every g e M,, is a permutation of X that carries blocks
to blocks, so that M,, < Aut(X, #). For the reverse inclusion, let ¢ €
Aut(X, 8). Multiplying ¢ by an element of M,, if necessary, we may assume
that ¢ fixes {00, w, Q} and, hence, that ¢|P*(4): P*(4) » P%(4). By Theorem
9.69(ii), ¢ carries projective lines to projective lines, and so ¢ is a collineation
of P?(4). But M,, contains a copy of PT'L(3, 4), the collineation group of
P2(4), by Exercise 9.40. There is thus g € M,, with g|P?(4) = ¢|P?(4), and
0g~! € Aut(X, %) (because M,, < Aut(X, %)). Now @g~! can permute only
00, w, Q. Since every block has 8 elements ¢g~* must fix at least 5 elements;
as each block is determined by any 5 of its elements, pg~! must fix every
block, and so Theorem 9.63 shows that g™ = 1; that is, ¢ = g € M,,, as
desired.

We interrupt this discussion to prove a result mentioned in Chapter 8.
Theorem 9.71. PSL(4, 2) =~ As.

Proof. The Sylow 2-subgroup U in H, the stabilizer of 5 points in M,,, is
elementary abelian of order 16; thus, U is a 4-dimensional vector space
over Z,. Therefore, Aut(U) = GL(4, 2) and, by Theorem 8.5, |Aut(U)| =
@*=1DE2*-2R* —H(* -8 =8Y2

Let N = Ny, (U). By Theorem 9.66(ii), N acts 5-transitively (and faithfully)
on % (U), a set with 8 elements. Therefore, [N| =8:7-6-5-4-5s, where s <
6 = |S;]. If we identify the symmetric group on & (U) with Sg, then [Sg: N] =
t < 6 (where t = 6/s). By Exercise 9.3(ii), Sg has no subgroups of index ¢ with
2 <t < 8. Therefore, t = 1 or t = 2; thatis, N = Sg or N = A4,. Now there is
a homomorphism ¢: N — Aut(U) given by gy, = conjugation by g. Since
Ag is simple, the only possibilities for im ¢ are Sg, Ag, Z,, or 1. We cannot
have im ¢ = Sg (since |Aut(U)| = 8!/2); we cannot have |im ¢| <2 (for H <N,
because U < H, and it is easy to find h € H of odd order and u € U with
huh™ # u). We conclude that N = A, and that ¢: N — Aut(U) = GL(4, 2) is
an isomorphism.

Theorem 9.72. M,; =~ Aut(X', &#'), where (X', #') is a Steiner system of type
54,7, 23).

Remark. There is only one Steiner system with these parameters.

Proof. Let X' = P?(4)u {00, w}, let B’ = B'(¢) = ¢ U {0, w}, Where ¢ is the
projective line v =0, and let #' = {g(B'): ge M,5}. It is easy to see that
(X', #') is the contraction at Q of the Steiner system (X, %) in Theorem 9.69,
so that it is a Steiner system of type S(4, 7, 23).

It is clear that M,; < Aut(X’, #'). For the reverse inclusion, let ¢ €
Aut(X’, #'), and regard ¢ as a permutation of X with ¢(Q) = Q. Multiplying
by an element of M,; if necessary, we may assume that ¢ fixes co and w.
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Since (X', #') is a contraction of (X, %), a block in 4’ containing co and
has the form ¢’ U {0, @}, where ¢’ is a projective line. As in the proof of
Theorem 9.70, {P?(4) preserves lines and hence is a collineation of P?(4).
Since M,, contains a copy of PT'L(3, 4), there is g € M,, with g|P?*(4) =
@|P?(4). Therefore, g and ¢ can only disagree on the infinite points oo, w,
and .

If B e star(Q) (ie., if Bis a block in & containing Q), then ¢(B) and g(B) are
blocks; moreover, |¢o(B) n g{(B)| = 5, for blocks have & points, while ¢ and g
can disagree on at most 3 points. Since 5 points determine a block, however,
¢(B) = g(B) for all B € star(Q). By Corollary 9.64,

<P< () B)
star(§2)

@(B)

star(Q)

0, o®=s( ) 2)= o).

star(Q2) tar ()

Il

{Q} = {o(@}

I

Hence g{Q) = Q and g € (M,4)q = M,5. The argument now ends as that in
Theorem 9.70: pg ™! € Aut(X’, #') since M,; < Aut(X', &), pg~* fixes &#,
and p =geM,;. H

Theorem 9.73. M,, is a subgroup of index 2 in Aut(X”, B"), where (X", B") is
a Steiner system of type S(3, 6, 22).

Remark. There is only one Steiner system with these parameters.

Proof. Let X" =X — {Q, w}, let b" = F(U) — {Q, w}, and let B" = {gb":
g € M,, . It is easy to see that (X", 8") is doubly contracted from (X, ), so
that it is a Steiner system of type 'S(3, 6, 22).

Clearly M,, < Aut(X", #”). For the reverse inclusion, let ¢ € Aut(X", #")
be regarded as a permutation of X which fixes Q and w. As in the proof of
Theorem 9.72, we may assume that ¢(c0) = co and that ¢|P*(4) is a
collineation. There is thus g € M,, with g|P?(4) = ¢|P?(4). Moreover, con-
sideration of star(w), as in the proof of Theorem  9.72, gives g(w) = w.
Therefore, g™ is a permutation of X fixing P?(4) U {w}. If g™! fixes Q,
then gpg™' = 1y and ¢ = g € (My4)a,, = M,,. The other possibility is that
pg~ = (0 Q). )

We claim that [Aut(X”, #"): M,,] < 2. If ¢y, ¢, € Aut(X", 2") and o,
o, &€ M,,, then we have just seen that ¢; =(c0 Q)g; for i =1, 2, where
gi € My, But g77g, = 97 02 € (M34)q,, = My, (since both ¢; fix Q and w);
there are thus at most two cosets of M,, in Aut(X", #").

Recall the definitions of the elements h, and h; in M,,: h, = (0 0)f, and
hy = (Q w)fs, where f, f3 act on P2(4) and fix oo, , and €. Note that &,
fixes Q0 and h; fixes co. Define g = hyh,hy = (Q 0)fsfsf5, and define
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@: X" — X" to be the function with ¢(o0) = 00 and ¢|P*(4) = f31,f3. By
Lemma 9.54, ¢|P?(4) is a collineation; since ¢ fixes oo, it follows that
@ € Aut(X”, #”). On the other hand, ¢ ¢ M,,, lest pg™! =(Q ©) e M,,,
contradicting Lemma 9.67(iii). We have shown that M,, has index 2 in
Aut(X", B").

Corollary 9.74. M, , has an outer automorphism of order 2 and Aut(X", 8") =
M,, 1Z,.

Proof. The automorphism ¢ € Aut(X”, ") with ¢ ¢ M,, constructed at the
end of the proof of Theorem 9.73 has order 2, for both f, and f; are
involutions (Lemma 9.54), hence the conjugate f; f, f5 is also an involution. It
follows that Aut(X”, #”) is a semidirect product M,, xZ,. Now ¢ is an
automorphism of M,,: if a € M,,, then a® = gpap ™" € M,,. Were ¢ an inner
automorphism, there would be b € M,, with pap™ = bab™ for all a e M,,;
that is, pa~! would centralize M,,. But a routine calculation shows that ¢
does not commute with h; =(c0 [1,0,0])f; € M,,, and so ¢ is an outer
automorphism of M,,. B

The “small” Mathieu groups M, and M, are also intimately related to
Steiner systems, but we cannot use Theorem 9.66 because the action is now
sharp.

Lemma 9.75. Regard X = GF(9)u {00, w, Q} as an M,,-set. There is a
subgroup Z < M, ,, isomorphic to Se, having two orbits of size 6, say, Z and Z',
and which acts sharply 6-transitively on Z. Moreover,

Z={peM, uZ)=2Z}.

Proof. Denote the 5-set {c0, w, Q, 1, —1} by Y. For each permutation 7 of Y,
sharp S-transitivity of M,, provides a unique v* € M, with t*|Y = 7. It is
easy to see that the function Sy — M,, given by 7+ 7*, is an injective
homomorphism; we denote its image (isomorphic to Ss) by Q.

Let us now compute the Q-orbits of X. One of them, of course, is Y. If 7 is
the 3-cycle (0 @ ), then 7* € Q has order 3 and fixes 1 and — 1. Now t* is
a product of three disjoint 3-cycles (fewer than three would fix too many
points of X), so that the {(t*)-orbits of the 7-set X — Y have sizes (3, 3, 1).
Since the Q-orbits of X (and of X — Y) are disjoint unions of {7*)-orbits
(Exercise 9.4), the Q-orbits of X — Y have possible sizes (3, 3, 1), (6, 1), (3, 4),
or 7. If Q has one orbit of size 7, then Q acts transitively on X — Y; this is
impossible, for 7 does not divide |Q| = 120. Furthermore, Exercise 9.3(i) says
that Q has no orbits of size ¢, where 2 < t < 5. We conclude that X — Y has
two Q-orbits of sizes 6 and 1, respectively. There is thus a unique point in
X — Y, namely, the orbit of size 1, that is fixed by every element of Q. If o € Sy
is the transposition (1 —1), then its correspondent ¢* € Q fixes o, w, Q and
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interchanges 1 and — 1. But {: GF(9) —» GF(9), defined by {: A+~ — 4, lies in
M, (for —1isa square in GF(9)) and {|Y = o, so that { = ¢*. Since the only
other point fixed by { is 0, the one-point Q-orbit of X — ¥ must be {0}.

Define Z=Yu {0} ={c0,w, Q, 1, —1,0}. We saw, in Exercise 9.33,
that M,, < M,, contains o,:P}(9) —>P'(9), where o,: 1> —1/1 is
(0 0)(1 —1)(x® m)(z® =7). Let us see that the subgroup £ = {Q, 7,) = S.
The set Z is both a Q-set and a (o, )-set, hence it is also a Z-set. As T acts
transitively on Z and the stabilizer of 0 is Q (which acts sharply 5-transitively
on Z — {0} = Y), we have £ acting sharply 6-transitively on the 6-point set
Z,and so £ =~ S;. Finally, the 6 points X — Z comprise the other Z-orbit of
X (for we have already seen that X — Z is a Q-orbit).

If B € Q, then B(Y) = Y and $(0) = 0, so that §(Z) = Z. Since ¢,(Z) = Z, it
follows that ¢(Z) = Z for all ¢ € Z. Conversely, suppose p € M, and u(Z) =
Z. Since X acts 6-transitively on Z, there is ¢ € £ with ¢|Z = u|Z. But uo™!
fixes 6 points, hence is the identity, and yt = o € Z.

Theorem 9.76. If X = GF(9) U {c0, w, Q} is regarded as an M ,-set and % =
{gZ:ge M,,}, where Z = {c0, 0, 1, —1, 0}, then (X, #) is a Steiner system
of type S(5, 6, 12).

Proof. It is clear that every block gZ has 6 points. If x,,..., x5 are any
five distinct points in X, then S5-transitivity of M,, provides g € M,, with
{x1,..., x5} = gZ. It remains to prove uniqueness of a block containing five
given points, and it suffices to show that if Z and gZ have five points in
common, then Z = gZ. Now if Z = {z,, ..., z4}, then gZ = {gz,, ..., gz4},
where' gz, ..., gzs € Z. By Lemma 9.75, there is 0 € £ < M,, with gz, =
gzy, ..., 0z5 = gzs. Note that ¢Z = Z, for Z is a Z-orbit. On the other hand,
o and g agree on five points of X, so that sharp 5-transitivity of M,, gives
o =g. Therefore Z =0cZ =gZ. B

If GF(9) is regarded as an affine plane over Z3, then the blocks of the Steiner
system constructed above can be examined from a geometric viewpoint.

Lemma 9.77. Let (X, #) be the Steiner system constructed from M, in Theo-
rem 9.76. A subset B of X containing T = {c0, w, Q} is a block if and only if
B = Tw{, where ¢ is a line in GF(9) regarded as an affine plane over Z 5.

Proof. Note that Z = T U ¢, where £, = {1, —1,0}, and /|, is the line con-
sisting of the scalar multiples of 1. By Exercises 9.38 and 9.39, M|, contains
a subgroup W = Aut(2, 3) each of whose elements permutes T. Hence, for
every g € W, gZ = T ugf,, and g/, is an affine line. But one may count
exactly 12 affine lines in the affine plane, so that there are 12 blocks of the
form T u¢. On the other hand, the remark after Theorem 9.61 shows that
there exactly 12 blocks containing the 3-point set 7.
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Theorem 8.78. M,, = Aut(X, B), where (X, %) is a Steiner system of type
S(5, 6, 12).

Remark. There is only one Steiner system with these parameters.

Proof. Let (X, %) be the Steiner system constructed in Theorem 9.76. Now
M, < Aut(X, %) because every g € My, carries blocks to blocks. For the
reverse inclusion, let ¢ € Aut(X, #). Composing with an element of M,, if
necessary, we may assume that ¢ permutes T = {0, w, Q} and ¢ permutes
GF(9). Regarding GF(9) as an affine plane over Z, we see from Lemma 9.77
that @|GF(9) is an affine automorphism. By Exercise 9.39, there is g € M,
which permutes T and with g|GF(9) = ¢|GF(9). Now @g~* € Aut(X, 8), for
M,, < Aut(X, B), pg* permutes T, and @g~* fixes the other 9 points of X.
We claim that g™ fixes every block B in 4. This is clearif [BN T| =0, 1, or
3. In the remaining case, say, B = {0, w, Xy, ..., X,}, then @g~*(B) must
contain either oo or w as well as the x;, so that |Bn g~ (B)| = 5. Since
5 points determine a block, B = ¢g~*(B), as claimed. Theorem 9.63 forces
pg™ ' =1,and so ¢ = g€ M,, as desired. &

Theorem 8.78. M, = Aut(X', &), where (X', #') is a Steiner system of type
S(4, 5, 11).

Remark. There is only one Steiner system with these parameters.

Proof. Let (X', #') be the contraction at Q of the Steiner system (X, %) of
Theorem 9.76. It is clear that M,; < Aut(X’, #'). For the reverse inclusion,
regard @ € Aut(X', #') as a permutation of X with ¢(Q) = Q. Multiplying by
an element of My, if necessary, we may assume that ¢ permutes {oo, w}.
By Lemma 9.77, a block B' € #' containing c and o has the form B’ =
{0, w} U ¢, where ¢ is a line in the affine plane over Z;. As in the proof of
Theorem 9.78, ¢|GF(9) is an affine isomorphism, so there is g € M,, with
g|GF(9) = ¢|GF(9). As in the proof of Theorem 9.72, an examination of
g(star(Q)) shows that g(Q) = Q, so that g e (M,,)q = M. The argument
now finishes as that for Theorem 9.78: pg™* € Aut(X', #'); @g~* fixes %#';
p=ge M.

The subgroup structures of the Mathieu groups are interesting. There are
other simple groups imbedded in them: for example, M, , contains copies of
Ag, PSL(2,9), and PSL(2, 11), while M,, contains copies of M,,, Ag, and
PSL(2, 23). The copy X of Sg in M, leads to another proof of the existence
of an outer automorphism of Ss.

Theorem 9.88. Sg has an outer automorphism of order 2.

Remark. See Corollary 7.13 for another proof.
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Proof. Recall from Lemma 9.75 that if X = {co, w, Q} U GF(9) and = (= Sg)
is the subgroup of M, in Lemma 9.75, then X has two Z-orbits, say, Z =
Yu {0} and Z' = Y" U {0'}, each of which has 6 points. If ¢ € T has order 5,
then ¢ is a product of two disjoint 5-cycles (only one 5-cycle fixes too many
points), hence it fixes, say, 0 and 0. It follows that if U = {¢), then each of Z
and Z’ consists of two U-orbits, one of size 5 and one of size 1. Now H =
(My3)o,0- = My, and U is a Sylow 5-subgroup of H. By Theorem 9.66, N =
Ny,,(U) acts 2-transitively on #(U) = {0, 0'}, so there is « € N of order 2
which interchanges 0 and 0.

Since « has order 2, & = 1,...1,,, where the 7; are disjoint transpositions
and m < 6. But M, , is sharply 5-transitive, so that 4 < m; also, M,, < A,,
sothatm=4orm=6..

We claim that « interchanges the sets Z = YU {0} and Z’' = Y’' U {0'}.
Otherwise, thereis y € Y with a(y) = z € Y. Now aoa = ¢’ for some i (because
a normalizes {o)). If 6°(y) = u and 6(z) = v, thenu, v e Y because Y U {0} is a
¥-orbit. But u = ¢'(y) = aca(y) = «o(z) = «(v), and it is easy to see that y, z,
u, and v are all distinct. Therefore, the cycle decomposition of « involves
(0 0), (y z), and (v u). There is only one point remaining in Y, say a, and
there are two cases: either a(a) = a or afa)e Y'. If o fixes a, then there is
y' € Y moved by a, say, a(y’) =z’ € Y'. Repeat the argument above: there
are points u’, v’ € Y’ with transpositions (y* z') and (v’ u’) involved in the
cycle decomposition of a. If a’ is the remaining point in Y, then the transpo-
sition (a a') must also occur in the factorization of « because « is not a
product of 5 disjoint transpositions. In either case, we haveae Yanda'e Y’
with o« = (0 0')(y 2)(v u)(a a')f, where f permutes Y’ — {a'}. But aca(a) =
o'(a) € Z; on the other hand, if o(a’) = b’ € Y/, say, then aca(a) = ac(a’) =
o(b’), so that a(b’) € Y. Since a’ is the only element of ¥’ that « moves to ¥,
b’ =a’ and o(a’) = b’ = a’; that is, ¢ fixes a’. This is a contradiction, for ¢
fixes only 0 and 0.

It is easy to see that « normalizes X. Recall that ¢ € ¥ if and only if 6(Z) =
Z (and hence o(Z') = Z'). Now aca(Z) = ag(Z') = a(Z') = Z, so that aou €
Z. Therefore, y = 7, (conjugation by «) is an automorphism of X.

Suppose there is f € £ with ac*a = fo*f7* for all c* € ; that is, fa e
C=Cy,,(2). If C=1, then « = f € Z, and this contradiction would show
that y is an outer automorphism. If 6* € Z, then 6* = go’, where o permutes
Z and fixes Z' and ¢’ permutes Z' and fixes Z. Schematically,

¥ =(z x ..)(E x' ...)
if u € M_,, then (as any element of S, ,),
uot ™t = (uz px ..)(uz' ux’.L).

In particular, if ue C (so that uo*u™* = o*), then either u(Z) = Z and
w(Z') = Z' or p switches Z and Z'. In the first case, u € Z, by Lemma 9.75,
and pe CNZ = Z(Z) = 1. In the second case, uou™ = o’ (and po'p™ = o),
so that ¢ and ¢’ have the same cycle structure for all ¢* = g0’ € Z. But there
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is 6% € ¥ with ¢ a transposition. If such p exists, then ¢* would be a product
of two disjoint transpositions and hence would fix 8 points, contradicting
M, being sharply 5-transitive.

There is a similar argument, using an imbedding of M,, into M,,, which
exhibits an outer automorphism of M, ,. There are several other proofs of the
existence of the outer automorphism of Sg; for example, see Conway and
Sloane (1993).

The Steiner systems of types S(5, 6, 12) and S(5, 8, 24) arise in algebraic
coding theory, being the key ingredients of (ternary and binary) Golay codes.
The Steiner system of type S(5, 8, 24) is also used to define the Leech lastice,
a configuration in R?# arising in certain sphere-packing problems as well as
in the construction of other simple sporadic groups.



