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Preface

The representation theory of the svmmetric groups was first studied
by Frobenius and Schur, and then developed in a long series of papers
by Younqg. Although a detailed study of Young's work would undoubtedly
nay dividends, anvone who has attemnted this will realize just how
difficult it is to read his papers. The author, for one, has never
undertaken this task, and so no reference will be found here to any of
Youna's proofs, although it is probable that some of the techniques
presented are identical to his.

These notes are based on those aiven for a Part III course at
Cambridqge in 1977, and include all the basic theorems in the subject,
as well as some material previouslyv unpublished. Many of the results
are easier to explain with a blackboard and chalk than with the type-
written word, since combinatorial argquments can often be best presented
to a student by indicating the correct line, and leaving him to write
out a comnlete proof if he wishes. In many places of this book we have
nreceded a proof by a worked example, on the principle that the reader
will learn more easily bv translating for himself from the particular
to the general than by readinq the sometimes unpleasant notation required
for a full proof. However, the complete arqument is always included,
rerhaps at the expense of supnlying details which the reader might find
quicker to check for himself, This is especially important when dealing
with one of the central theorems, known as the Littlewood-Richardson
Rule, since many who read early proofs of this Rule find it difficult to
£i11 in the details (see [16] for a description of the problems encount=-
ered) .

The annroach adopted is characteristic-free, except in those
places, such as the construction of the character tables of symmetric
grouvs, where the results themselves dernend upon the ground field. The
reader who is not familiar with representation theory over arbitrary
fields must not be deterred bv this; we helieve, in fact, that the
ordinary representation theory is easier to understand by looking initi-
ally at the more general situation., Nor should he be put off by the
thouqght that technical knowledge is recuired for characteristic-free
representation theory, since the symmetric groups enjoy special propert-
ies which make it possible for this book to be larqely self-contained.
The most economical wav to learn the immnortant results without using any
general theorems from representation theory is to read sections 1-5,
10-11 (noting the remarks following Example 17.17), then 15-21.

Many of the theorems relv on a certain bilinear form, and towards



v

the end we show that this bilinear form must have been known to Young,
by using it in a new construction of Young's Orthogonal Form. It is
remarkable that its siqgnificance in the representation theory of the
symmetric grouns was only recently recognized.

I wish to express my thanks to Mrs. Robyn Bringans for her careful

and ratient typing of mv manuscrint.

G, D, James
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1. BACKGROUND FROM REPRESENTATION THEORY

We shall assume that the reader is familiar with the concept of
tne group algebra, FG, of a finite group G over a field F, and with
the most elementary properties of (unital right-)FG-modules. It is
possible to prove all the important theorems in the representation

theory of the symmetric group using only the following:

1.1 THEOREM If M is an irreducible FG-module, then M is a composition

factor of the group algebra, FG.

Proof: Let m be a non-zero element of M. Then mFG is a non-zero sub-
module of M, and since M is irreducible, M = mFG. The map

0: r » mr (r €FG)
is easily seen to be an FG-homomorphism from FG onto M. By the first
isomorphism theorem,

FG/ker @ = M
so FG has a top composition factor isomorphic to M.

The first isomorphism theorem will appear on many occasions,
because we shall work over an arbitrary field, when an FG-module can
be reducible but not decomposable.

We often use certain G-invariant bilinear forms, as in the proof

of a special case of Maschke's Theorem:

1.2 MASCHKE®S THEOREM If G is a finite group and F is a subfield of
the field of real numbers, then every FG-module is completely reducible.

Proof: Let €1reeesep be an F-basis for our FG-module M. Then there
is a unique bilinear form ¢ on M such that
(ei,ej)¢ =14if i = j, and 0 if i = j.
Now,a new bilinear form can be defined by

<u,v> =} (ug,vg) ¢ for all u,v in M.
geG

This form is G-invariant, in the sense that
<ug,vg> = <u,v> for all g in G.

Given a submodule U of M, Ve ut means, by definition, that <u,v>

= O for every u in U. But if ueU, then u g-le U. Thus

<u,vg> = <u g—l,v> =0,
using the fact that our form is G-invariant. This shows that vge Ul,
which is the condition required for u' to be a submodule of M.

If uw # O, then <u,u> # 0, since F is a subfield of the field of
real numbers, so U anut = 0. We shall prove below that dim U + dim ut
= dim M, and therefore u' is an FG-module complementing U in M as
required.

We now remind the reader of some elementary algebra involving



bilinear forms.
Let M be a finite-dimensional vector space over F. The dual of
M is the vector space of linear maps from M into F, and will be denoted
by M*. Let €1reeer€p be a basis of a subspace V, and extend to a basis
€1reessep of M, Eor l1<j<m, define eje m* by e, Ej =14if i = j, and
0 4if i #= j. By considering the action on €1s.00s8, We see that any
element ¢ of M* can be written uniquely as a linear combination of
Eprecees€py thus: ¢ = (el¢)el + ...+(em¢)em. Therefore, Eqrever€y
is a basis of M* and
dim M = dim M .
Further, ¢ belongs to Vo, the annihilator of Vv, if and only if
e¢ = ...= e ¢ = 0. Therefore, €, ,,...,€, Spans v® and
dim V + dim v° = dim M,
Suppose now that we have a symmetric bilinear form, < , >, on M

which is non-singular (That is, for every non-zero m in M there is an

ml

in M with <m,m'> # O0). Define
9: M » M* by m » wm where
wm: X + <m,X> (xe M),

We see that wm(:M*, since < , > is linear in the second place, and
© is a linear transformation, since < , > 1is linear in the first place.
Now, ker 0 = {m eMI for all xeM, <m,x> = O}= O, since the hilinear form
is non-singular., But dim M = din M*, so @ is an isomorphism between
M and M*. Under this identification, vt corresponds to v©®, Thus, for

every subspace V,

1.3 dim V + dim V' = dim M

. 1L . . . . .
Since V < V7, this equation between dimensions gives
1L
v = V.

L

More generally, given subspaces O = U = V ¢ M, we have vt = U,

and we may define
©: V » dual of UL/Vl by v + ¢, where

wvz x + vt > <V, X> (xe Ul).
If x + vt = x' + Vl, then x - x'¢ V!, and <v,x> - <v,x'> = <v,x=x'> = O.
This shows that wv is well-defined. In the same way as before, wv
and @ are linear, but now

ker® = {veV|for all x ¢U', <v,x> = 0} = vauUlt .
Since U'! = U £V, ker © = U. We therefore have a monomorphism from
V/ker 0= V/U into the dual of Ul/Vl. Again, dimensions give:
1.4 Wnen O cU &€V ¢ M, V/Ugz dual of Ul/Vl. In particular, V=
dual of M[Vl.

If M is an FG~module for the group G, we can turn the dual space




M* into an FG~module by letting
m(yg) = Uag-5w (meM, ¢ ¢ M*, ge G).

Notice that the inverse of g appears to ensure that (g} = (yg)h.
This means that the module M (which we shall call the dual of M ) is
not in general FG-isomorphic to !, Indeed, if T(g) is the matrix
representing g with respect to the basis el,...,em of M, then T'(g_l)
is the matrix representing g with respect to the dual basis EpreserEy
of M*. This means that the character of M* is the complex conjugate
of the character of M when we are working over the complex numbers.

wow assume that the bilinear form < , > is G invariant. If U
and V are FG-submodules of M, then the isomorphisms in 1.4 are FG-
isomorphisms. To verify this, we must show that ©: v » y_ is a G-
homomorphism, But (x + Vl)wv = <x,vg> = <xg—l,v> = (xg ~ + Vl)wv =
(x + Vl)g-lwv = (x + Vl)(wv g?, and wvg = wvg, as required.

For every pair of subspaces U and V of M, (U + V)l =yt Vl, as
can easily be deduced from the definitions. Replacing U and V by ut
and Vl, we also find that U' + v' = (Un V)l.

Throughout this book, the next picture will be useful:

The second isomorphism theorem gives V/(V nvl) z (V+ Vl)/vl. But
(v + v /vt 2 aual of v/ (v + vH)*, by 1.4 = dual of V/(va V'), so

1.5 For every FG-submodule V of M, V/(erVl) is a self-dual FG-

module.,

Every irreducible representation of the symmetric group will turn
up in this fashion.

It is very tmportant to notice that V nv' can be non-zero for a
submodule V of M. How can we compute the dimension of V/(ervl), given
a basis of V2 The answer is simple in theory, but will require a lot
of calculation if V has large dimension. The Gram matrix, A, is def-

ined with respect to a basis €1rsee of V by letting the (i,j)th

k
entry of A be <ei,ej>.

1.6 THEOREM The dimension of V/(ervl) equals to the rank of the




Gram matrix with respect to a given basis of V.

Proof: As usual, map V » dual of V by

0: v » wv where uwv = <v,u> (ueV)
Let €110 r€) be the given basis of V, and €1rever Ep be the dual
basis of V*, Since ejwe= = <ei,ej> , We have
i
we. = <ei,el> el+...+<ei,ek> ek .

1

Thus the Gram matrix for the basis el,...,e coincides with the

k

matrix of © taken with respect to the bases €1r0004€ of V and Eqrees

k
e, ©of V'. But, visibly, ker 0 = Vavt, so dim v/ (VvaVl) = dim In @ =

the rank of the Gram matrix.

The only results from general representation theory which we shall
use without proof are those telling us how many inequivalent ordinary
and p-modular irreducible representations a finite group possesses,
and the following well-known result about representations of a finite
group over €, the field of complex numbers (cf. Curtis and Reiner [2 ]
43.18 and Exercise 43.6).

1.7 Let S be an irreducible €G-module, and M be any CG-module. Then
the number of composition factors of M isomorphic to § equals
dim HomCG(S,M).

In fact, it turns out that these results are redundant in our
approach, and Theorem 1.1 gives everything we want, but it would be
foolish to postpone proofs until Theorem 1.1 can be applied.

Readers interested in character values will be familiar with the
Frobenius Reciprocity Theorem and the orthogonality relations for

characters, so we assume these results when discussing characters.



2, THE SYMMETRIC GROUP

The proofs of the results stated in this section can be found in
any elementary book on group theory.

A function from {1,2,...,n} onto itself is called a permutation
of n numbers, and the set of all permutations of n numbers, together
with the usual composition of functions, is the symmetric group of

degree n, which will be denoted by Grﬁ Note that Grlis defined for

n 20, and (;n has n! elements (where 0! = 1). If X is a subset of
{1,2,...,n}, we shall write GX for the subgroup of Gh which fixes every
number outside X,

It is common practice to write a permutation 7 as follows:
™= (l 2 3 ....n )
Ir 2w 3w nm
By considering the orbits of the group generated by m , it is

simple to see that m can be written as a product of disjoint cycles,

as in the example :

(123456789)
35 1.9 6 8 7 2 4)° (2 56 8)(1 3)(4 9)(7)

We usually suppress the l-cycles when writing a permutation., For
example, if 7 interchanges the different numbers a,b and leaves the other
numbers fixed, then m is called a transposition and is written as m =
(a b).

All our maps will be written on the right; in this way, we have
(1 2)(2 3) = (1 3 2). This point must be noted carefully, as some
mathematicians would interpret the product as (1 2 3),.

Since (il iz"'ik) = (il iz)(il i3)...(il ik)’ any cycle, and hence
any permutation, can be written as a product of transpositions. Better
still,

2.1 The transpositions (x-1,x) with 1 <X <n generate Cv'_‘.

This is because, when a < b, we can conjugate (b-1,b) by (b-2,b-1)
(b-3,b-2)...(a,a+l) to obtain (a b).

Ifnm = 9, 02"‘°j = Ty TyeeeTy are two ways of writing m as a
product of transpositions, then it can be proved that j - k is even.
Hence there is a well-defined function

sgn: GIL+ {1}
such that sgn 7 = (-1)J if 7 is a product of j transpositions.

2,2 DEFINITION ) = (Al,AZ,A3,...) is a partition of n if Al,Az,A3,...

are non-negative integers, with A, = Ay 2h;32 ... and ) Aj = n.
i=1



The permutation 7 is said to have cycle-type A if the orbits of
the group generated by m have lengths Al > Az >... Thus, (2 56 8)(1 3)
(4 9)(7) has cycle-type (4,2,2,1,0,0,...). Abbreviations such as the
following will usually be adopted:

(4,2,2,1,0,0,...) = (4,2,2,1) = (4,2%,1).

That is, we often suppress the zeros at the end of X, and indicate
repeated parts by an index.

Since two permutations are conjugate in (;n if and only if the

permutations have the same cycle type,

2.3 The number of conjugacy classes of Gn equals the number of par=

titions of n.

Now, for any finite group G, the number of inequivalent irreducible

CG-modules is equal to the numbier of conjugacy classes of G, so

2.4 The number of inequivalent ordinary irreducible representations

of Gn equals the number of partitions of n.

We should therefore aim to construct a representation of (;n for

each partition of n. Let us look first at an easy example:

2.5 EXAMPLE There is a natural representation which arisés directly
from the fact that G;n permutes the numbers 1,2,...,n ; take a vector
space over F of dimension n, with basis elements called 1,2,...,n ,

and let Gn act on the space by 1 = iT (te¢ ©_). We shall denote

n
this representation by M(n-l’l).

We can easily spot a submodule of M(n-l'l);

the space U spanned
by I+2 +...+ 1 is a submodule on which (;n acts trivially. It is
not hard to find another submodule, but suppose we wish to eliminate
guesswork, If F = @, the field of rational numbers, the proef of
Maschke's Theorem suggests we construct an &_-invariant inner product
on M(n_l’l) and then U' will be an invariant zomplement to U.
<i,3> = 1 if i = § and 0 if i = j (*)

defines an Gn-invariant inner product on M(n-l’l). Then

Ul = {z ai i iaie aQ
(n-1,1)

+...+ a_ =0} .
n
(n=-1,1)

4

(5 - E)FG}V Then certainly S

module of Ul, and it is easy to see that we have equality. Thus
m=Ll) o g=L1) 6§y ghen F = Q.

Notice though, that (x) gives an G_=~invariant bilinear form on
M(n-l,l) S(n—l,l)

Let S is a sub=-

whatever the field. is always a submodule, too (It

S(n-l’l) is a Specht

is a complement to U if and only if char F{ n.)

module.

Are there any other easy ways of constructing representation



(n-2,2)
’

modules for (;n? Consider the vector space M over F spanned

by unordered pairs ij (i = j). M(n-2,2)

has dimension (g), and becomes
an F& -module if we define ij7 = iIw,37. This space should not be
difficult to handle, but it is not irreducible, since Z { IE [l < i
< Jj<n } is a trivial submodule. We do not go into details for the

(n-2,2)

moment, but simply observe that M supplies more scope for inves-

tigation.

(n-m,m)

More generally, we can work with the vector space M spanned

by unordered m-tuples TITTTT; (where ij # 1, unless j = k). Since
this space is isomorphic to that spanned by unordered (n-m)-tuples,
there is no loss in assuming that n-m z m. This means that for every
partition of n with two non-zero parts we have a corresponding (redu-
cible) F G -module at our disposal.

Flushed with thlS success, we should go on and see what else we
can do. Let M(n 2,1%) be the space spanned by ordered pairs, which we
shall denote by = (i # j). The &_ action is ig-= IT . Let M(n 3,2.1)

l n ir
be the space spanned by vectors consisting of an unordered 2-tuple
13 followed by a l-tuple k,_where no two of i,j and k are equal. These

vectors may be denoted by ij s but it seems that we should change our

k
notation and have as a basis vector of M(n-3’2'l) in
lgeeeeenei 5
*n-2 'n-1
i
n
place of
n-2 ln-l .
i
n

By now, it should be clear how to construct an E‘Gn—module MA for
each partition X of n. The notation we need to do this formally is
introduced in the next section. MA is reducible (unless A = (n)), but
contains a Specht module SA, which it turns out, is irreducible if
char F = 0.



3. DIAGRAMS, TABLEAUX AND TABLOIDS

3.1 DEFINITIONS. If A is a partition of n, then the diagram [A] is
{1, i, ez 1 =<1 1 <3 < Xi} (Here, Z is the set of integers).
If (i,j) ¢ [A], then (i,j) is called a node of [A]. The kth

pectively, column) of a diagram consists of those nodes whose first

row (res-

(respectively, second) coordinate is k.

We shall draw diagrams as in the following example:
X X X X
A= (4,2%,1) [A] = x X
X X
X
There is no universal convention about which way round diagrams
should be shown. Some mathematicians work with their first coordinate
axis to the right and the second one upwards! It is customary to drop
the inner brackets when giving examples of diagrams, so we write
[4,22,11, not [(4,2%,1)].

The set of partitions of n is partially ordered by

3.2 DEFINITION. If X and p are partitions of n, we say that X dom-
inates u, and write A ® u, provided that
] J
for all j, E Aoz ) o,
P T 1= M
If A&y and X # u, we write A > yu.

3.3 EXAMPLE. The dominance relation on the set of partitions of 6
is shown oy the tree:

(6)
6
<4l2)
AN
(3, 3) (4,1%)
PLEY 1)/
AN
(3,1° ) (2%)

\\(22l1 )//

(2,1%)
|
(1%)
The dominance order is certainly the "correct” order to use for
partitions, but it is sometimes useful to have a total order, >, on
the set of partitions. The one we use is given by

3.4 DEFINITION If X and py are partitions of n, write A > p if and
only if the least j for which Xj g satisfies Aj > uy. (Note that



some authors write this relation as A < u). This is called the dictio-
nary order on partitions.

It is simple to verify that the total order > contains the partial
order b, in the sense that A » p implies X > p. But the reverse inp-
lication is false since
(6)>(5,1)>(4,2)>(4,1%2)>(32)>(3,2,1)>(3,13)>(23)>(22,12)>(2,1%)>(1%).

3.5 DEFINITION If [A\] is a diagram, the conjugate diagram [A'] is
obtained by interchanging the rows and columns in [AJ. X' is the par-
tition of n conjugate to A.

The only use of the total order > is to specify, say, the order in
which to take the rows of the character table of Grf Since there may
be more than one self-conjugate partition of n (e.g. (4,2,1%?) and (3%,2)
are both self-conjugate partitions of 8), there is no "symmetrical"
way of totally ordering partitions, so that the order is reversed by
‘taking conjugates. It is interesting to see, though, that

A b p if and only if u' » A'.
The next thing to define is a A-tableau. This can be defined as

a bijection from [A] to {1,2,...,n}, but we prefer the less formal

3.6 DEFINITION A )l-tableau is one of the n! arrays of integers
obtained by replacing each node in [A] by one of the integers 1,2,...,n,
allowing no repeats.

For example,

1245 and 4 57 3 are (4,3,1)-tableaux.
36 7 218
8 6

Gn acts on the set of A-tableaux in the natural way; thus the
permutation (1 4 7 8 6) (2 5 3) sends the first of the tableaux above
to the second. (Of course, the definition of a tableau as a function
wins here. Given a tableau t and a permutation 7w, the compositions of
the functions t and w gives the new tableau tmw).
Every approach to the representation theory of Gn depends upon a
form of the next result, which relates the dominance order on partitions

to a property of tableaux.

3.7 THE BASIC COMBINATORIAL LEMMA Let A and y be partitions of n,
and suppose that t; is a A-tableau and t, is a py-tableau. Suppose that
for every i the numbers from the ith row of t, belong to different

columns of t;. Then A & p,

Proof: Imagine that we can place the p; numbers from the first row of
t)
must have at least Uy columns; that is Al > My Next insert the My

in [A] such that no two numbers are in the same column. Then [A]
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numbers from the second row of ty, in different columns. To have space
to so this, we require Al+ Az > My + My Continuing in this way, we

have X & y.

3.8 DEFINITIONS If t is a tableau, its row-stabilizer, Rt' is the
subgroup of Gn keeping the rows of t fixed setwise.
i.e. R = {me Gn| for all i, i and im belong to the same row of t}
The column stakilizer Ct, of t is defined similarly.
For example, when t =1 2 4 5 , R = (;{l 24 5} % G{3 6 71 * G{B}
36 7
8
and |[R.| = 4! 3! 1!
= =1 = =]
Note that Rtn =T R and Cin s Ctn

3.9 DEFINITION Define an equivalence relation on the set of A-
tableaux by ty ~ t2 if and only if tlﬂ =t, for some me Rtl . The
tabloid {t} containing t is the equivalence class of t under this

equivalence relation.

It is best to regard a tabloid as a"tableau with unordered row
entries". In examples, we shall denote {t} by drawing lines between
the rows of t. Thus

345 245 145 235 135 125 234 134 124 123
1 2 1l 3 2 3 1 4 2 4 3 4 15 2 5 35 4 5
are the different (3,2)-tabloids, and 1 3 2 =12 3 .

5 4 4 5

Gn acts on the set of A-tabloids by {t}w = {tw}. This action

is well-defined, since {tl} = {t2} implies t t.o for some ¢ in Rtl.

2° "
Then 77 'om e 77 'Ry 7 = Reqp, so {tym) = {tyon} = {t,m}.
We totally order the XA-tabloids by

3.10 DEFINITION {tl} < {tz} if and only if for some i
(i) When j > i, j is in the same row of {tl} and {t2}
(ii) i is in a higher row of {tl} than {tz}.

We have written the (3,2)-tabloids in this order, above. There
are many other sensible orderings of A-tabloids, but the chosen method
is sufficient for most of our purposes. As with the dominance order

on partitions, the best tabloid ordering is a partial one:

3.11 DEFINITION Given any tableau t, let mir(t) denote the number

of entries less than or equal to i in the first r rows of t., Then

write
{tl} q {tz} if and only if for all i and r my (t)) < mir(tZ)'



"

This orders the tabloids of all shapes and sizes, but we shall
compare only tabloids associated with the same partition.

By considering the largest i, then the largest r, such that
mir(tl) < mir(tZ) , it follows that

3.12 For A-tabloids {tl} and {tz}, {tl} < {t2} implies {tl} < {tz}_.

3.13 EXAMPLES (i) If t; = 136 and t2 =124
257 356
4 7
then the first 7 rows and 3 columns of the matrices (mir(tl)) and
(mir(tz)) are
1 11 1 1 1
1 2 2 2 2 2
2 3 3 2 3 3
(m; £,)) = 2 3 4 (m,  (&,)) = 3 4 4
2 4 5 3 5 5
3 5 6 3 6 6
3 6 7 3 6 7

Therefore, {tl} 4 {tz}.

(ii) The tree below shows the < relation on the (3,2)-tabloids:

W)
=
)

i
N

N
=3
w

/

"
/

N
[T -
w
N
w
w

|

Nr—" \

125/ \134/
RN

[
W
|
N
W
|

W)
w

[
N
w

-y

5

Suppose that w < x and w is in the ath row and x is in the bth

row of t. Then the definition of mir(t) gives

3.14 mir(t(wx)) - mir(t) = {l if bsr<a and w<ic<x

l1if a<r<b and w<ic<x
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( 0 otherwise.
Therefore

3.15 {t} 4 {t(wx)} if w < x and w is lower than x in t.

When we prove Young's Othogonal Form, we shall need to know that
the tabloids {t} and {t(x~1,x)} are immediately adjacent in the Q order
(or are the same tabloid):

3.16 LEMMA If x-1 is lower than x in t, and t is a A-tableau, then
there is no A-tableau £ with {t} < {tl} 4 {t(x=1,x)} .

Proof: First note that for any tableau t* with i* in the r*th row,

mi*r(t*) - Mok (t*) = the number of numbers egual to i* in the
’
first r rows of t* = {O if r<r*
1 if r2«¢*

Now suppose that x-1 is lower than x in t, and {t} 4 {tl} 9
{t(x-1,x)} . By 3.14,

mir(t) = mir(t(x—l,x)) if i = x-1.
Therefore _ ) R
mir(tl) = mir(t) if 1 = x-1
and _ . .
mir(t) - mi—l,r(t) = mir(tl) mi-l,r(tl) if i # x=1 or X.

By the first paragraph of the proof, all the numbers except x-1
and x appear in the same place in t and t;. But t and t, are both
A-tableaux. Therefore, {tl} = {t} or {t(x-1,x)} as required.



4. SPECHT MODULES

With each partition y of n, we associate a Young subgroup GU of
Grlby taking
= x G X
GU 6{1,2,...'ul}x G{ul+l,...,ul+u2} {ul+u2+l,..,ul+u2+u3}
The study of representations of Gn starts with the permutation
Moot Gn on Gu. The Specht module S" is a submodule of MY,
and when the base field is Q (the field of rational numbers), the

module M

different Specht modules, as u varies over partitions of n, give all

the ordinary irreducible representations of (;n'

4.1 DEFINITION Let F be an arbitrary field, and let M" be the vec-

tor space over F whose basis elements are the various p-tabloids.

The action of (En on tabloids has already been defined, by {t}w

Y turns MM

= {tn} (w 6Gn). Extending this action to be linear on M
into an FGI{mmdule, and because Gr1is transitive on tabloids, with

G;U stabilizing one tabloid,

4.2 s is the permutation module of Gn on the subgroup & . M" is

a cyclic E‘Gn-module, generated by any one tabloid, and dim M" = n! /
]

Lt Motaeel).

4.3 DEFINITIONS Suppose that t is a tableau., Then the signed column

sum, K, is the element of the group algebra.FGn obtained by sumning
the elements in the column stabilizer of t, attaching the signature

to each permutation. In short,

Ky = ) (sgn m)m .
veCt

The polytabloid, e associated with the tableau t is given by
e, = {t}Kt

The Specht module sH for the partition u is the submodule of e
spanned by polytabloids.

A polytabloid, it must be noted, depends on the tableau t, not
just the tabloid {t}. All the tabloids involved in e, have coefficient
+ 1 (If v eMu, then v is a linear combination of tabloids; we say that

the tabloid {t} is involved in v if its coefficient is non~zero, )

4.4 EXAMPLE If t =2 5 1 then Ke = (1=(2 3)) (1-(4 5)).
3 4
(We always denote the identity permutation by 1). Also
e, =251 =~ 351 - 2431 4+ 341
14 24 s 75

The practical way of writing down e given t, is to permute the

!
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numbers in the columns of t in all possible ways, attaching the sig-
nature of the relevant permutation to each tableau obtained that way,

and then draw lines between the rows of each tableau.

Since x,m = Tk, , we have e T = e []e)

t tm t tw’
4,5 s is a cyclic module, generated by any one polytabloid.

It we wish to draw attention to the ground field F, we shall write
M; and Sg . Many results for Specht modules work over an integral
domain, and it is only in Theorem 4.8 and Lemma 11.3 that we must have

a field. When F is unspecified, then the ground field is arbitrary.
n

Since M" is a permutation module, it is hardly surprising that most of
its properties (for instance, its dimension) are independent of the
base field. What is more remarkable is that many results for the
Specht module are also independent of the field. Two special cases
are immediate. When y = (n), s = M¥ = the trivial EWZn-module. When
u = (ln), M is isomorphic to the regular representation of 611' and
s¥ is the alternating representation (i.e. m -+ sgnm).

We now use the basic combinatorial Lemma 3.7 to prove

4.6 LEMMA Let )\ and py be partitions of n. Suppose that t is a A-
tableau and t* is a y-tableau, and that {t*}Kt # O, Then A B u, and
if A = y then {t*}Kt = i{t}Kt (= * et)L

Proof: Let a and b be two numbers in the same row of t*. Then
{t*} (1-(a b)) = {t*} - {t*(abB)} = 0.
a and b cannot be in the same column of t, otherwise we could
select signed coset representatives Opr=+er0, for the subgroup of the

column stabilizer of t consisting on 1 and (a,b) and obtain

K (l-(a b))(ol + ...+0K)-

It would then follow that {t*}Kt= 0, contradicting our hypothesis.

We have now proved that for every i, the numbers in the ith row
of t* belong to different columns of t, and Lemma 3.7 gives X & .
Also, if A = u , then {t*} is one of the tabloids involved in {t}Kt,
by construction. Thus, in this case, {t*} = {t}n for some permutation

. *
m in C,, and {t }Kt = {t}n Ky = i{t}Kt.

4.7 COROLLARY It u is an element of MY and t is a y-tableau, then

bk, is a multiple of e

e
Proof: wu is a linear combination of u-tabloids {t*} and {t*}Kt is a

multiple of ey by the Lemma.

Now let < , > be the unique bilinear form on M* for which
< {tl},{tz} > =1 1if {tl} = {tz}, 0 if {t;} = {t,}.
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Clearly, this is a symmetric, Gn—invariant, non-singular bilinear
form on Mu, whatever the field., If the field is @, then the form is an
inner product (cf. Example 2.5).

We shall often use the following trick:

For u, veM", Uk, ,v> o = ) <{(sgn m)um, V>
ﬂeCt

-1
) <u,(sgn m)vr >
ﬂeCt
(since the form is G};invariantJ
= <u, {sgn w)vr>
ﬂeLt

= <u,vK >

The crucial result using our bilinear form is

4.8 THE SUBMODULE TiHLORE}M (James [71). If U is a submnodule of MHL

toen either U > g" or U = st

Proof: Suppose that ue U and t is a u-tableau. Then by Corollary 4.7,
uc, = a multiple of SR
If we can choose u and t so that this multiple is non-zero, then

e, € U. since s” is generated by SRS have U > s¥.

t
If, for every u and t, uk, = 0, then for all u and t
0 =quKt, {t}> = <u, {t}Kt> = <u, e > .
That is, U < 877,

4.9 THEOREM Su/(SU n Sul) is zero or absolutely irreducible., Further

if this is non-zero, then s n s*t is the unigue maximal submodule of

s", ana 5¥/(s" n sM') is self-dual.

Proof: By the Submodule Theorem, any submodule of s" is either s"
itself, or is contained in s n gHt, Using 1.5, all parts of the
Theorem follow at once, except tnut we have still to prove that
Su/(SLl n Sul) remains irreducible when we extend the field.

Choose a basis S RARREAN for s¥ where each ey is a polytabloid.
(we shall see later how to do this in a special way.) By Theorem 1.6,
dim(Su/SLl n Sul) is the rank of the Gram matrix with respect to this
basis. But tne Gram matrix has entries from the prime subfield of F,
since the coefficients of tabloids involved in a polytabloid are all
t 1. Therefore, the rank of the Gram matrix is the same over F as over
the prime subfield, and so s¥ n sMt does not increase in dimension if
we extend F. Since Su/(SLl n sHt ) is always irreducible, it follows
that it is absolutely irreducible.

Remark We shall show that all the irreducible representations of G;n

turn up as Su/(sU n Sul); the Theorem means that we can work over @ or



16

the field of p elements. We now concentrate on completing the case
where char F = O, although the remainder of this section also follows
from the more subtle approach in section 1l1. The reader impatient for

the more general result can go immediately to sections 10 and 11.

s . A
4,10 LEMMA If 6 is an F Gn—homomorpnlsm from MX into MY and $

ki
AL ) .
Ker O, then A 2 py. If X = u, the restriction of 0 to S~ is multipli-

cation by a constant.

Remark Ker 0 = Skl by the Submodule Theorem, since Ker 0 % Sk. The

Lemma will later be improved in several ways (cf. 11.3 and 13.17).

Proof: Suppose that t is a A-tableau. Since e, ¢ Ker 0,

O =e 0= {t}Kt 0 = {t}o k

t
= (a linear combination of u—tabloids)Kt.
By Lemma 4.6, A = y, and if A = u, then et'Gis a multiple of €y
4,11 COROLLARY If char F = 0, and © is a non-zero element of
HomFG (SX,MU), then A & p. If XA =y, then 0 is multiplication by a
n
constant.

Proof: When F = , < , > is an inner product. The rank of the Gram
matrix with respect to a basis of SX therefore equals dim SX for any

field of characteristic 0. Thus

AL A AL

= O and MX = S @ S

Any homomorphism defined on Sk can therefore be extended to be

when char F = O, Skn S

defined on Mx by letting it be zero on SXL. Now apply the Lemma.

4.12 THEOREM (THE ORDINARY IRREDUCIBLE REPRESENTATIONS OF Gn). The
Specht modules over @ are self-dual and absolutely irreducible, and

give all the ordinary irreducible representations of Gn.
A
Proof: If SQ = Sa, then X & y by Corollary 4.11, Similarly, u g A

: A
SO A = u. Since Sg n SQl = 0, the Theorem follows from Theorem 4,9

and 2.4.

Since MV is completely reducible when char F = 0, Corollary 4.11
also gives

4,13 THEOREM If char F = O, the composition factors of s are s¥
(once) and some of {Sx A » y} (possibly with repeats).

Some authors prefer to work inside the group algebra of Gn, and
$O0 we explain how to find a right ideal of the group algebra of Gn
corresponding to the Specht module.

Given a p-tableau t, let Py = ! o , so that pee F6 , and let
geR
t

0: P T > {t}n (m € Gn).
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This is clearly a well-defined F G, isomorphism from the right
ideal Py F Gn onto MV (It is well-defined, since py M=
<=> {t}m = {t}.) Restricting @ to the right ideal Py K

Pe <=> e Rt

£ F Gn gives an
isomorphism from Pr Kye F gn onto Su. Using this isomorphism, every
result can be interpreted in terms of the group algebra. We prefer
the Specht module approach for two reasons. First, the Specht module
sH depends only on the partition u, whereas the right ideal pt K¢ F(Sn
depends on the particular u-~tableau t. Perhaps more important is that
in place of Pys which is a long sum of group elements, we have a single
object {t}; this greatly simplifies manipulations with particular
examples, as will be seen in the next section, where we pause in the
development to work through some examples illustrating many salient
points.
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5. EXAMPLES

5.1 EXAMPLE Reverting to the notation of Example 2.5, where the first

row of the tabloids in M(n—l'l) is omitted, we have

(n=1,1)_ ,= = _ - -
s = (2-1)F6n—{zaillai<f', a; + ...+ a =0}
g(n=l,/ )1 SP(I + 2 4 vuu+ 1)
Clearly, S(n_l'l)‘L = S(n—l’l)if and only if char F divides n. By
the Submodule Theogem )
2
0 s g% oy if char F =2 and n = 2

[O=

are the unique composition series for M

S(n-l,l)LC S(n-l,l) - M(n-l,l)
(n-1,1)

if char F divides n > 2

if char F divides n.

The same Theorem shows that when char F does not divide n, S(n—l’l)
is irreducible and M(P"1/1) _ g(n=1,1) & o(n-1,1)1
Note that in all cases s M"LeDIL o () g qim s (™ 101) = g,

5.2 EXAMPLE We examine M(3'2)

in detail. A (3,2)~-tabloid is
determined by the unordered pair of numbers ij which make up its second
row., To get a geometric picture of M(3’2), consider the set of graphs
(vithout loops) on 5 poéints, where we allow an edge to be "weighted"
by a field coefficient. By identifying IE with the edge joining point
i to point j, we have constructed an isomorphic copy of M(3'2)

example,

. For
1
-

N

5 1
3 4

Njw

L corresponds to 3

ol
L}
[Sa] -

[

+
Njw)
(Sal P

Any "quadrilateral with alternate edges weighted * 1" is a gener-

ator for the Specht module 8(3’2),
Let t,,t ,t,,t,,t, = 135 125 134 124 123
17727537545 > 1 34 12 12

respectively. Then etl’...,et5 correspond to

respectively.
The 10 edges are ordered by 3.10:

gyreeet, are 74,34,25,35,45

The last edges involved in e
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(which correspond to {tl},...,{ts}.) Since these last edges are
different, etl,...,et5 are linearly independent. Note that it is far
from clear that they also span the Specht module, but we shall prove
this later. Assuming that they do give a basis, the Gram matrix with

respect to this basis is

=

]
= = NN
H N Poe N
H N s =N
N NN
L S i R

One checks that if char F = O or char F 2 5, rank A = 5

if char F = 3, rank A = 1
if char F = 2, rank A = 4,
Therefore, dim(S(3'2)/s(3'2)n S(3'2)l) = 5 unless char F = 2 or 3,
when the dimension is 4 or 1, respectively.
Let us find S(3'2)l. Certainly,
1 1
T = and 5 graphs like r(-1) =
5 2 5 2
4 3 4 3

are orthogonal to "quadrilaterals with alternate edges weighted  1".
(An unlabelled edge is assumed to have weight 1l). That is, they belong
to §¢32)L (r(-1) is defined by T(=1) = I'(-1)(1 i) for 1 < 1 < 5.)

Now, T(=1)+T(-2) +...+ T(-5) = 3T. It is easy to verify that
r¢<-1,...,Ir(-5) are linearly independent if char F # 3, and that they
span a space of dimension 4 when char F = 3. Hence

g3.2)1 is spanned by T, T'(-1),T(-2),..., T(-5)

since S(3'2)l has dimension 5 (by 1.3).
When char F = 2, eg, + ety + et, + et5 = T. Therefore, T ¢ S(3’2)
n S(3'2)l in this case, and by dimensions it spans S(3'2) n S(3'2)l.
When char F = 3, etl + et2 = I'(-5), and now I'(-1),...,l(=5) span

s(3:2) BT

We do not yet have a convenient way of checking whether or not a

(3,2)

graph belongs to S However, every such graph certainly satisfies

the two conditions:

5,3 (i) The sum of the coefficients of the edges is zero.
(ii) The valency of each point is zero. (Formally: the sum of the
coefficients of the edges at each point is zero.)
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(3,2) satisfies
(3,2)

These conditions hold because a generator for S

the conditions. In fact, the properties characterize S and enable

(3,2) when char F = 2 (' has an even number

5(3,2)

us rapidly to check that ' e S
of edges, and each point has even valency), and that T (-5)e¢
when char F = 3 (T (-5) has 6 edges and each point has valency 0 or 3).

So far, we have highlighted two problems to be discussed later:

(a) Find a basis for the general Specht module like that given
above. (N.B. It is not obvious even that dim S" is independent of the
field.)

(b) Find conditions similar to 5.3 characterizing the Specht

module as a submodule of MM(cf. the second expression for S(n-l’l) in

Example 5.1).

We have proved that etl,...,et5 are linearly independent; here, as

in the general case, it is a lot harder to prove that they span 5(3’2).

This example is concluded by a simultaneous proof that etl,...,

e
(3,2) (3,255

form a basis of S and that conditions 5.3 characterize S

Define ¥_ ¢ Hom m3:2) y(5) w(3:2) (4,1,

F&s ) and 12K HomFGS (
by
wo : abc =~ abcde
de -
¥+ abc » abce + abcd (i.e.de +»d +e)
d e d e

Now, conditions 5.3(i) or (ii) hold for an element v of M(3/2)if

a?d only if v e Ker wo or Ve Ker wl’ repectively. Therefore
3,2
st/ ) < Ker wo n Ker wl (cf. Lemma 4.10), and we want to prove equality.

(3,1),(3,2)

Write S for the space spanned by graphs of the form

i

+1 -1

=13 -

P
b

3 k

Now, S(3'l)’(3'2) £ Ker y_ and wl sends S(3’l)’(3’2) (4,1)

T ——.72 - I
(since wl t ij - ik > i+Jj~i ~k = j - k). Therefore, we have the
(3,2),

onto S

following series for M
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M(3'2) Dimensions
= g (5) 1
Ker wo
2 0
5(3,1),(3,2)
(4,1)
l =z S 4 (see Exanple 5.1)
3(3'1)'(3'2)n Ker wl
2 0
5 (3,2)
l = 5(3’2) > 5
0
But dim M(3'2) = 10, so we have equality in all possible places.

(3,2) (3,2)

In particular, dim S =5 and S = Ker wo n Ker wl, as we wished

to prove.

5.4 EXAMPLE 5(2'2) is spanned by the graphs
1 2 4 1 2
4 1
-1 -1 - -1
4 3 4 1 3

Clearly, the first two form a basis.
When char F = 2, S(2,2) = S(z'z)l. The reason underlying this is
that any polytabloid contains none or both edges of the following pairs
of edges:

1 2 1 2 1 2

4 3 4 3 4 ormr—ou-3
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6. THE CHARACTER TABLE OF Gn

There are many ways of evaluating the ordinary irreducible chara-

cters of (Zn' If the character table of Gh_ is known, the Branching

Theorem (section 9) is very useful, but to caiculate the character
table of én this way we have to work out all the earlier tables. On
the other hand, if just a few entries are required, the Murnaghan-
Nakayama Rule (section 21) is the most efficient method, but it is
hard to use a computer on this formula, The method given here finds
all the entries in the character table of G% simultaneocusly. It is
due to R.F.Fox, with some simnlifications by G.Mullineux.

Let XA denote the ordinary irreducible character of Gn corres-—
pinding to the partition A - that is, the character of the Q.Gn module
S0 . Let lG denote the trivial character of a group G. Recall that
GA is a Young subgroup, and that 1 G, + én is the character of Mé,
by 4.2 (The notation +G means"induced up to G" and ¥G means "restricted
to G".)

All the matrices in this section will have rows and columns indexed
by partitions of n, in dictionary order (3.4). Since Mé has Sé as
a composition factor once, and tue other factors correspond to parti-

tions p with p > X (Theorem 4.13),

6.1 Thne matrix m = (mku) given by mAu = the character inner product

ll_sx 6, XU ) is lower triangular with 1l's down the diagonal.

(see the example for‘GS, below). It follows at once that the matrix
3 = (DXU) given by

_ A
by = &, &ilg t6))

is upper triangular.
Let Gu denote the conjugacy class of @5 corresponding to the
partition u, and let A = (aku) be the matrix given by

ay, = | &, n Gul
The matrix A is not hard to calculate, and we claim that once it
is known, the character table C = (cku) of Gr1 can be calculated by

straightforward matrix manipulations. First note that
A
a = =
E “xp G e,V el &y) = byy-

Therefore, B = CA', where A' is the transpose of A,
But,

i

E bua by = 161l G 6" G Lyt Gy

le,lle,l(lg,t G 6, lg)

IG;AI P &)t G, evaluated on an element of type
U
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w. 16, n 6,l

m: /16, 16 n g,ll6, n 6l

H

(nt / IG’ul) a5, 3y,

If A is known, we can solve these equations by starting at the
top left hand corner of B, working down each column in turn, and pro-
ceeding to the next column on the right. Since B is upper triangular,
there is only one unknown to be calculated at each stage, and this can

be found, since B has non-negative entries. Therefore

is

E I i = 1 =
6.2 THEOREM If the matrix A (a)\u) , Where a>\u lG)\ n 611!

known, then we can find the unique non-negative upper triangular matrix

B = (bku) satisfying the equations

I b, b, =1/ |G, Da, a
Lu)\ uv N U AU Vu

and the character table C of Gn is given by C = BA'_l.

6.3 EXAMPLE Suppose n = 5. Then

(5) (4,1) (3,2) (3,1%) (2%,1) (2,1%) (1%

(5) [ 24 30 20 20 15 10 1]
(4,1) 6 0 8 3 6 1
<~ (3:2) 2 3 4 1
A = (3,1%) o} 3 1
(22,1) 1 2 1
(2,1%) 1 1

(1%) 1)

(5) (4,1) (3,2) (3,1%) (2%,1) (2,1*) (1%)
(5) [ 120 24 12 6 4 2 1
(4,1) 24 12 12 8 6 4
(3,2) 12 6 8 6 5
B = (3,1%) 4 6 6
(22,1) 4 4 5
(2,1%) 2 4

(%) | 1
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(5) (4,1) (3,2) (3,1%) (2%,1) (2,1%) (1%)

(5) 1 1 1 1 1 1 1)
(4,1) -1 o} -1 1 ol 2 4
(3,2) o} -1 1 -1 1 1 5
c = (3,1%) 1 o} o} o} -2 o} 6
(22,1) 0 1 -1 -1 1 -1 5
(2,1%) | -1 o} 1 1 o} -2 4

(1%) L1 -1 -1 1 1 -1 1

The columns of the character table are in the reverse order to the
usual one - in particular, the degrees of the irreducible characters
appear down the last column ~ because we have chosen to take the dic-

tionary order on both the rows and the columns.

6.4 NOTATION Equations like [33[2] = [5] + [4,1] + [3,2] are to be
interpreted as saying that Mé3’2) has composition factors isomorphic

to S(z), S(é'l) and S(é’z). In general if A is a partition of n,
[kl][k2]EA3]... = g mku [ul
A u : _
means that MQ has SQ as a factor with multiplicity mku' (m = (mku)

is the matrix defined in 6.1).

By dividing each column of the matrix B by the number at the top
of that column (which equals |(§u|), and transposing, the matrix m is

obtained. In the above example,

(5] [4,11 (3,21 [3,1%1 ([2%,11 [2,1%] [15]
(5] (1 ]
[4101] 1 1
[3102] 1 1 1
m = [3][11%]| 1 2 1 1
[21%2r11 | 1 2 2 1
r21c11% | 1 3 3 3
(1P L 1 4 5 6 1

Notice that the results [4][1] = [5] + [4,1] and [3][2] = [5] +
[4,1] + [3,2] are in agreement with Examples 5.1 and 5.2. Young's
Rule in section 14 shows how to evaluate the matrix m directly.

Theorem 6.2 has the interesting

6.5 COROLLARY The determinant of the character table of Gh is the

product of all the parts of all the partitions of n.

Proof: a,, = g (Ay = D and by, = | G&| = g Agl

Since A and B are upper triangular and B = CA', we have
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det C =0 I A as claimed.
A i

Recall that the partition A' conjugate to A is obtained by "turning

i ’

A on its side" (see definition 3.5). The character table of (;5 in
Example 6.3 exhibits the property:

6.6 X =X ® X

We prove this in general by showing

Al
Sq A
Al

Remark Since S is self~dual, we may omit the words "the dual of"

n
6.7 THEOREM A ] Sél ) is isomorphic to the dual of S

o

from the statement of the Theorem, but we shall later prove the ana-

logous Theorem over an arbitrary field, where the distinction between
1

SA and its dual must be made.

Proof: Let t be a given A-tableau, and let t' be the corresponding A'

tableau.

e.g., if t =123 then t'= 1 4
25
3
Let p,, = Hmlmera } ang kp = L{(sgn mym|me C..}, as usual.
Let u be a generator for Sg + So that ur = (sgn 7)u when T e G,
It is routine to verify that there is a well-defined @ G, -epi-
morphism @ from Mé onto Sa ® S(é ) sending {t'} to ({t} @ u)pt.,
0 is given by

6.8 ©o: {t'n} » ({t} @ u)pt.v = ({t}Kt ® u)m = (sgn n){tv}Kt1T ® u.

© sends {t'}Kt| to ({t'} ® u)pt,K = {t}Ktpt ® u.

tl
Now, <{t}Ktbt’ {t}> = <{t}Kt :{t}pt>
= <{they SR I{E)> = R ].
Since |R | is a non-zero element of @, {t"}c,, © = 0. Thus
L} L]
Ker © 3 Sé , and, by the Submodule Theorem, Ker 0 < Sé = Therefore,
t 1)
dim Sé. = dim Im O = dim(M)/Ker ©) > dim(M} /sA Yy = aim sy (%)
A . A! . A" . A . ) Al

Similarly, dim SG_ 2 dim SQ = dim Sa Therefore, dim S@ = dim Sa

and we have equality in (x). Thus, Ker 0= Sé} The theorem is now

proved, since we have constructed an isomorphism between M /SA o

A (1n)
dual of SQ_, by 1l.4)and SQ 8 s’y .

]
Remark Corollary 8.5 will give dim SA = dim SA , trivially, but this
shortens the proof by only one line.

(=

There is one non=-trivial character of G which can always be

evaluated quickly, namely X(n Ly l)
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(n-1,1)

6.9 LEMMA The value of x on a permutation 7 is one less than

the number of fixed points of .

Proof: The trace of 7, acting on the permutation module M(n_l’l),

is clearly the number of fixed points of w. Since

(n-1,1) ~ (n) (n-1,1)
M Q = SQ & S a

(cf. Example 5.1), the result follows at once.

-1, in
(n)lX(n 1 l), X( )

We can thus write down four characters, ¥ and

n-2 -
L2 L (-1, D)

the character table of Gn for small n is to deduce the remaining

n
® X(l ))of Gh at once. The best way of finding

characters from these, using the column orthogonality relations.



27

7. THE GARNIR RELATIONS

For this section, let t be a given u-tableau. We want to find

elements of the group algebra of Gn which annihilate the given poly-
tabloid €.
Let X be a subset of the ith column of t, and Y be a subset of the

(i + 1)th column of t.

Let 0y,..., 0 be coset representatives for GX x G’Y in oy’

K

and let Gy, v ='£1

[s1). J
In all applications, X will be taken at the end of the ith column

(sgn cj)cj. GX v is called a Garnir element . (Garnir
’

of t and Y will be at the beginning of the (i+l)th column. The permu-~
tations Oyre-4,0, are, of course, not unique, but for practical pur-
poses note that we may take Oprsees0) SO that tcrl,toz,...,tcrk are all
the tableaux which agree with t except in the positions occupied by
XuY, and whose entries increase vertically downwards in the positions

occupied by XuY.

7.1 EXAMPLE if t = 1 2 , X = {4,5} and Y = {2,3} then tcl,...,tok
4

[$1]

may be taken as

t=tl=12 t2=12 t3=12 t4=l t5=l3 t6=
4 3 3 4 35 2 4 25
5 5 4 5
when sgn 0i=lfori=l,3,4,6, sgn ci=~l for i = 2,5 and GXY=
’
1 - (34)+ (354) + (234)-(2354) + (2 4)(3 5).
7.2 THEOREM If |XvuY >ui , then et___G_XY=O (for any base field).
’

Proof: (See Peel [191) Write G’;( G; for J{(sgn o)o|o e G’X x Gy}

and G ;(UY

Since [XuY]| > ui, for every 1 in the column stabilizar of t, some

for J{(sgn olo|oe €y, v!

pair of numbers in X uY are in the same row of t1. Hence, in the usual
way, {t1} 6 = 0. Therefore, {tlx, GXUY = 0.

XuY
Now, G;( G’; is a factor of k., and G’;(Uy = G';(G; Gy, v
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Therefore '

0 = {the, G;Uy = |x

1
Y|.{t}Kt Gy, v

Thus, {t}|<t GX v = O when the base field is &, and since all the
14
tabloid coefficients here are integers, the same holds over any field.

7.3 EXAMPLE Referring to Example 7.1, we have

(O ey GX,Y = etl - ety + et3 + et4 =~ €y + et6

+ e - e .
3 t4 t5 t6
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8. THE STANDARD BASIS OF THE SPECHT MODULE

8.1 DEFINITIONS t is a standard tableau if the numbers increase along

the rows and down the columns of t. {t} is a standard tabloid if there

is a standard tableau in the equivalence class {t}. e, is a standard
polytabloid if t is standard.

In Example 5.2, the 5 standard (3,2)=-tableaux and the corresponding
standard polytabloids are listed.

A standard tabloid contains a unique standard tableau, since the
numbers have to increase along the rows of a standard tableau. It is
annoying that a polytabloid may involve more than one standard tabloid
(In Example 5.2, et  involves 4TS5 and 7 4).

We prove that the standard polytabloids form a basis for the Specht
module, defined over any field.

The p-tabloids have been totally ordered by definition 3.10. The

linear independence of the standard polytabloids follows from the tri-
vial

8.2 LEMMA Suppose that VisVyrees, v~ are elements of M" and that
iti} is the last tabloid involvedin v,._If the tabloids {t;} are all
different, then VirVorssa,V, are linearly independent.

Proof: We may assume that {t;} < {tz} <eoo< {ep}. If ajvy te.ot a v

=0 (aie F) and a. a. = 0O, then aj = 0, since {tj} is invol~

j+l= 000=
ved in Vj and in no Vi with k < j. Therefore, a; = .= a, = O.
It is clear that {t} is the last tabloid involved in ey

is standard, and this is all we need to deduce that the standard poly-

when t

tabloids are linearly independent, but we go for a stronger result,
using the partial order (3.11) on tabloids:

8.3 LEMMA If t has numbers increasing down colummns, then all the
tabloids {t'} involved in e_ satisfy {t'} a {t}.

t
Proof: If t' = t7 with 7 a non-identity element of the column stabil=
izer of t, then in some column of t' there are numbers w < X with w
lower than x. Thus, by 3.15, {t'} < {t'(wx)}. Since {t'(w ¥} is
involved in e+ induction shows that {t'(w x} ¢ {t}. Therefore, {t%

a {t}.

8.4  THEOREM iet|t is a standard p-tableau} is a basis for sV.

Proof: (See Peel [19]) We have already proved that the standard
polytabloids are linearly independent, and we now use the Garnir rela-
tions to prove that any polytabloid can be written as a linear combi-
nation of standard polytabloids - a glance at Example 7.3 should show
the reader how to do this.
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First we write [t] for the column eguivalence class of t; that is
[(tl = {tlltl = tm for some 7Te Ct}. The column equivalence classes are
totally ordered in a way similar to the order 3.10 con the row equiva-
lence classes.

Suppose that t is not standard. By induction, we may assume that
e s can be written as a linear combination of standard polytabloids
when [t'] < [t] and prove the same result for e . Since e.m = (sgnﬂ)et
when 7 eCt, we may suppose that the entries in t are in increasing order
down columns. Unless t is standard, some adjacent pair of columns, say

the jth and (j+1)th columns, have entries ap <@, <...<ay, bl< b2<...<

i

b, with a_ > b_for some ¢
S q q

a b
21 Al
. A
a > b
a a
g 4
* b
A s
a
r
Let X = {aq,...,ar} and Y = {bl”"'bc} and consider the corresponding
1

Garnir element Gx = Z(sgn g)o, say. By Theorem 7.2

s
0= e, l(sgn o)o = }(sgn ole s -
Because bl <e.u<b_<a  <...<an, (to] < [t] for ¢ # 1. Since

e, = —Z (sgn o)eto , the result follows from our induction hypothesis.
o=l

8.5 COROLLARY The dimension of the Specht module s! is independent

of’ the ground field, and equals the number of standard u-tableaux.

Remark An independent proof of Theorem 8.4 is given in section 17.

8.6 COROLLARY 1In S; any polytabloid can be written as an integral
linear combination of standard polytabloids.

Proof: This result comes from the proof of Theorem 8.4; alternatively,
see 8.9 below.

8.7 COROLLARY The matrices representing en over Q@ with respect to

the standard basis of Sz all have integer coefficients.

Proof: e = e . Now apply Corollary 8.6.

8.8 COROLLARY If v is a non-zero element of S“, then every last
tabloid (in the partial order < on tabloids) involved in v is standard.

Proof: Since v is a linear combination of standard polytabloids, the

result follows from Lemma 8.3.
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8.9 COROLLARY I1f v esz and the coefficients of the tabloids

involved in v are all integers, then v is an integral linear combina-

tion of standard polytabloids.

Proof: We may assume that v is non-zero. Let {t} be the last (in
the < order) tabloid involved in v, with coefficient ae Z, say. By
the last corollary, {t} is standard. Now Lemma 8.3 shows that the
last tabloid in v - a e, is before {t}, so by induction v - a e is
an integral linear combination of standard polytabloids. Therefore,
the same is true of v,

8.10 COROLLARY If ve s;

ved in v are all integers, then we may reduce all these integers modulo

and the coefficients of the tabloids invol-

p _and obtain an element SE, where F is the field of p elements.

Proof: By the last Corollary, v is an integral linear combination of
standard polytabloids, v = Zai e;r say (aie Z) . Reducing modulo p all
the tabloid coefficients in v, we obtain Vv, say. Let Ei be a; modulo

p. The equation Vv = ZEi e; shows that Ve S; .

Remark If we knew only that the standard polytabloids span s¥, the
proof of Corollary 8.10 shows that any polytabloid can be written as
a linear combination of standard polytabloids over any field. There-
fore, we can deduce that the standard polytabloids span s¥ over any

field, knowing only the same information over Q.

8.11 COROLLARY If F is the field of p elements, then SE is the

p-modular representation of Grlobtained from S; .

Proof: Apply the last Corollary.

8.12 COROLLARY There is a basis of Su, all of whose elements inv-
olve a unigue standard tabloid,

Proof: Let {tl} < {t2} < ... be the standard p-tabloids. {tl} is
the only standard tabloid involved in etl by Lemma 8.3. e nay
involve {tl}, with coefficient a, say. Replace etz by ft2 = et2 - aeqf
Then {t2} is the only standard tabloid involved in ftz’ Continuing

in this fashion, we construct the desired basis.

Corollary 8.12 is useful in numerical calculations.
8.13 EXAMPLE Taking etl,...,et5 as in Example 5.2, each involves
just one standard tabloid, except et5 which involves 2 4 as well as

4 5, Replace etg by ftS = eg; *+ etg- Then etl,etz,et3,et4,ft5 involve

respectively 2 4,3 4,2 5,3 5,4 5 with coefficient 1, and no other
standard tabloids.
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Consider the following vector

(3,2) ,

v belongs to S since the sum of the edge coefficients is

zero, and each point has valency zero (cf. 5.3). But v involves
-5—3, -3_3, —5—5, -3_5, 3.4 5 ., Therefore
V= -ep) T ety T ety < ety + 3ft5
= 2etl - e, T ety T ety + 3et5.
Next we want the rather technical

8.14 LEMMA Suppose that OcHom, o _(My, My) and that all the tabloids
n

involved in {t}6 have inteqger coefficients ({t}e Mé). Then, reducing

all these integers modulo p, we obtain an element B of HomF<s _iM;L_M;L,
where F_is _the field of p elements. If ker O = Sél then n

Ker 6 2 S;l.
. : . - A u
Proof: It is trivial that © eHomF &, (MF, MF)‘

2% and extend by the standard basis

: . A
of S, to obtain a basis f,,...,f of Mj. Let {ty}reees,{t,} be the
different A~tabloids. Define the matrix N = (nij) by

= < fi'{tj} >

Take a basis fl,...,fk of S

nij
We may assume that N has integer entries, and by row reducing the
first kK rows, we may assume that the first k rows of N (which corres-
pond to the basis of Sél) are linearly independent modulo p. Reducing
all the entries in N modulo p, we obtain a set of vectors in M;, the
last m - k of which are the standard basis of S;, and the first k of
which are linearly independent and orthogonal to the standard basis of

s)

F* Since

. AL . Ao g A
dim SF = dim MF dim SF =k,

we have constructed a basis of SZ} whose elements give & basis of S;l
when the tabloid coefficients are reduced modulo p.

Now, any one of our basis elements of Sé} is an integral linear
combination of A-tabloids, and is sent to zero by ©. Therefore, when
all integers are reduced modulo p, ® certainly sends the basis of SFl

to zero, as required.
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We can now complement Theorem 6.7 by proving
A . (11)

8.15 THEOREM Over any field, S" ® S is isomorphic to the dual
Al

of " .

Proof: It is sufficient to consider the case where the ground field

is F, the field of p elements, since we have proved the result when
F = Q.
In the proof of Theorem 6.7, we gave a Q_Gn—homomorphism © from

v n '
A él ) GAD. L, Using the Lemma above,

. A
MQ into MQ ® S

5, defined by

and proved that Ker ©= S

B: {t'n} + (sgn ) {tTT]'KtTT ® u

n )
is an F Gn—homomorphiSm onto SF ® Slgl ) whose kernel contains S:, L.

- ]
By dimensions, Ker 0 = Sﬁ‘, = ; and the result follows.
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9. THE BRANCHING THEOREM

The Branching Theorem tells us how to restrict an ordinary irre-
ducible representation from Gn to Gn—l' We have introduced the
symbols ¥+ 6 _, p and t &

Using notation like that in 6.4, we have

for restriction to Grr- for inducing to Gh+

+1 1
[3,2%2,11 + [4,2,1%] + [4,2%]

{5,22,1] + (4,3,2,1] + [4,2%) + [4,22,1%]

9.1 EXAMPLE [4,22,11+ G
(4,22,11+ &

8
10

[}

These are special cases of
9.2 THE BRANCHING THEOREM

. u . A . . : .
(1) Sgt 6., 28 {sg |[A] is a diagram obtained by adding a

node to [p] }.
(1) Sp ¥ &4

node away from [ul}.

{4

® {S; ][A] is a diagram obtained by taking a

Proof: The two parts of the Theorem are equivalent, by the Frobenius

Reciprocity Theorem. Part (ii) follows from the more general:

9.3 THEOREM When s¥ is defined over an arbitrary field, Su+<5n_l
has a series with each factor isomorphic to a Specht module for & n-1*

The factors occurring are those given by part (ii) of the Branching

Theorem, and sAt occurs above SAJ in the series if A1 o A3,

Proof: (See Peel [19]) Let r;<r, <... <r, be the integers such

that a node can be removed from the rith row of [pu] to leave a d%agram
(e.g. when [u] = [4,2%,1], r{,ryry =1, 3, 4). Suppose that at1 is
the diagram obtained by removing a node from the end of the rith row of
ful.

n

. i
Define Oie Hon%,cn_ (M7, MA ) by

1
0.: {t} » 0 if n érith row of {t}

i
{t} if ne r;th row of {t}

where {t} is {t}, with n removed.
When t is standard,

9.4 0;: ey *{ez if ner;th row of t

O 1if ne rlth,rzth,...,or r,_ th row of t.

1
Let Vi be the space spanned by those polytabloids e, where t is
a standard u-tableau and n is in the rlth,rzth,..., or rith row of t.

N _ _ axt
Then Vi—l < Ker Oi and Viei = SA,

since the standard Xl-polytabloids span sit,
In the series

0 = Vl n Ker Ol c Vl < V2 n Ker 92 < V

2_5_...
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. u
cees Vo S

we have dim(V,/(V. n Ker 0.)) = dim V, 0, = dim SA*,
1 1 1 1 1
But

2V n Ker Om <V, T

m .
Y dim s* = dim s¥,
i=1
since the dimension of a Specht module is the number of standard tab-
leaux. Therefore, there is equality in all possible places in the series

above, and Vi/vi—l is E‘Gh_ - isomorphic to s* . This is our desired

1
result,

2
9.5 EXAMPLE As an F Gg-module, s'47% r1)

2
reading from the top, isomorphic to S(4’2 ),
(cf. Example 17.16.)

has a series with factors,
s(4,2,1%)  5(3,2%,1)
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10. p~REGULAR PARTITIONS
We have seen that Su/(sLj n sHt

it can be zero only if the ground field has prime characteristic p.

) is zero or irreducible,and that

In order to distinguish between those partitions for which s¥ is or
is not contained in Sul, we make the following

10.1 DEFINITION A partition u is p-singular if for some i

Hypp = My = ie.e = “i+p > 0.

Otherwise, u is p-regular.
For example, (6%,5%,1) is p-regular if and only if p 2 5.

A conjugacy class of a group is called a p-regular class if the

order of an element in that class is coprime to p.

10.2 LEMMA The number of p-reqular classes of G}lequals the number

of p-regular partitions of n.

Proof: Writing a permutation 7 as a product of disjoint cycles, we
see that m™ has order coprime to p if and only if no cycle has length
divisible by p. Therefore, the number of p~regular classes of Gn
equals the number of partitions p of n where no part Wy of y is divi-
sible by p.

Now simplify the following ratio in two ways:

(1 - xP)@ - x2P...
(1 - x)(1 - x¥)...

(i) Cancel equal factors (1 - xmp)in the numerator and denomin=-

ator. This leaves

T a-xH"0 =1 @+xt+ hH2+ B3+ ..o
pti pti
and the coefficient of x™ is the number of partitions of n where no

b,la) corresponds

summand is divisible by p. (The partition (...3c,2
to taking x? from the first bracket (x2)b from the second bracket,
and so on.)

(ii) For each m divide (1 - xm) in the denominator into (1 = xmp)

in the numerator, to give
o«
I (1 +x
m=1

My ™2 (P,
Here the coefficient of x" is the number of partitions of n where no
part of the partition occurs p or more times.

Comparing coefficients of xn, we obtain the desired equality (The
reader who is worried about problems of convergence is referred to
section 19.3 of Hardy and Wright [3]).

Remark Like most combinatorial results involving p-regularity, Lemma
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10.2 does not require p to be prime, and it is only when we come to
representation theory that we must not allow p to be composite.

We next want to investigate the integer gu defined by
. X u
10,3 ¢ = g.c.d.{<et,et*>|et and e,, are polytabloids in Se}.

The importance of this number is that it is the greatest common
divisor of the entries in the Gram matrix with respect to the standard
basis of the Specht module. (Corollary 8.6 shows that any polytabloid
can be written as an integral linear combination of standard polytab-
loids).

10.4 LEMMA (James [7]) Suppose that the partition p has z., parts

© J
equal to j. Then jgl zj! divides g" and g" divides ff izj!)J.
j=1
Remarks Since O! = 1, there is no problem about taking infinite

products. Some of the integers involved in the definition of gu may
be zero or negative, but we adopt the convention that, for example,
g.c.d. {~-3,0,6} = 3.

Proof: Define an equivalence relation ~ on the set of up-tabloids by
{¢;} ~ {t,} if and only if for all i and j, i and j belong to the

same row of {t2} when i and j belong to the same row of {tl}.
Informally, this is saying that we can go from itl} to {t,} by

shuffling rows. The equivalence classes have size 1 1z, !

s e

j=1
¢ and {tl} ~ {t2}, then the defini-
tion of a polytabloid shows that {t2} is involved in e

Now, if {tl} is involved in e
y and whether
the coefficients (which are #1) are the same or have opposite signs
depends only on {tl} and {t2}. Therefore, any two polytabloids have a
multiple of jglzj: tabloids in common, and jﬁlzj! divides gu (cf.
Example 5.4).

Next, let t be any u-tableau, and obtain t* from t by reversing
the order of the numbers in each row of t. For example,

ift= 1234 then t* = 4321
56 7 765
8 9 10 10 9 8
11 11

Let 7 be an element of the column stabilizer of t having the pro-
perty that for every i, the numbers i and im belong to rows of t which
have the same length. (In the example, 7 can be any element of the

rou C s s
group G}S,B} G{6,9} x G{?,lo})' Then {tn} is involved in e, and
€rx with the same coefficient in each. It is easy to see that all

X

tabloids common to ey and ey» have this form. (In the example, every
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tabloid involved in €rx has 1 in the first row. Looking at e no

tl
t*!
be in the first row of a common tabloid, and so on,) Therefore, < ey

common tabloid has 5 or 8 in the first row. Going back to e 2 must

> = .1 !)3, and the lemma is proved.

Cix j=1 (Zj

10.5 COROLLARY The prime p divides gu if and only if y is p-singular.

Proof: u is p-singular if and only if p divides zj! for some j, and

this happens if and only if p divides g“.

10,6 COROLLARY If t* is obtained the u-tableau t by reversing the
order of the numbers in each row of t, then e

*K, 1s a nmultiple of e

tl

tTt
and this multiple is coprime to p if and only if y is p-regular.

Proof: Corollary 4.7 shows that e *Ky is a nultiple of €y, € *K, = h e
say. Now,
h=h<e, {t} > =<nh e s {t} > =< et*Kt,{t} >
<e T ltlk > =<e e >

The last line of the proof of Lemma 10 .4 shows that h = jﬁl(zj!)j,
which is coprime to p if and only if u is p-regular.
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11. THE IRREDUCIBLE REPRESENTATIONS OF Gh

The ordinary irreducible representations of &, were constructed
at the end of section 4. We now assume that our ground field has
characteristic p, and the characteristic O case can be subsumed in this

one, by allowing p = =,

11.1 THEOREM Suppose that s¥ is defined over a field of characteris-

tic p. Then Su/(Su n Su+) is non-zero if and only if p is p-regular.

Proof: s¥ < s¥t if and only if < ey se x > = 0 for every pair of

t

£ and e * in s¥. But this is equivalent to p dividing

the integer gu defined in 10.3, and Corollary 10.5 gives the desired

polytabloids e

result.

Shortly, we shall prove that all the irreducible E‘Gn-modules

are given by the modules D; where

11.2 DEFINITION Suppose that the characteristic of F is p (prime or

= ) and that p is p-regular. Let D; = S;/(S; n S;l).

As usual, we shall drop the suffix F when our results are indep-
endent of the field.
To prove that no two p"'s are isomorphic, we need a generaliza-
tion of Lemma 4.10, which said that SX is sent to zero by every element
A u
of Hon&.Gn (M", M") unless A 2 yu.

11.3 LEMMA Suppose that A\ and py are partitions of n, and A is p-reg-

ular. Let U be a submodule of M" and suppose that 6 is a non-zero

Fg n-homomorphism from SX into Mu/U. Then A & p and if A = u, then
Im QO = (s" + U) /U.

Remark The submodule U is insignificant in the proof of this result.
The essential part of the Lemma says that, for A p-regular, SA is sent
to zero by every element of HomF e (SX,MU) unless A &= u ., (cf. Coro-

llary 13.17). n

Proof: (See Peel [20]). Let t be a A-tableau and reverse the order of
the row entries in t to obtain the tableau t*, By Corollary 10.6,

ey«K, = h e, where h # 0.

t

But h .6 = € a8 = et*OKt

Since h = O and 6 is non-zero, et*OKt # U, By Lemma 4.6, A & yu,
and if A = u, then
+ Ue (s¥ + u)/u.

e = h—let*em = a multiple of e

t t

The result follows, because SA is generated by e
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11.4 COROLLARY Suppose that A and u are partitions of n, and A is p-

regular. Let U be a_submodule of M” and suppose_that § is a non=-zero

F Gn homomorphism from Dx into Mu/U. Then A & p and A » y if U > §E:

A
Proof: We can lift 6 to a non-zero element of Hom (S ,Mu/U) as fol-
n

F&
lows:
s* - sh/t asMy =0 > MU
Ccanor. 5
Therefcre, A © u, by the Lemma. If A = p then Im 6 is a non-zero

submodule of (Su + U) /U, so U does not contain st

11.5 THEOREM (James [7]) Suppose tnat our ground field F has charac-

teristic p (prime or = »). As Y varies over p-regular partitions of n,

Du varies over a complete set of inecuivalent irreducible F(;n-modules.

Each D" is self-dual and absolutely irreducible., Every field is split-

ing field for Gn.

Proof: Theorems 4.9 and 11.1 show that p¥ is self-dual and absolutely
irreducible.

Suppose that DA =z DY. Then we have a non-zero F Gn-homomorphism

A into MA/(S“ n Sui), and by Corollary 11.4, A = u, Similarly,

H e A, SO A = .

from D

fiaving shown that no two p"'s are isomorphic, we are left with the
qguestion: Why have we got all the irreducible representations over F?
In section 17 we shall prove that every composition factor of the regular
representation over F is isomorphic to some Du, and then Theorem 1.1
gives our result. Rather than follow this artificial approach, the
reader will probably prefer to accept two results from representation
theory which we quote from Curtis and Reiner [2]:
Curtis and Reiner 83.7: If Q is a splitting field for a group G, then
every field is a splitting field for G.

Curtis and Reiner 83.5: If F is a splitting field for G, then the num-

ber of inequivalent irreducible FG-modules equals the number of p-
regular classes of G.

Since Theorem 4.12 shows @ is a splitting field, Lemma 10.2 now
sees us home. More subtle, (to make use of our knowledge that p" is
absolutely irreducible), is to combine Curtis and Reiner 83.5 with
Curtis and Reiner 82.6: The number of inequivalent absolutely irred-
ucible FG-modules is less than or equal to the number of p-regular
classes of G.

Theorem 1.6 gives

1l1.6 THEOREM The dimension of the irreducible representation DM of

&, over a field of characteristic p can be calculated by evaluating
the p~rank of the Gram matrix with respect to the standard basis of sH.
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11.7 EXAMPLE We have already illustrated an application of Theorem
11.6 in Example 5.2. Consider now the partition (2,2). The Gram matrix

we obtain is (cf. Example 5.4):

S

The p-rank of this is 0,1 or 2 if p = 2, 3 or >3, respectively.
s(202) ;(5(2,2) [ 524204y = 5 jf char F = 2, and dim D(?72)
l or 2 if char F = 3 or >3, respectively.

Therefore,

11.8 THEOREM The dimension of every non-trivial 2-modular irreducinle

representation of G;n is even.

Proof: If u 2 (n) and t is a u-tableau, then < e, re >, being the order

t
of the column stabilizer of t, is even. Hence < , > is an alternating
bilinear form when char F = 2, and it is well-known that an alternating

bilinear form has even rank, so Theorem 1l.6 gives the result.

Remark Theorem 11.8 is a special case of a general result which states
that every non-trivial, self-dual, absolutely irreducible 2-modular
representation of a group has even dimension.

The homomorphism 8§ in Fhe proof of Theorem 8.15 sends {t'}Kt, to
{t}Ktpt ® u, and Ker 8 = sh'L, Thus, if A' is p-r?gular, the submod=-

ule of s’ generated by {t}x is isomorphic to DA. In terms of the

p
t't
group algebra E‘Gn, this means that the right ideals generated by
PLKPL (choosing one t for each partition whose conjugate is p-regular)
give all the irreducible representations of ‘Sn over F when char F = p

(p prime or = =),
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12 COMPOSITION FACTORS

We next examine what can be said about the composition factors of

¥ and sY in general terms. When the ground field has characteristic

M
zero, all the composition factors of Mu are known (see section 14).

The problem of finding the composition factors of s¥ when the field is
of prime characteristic is still open. (All published algorithms for
calculating the complete decomposition matrices for arbitrary symmetric
groups give incorrect answers.)

First, a generalisation of Theorem 4.13:

12.1 THEOREM All the composition factors of M" have the form DA with

A b u, except if y is p-regular, when p* occurs precisely once.

Proof: Consider the following picture:

r
l

st +s
/ ™ Sl
t

sH n'ght

ulL

n

O
By Corollary 11.4, all the composition factors of M“/Su have the

form DA with A » u. But s¥t is isomorphic to the dual of Mu/Su, and

so has the same composition factors, in the opposite order. (See 1.4,

and recall that every irreducible F Gn-module is self~dual.) Now,

S“/(Su n s"') is non-zero if and only if y is p~regular, when it equals

p". Since O = s n sMt c s = M" is a series for M"Y, the Theorem is
proved.

12.2 COROLLARY If y is p-regular, s" has a unigue top composition
factor DY = Su/'(Su ns")y., IfDis a composition factor of s¥ o sht

then D z Dx for some A o yu, If yu is p-singular, all the composition
factors of S" have the form DA with A & .

Proof: This is an immediate corollary of Theorems 4.9 and 12.1.

The decomposition matrix of a group records the multiplicities
of the p-modular irreducible representations in the reductions modulo
p of the ordinary irreducible representations. Corollaries 8.1l and
12,2 give
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12.3 COROLLARY The decomposition matrix of G;n for the prime p has
the form:

p¥ (y p~regular)
e g N N
(4

Su(u p-regular) 1 O

\ J

when the p-regular partitions are placed in dictionary order before all
the p=-singular partitions.

12.4 EXAMPLE Consider n = 3, §(3) (3)

) (1%
representation. S
s(1%) o g3

=D is the trivial p-modular

is the alternating representation, and
if and only if p = 2.

Using Example 5.1, the decomposi-
tion matrices of G% are:

D(3) D(2,1) D(3) D(2,1)
s3 1 s3 1
S(Z'l) 1 when p = 2, S(z’l) 1 1 when p
= 3
g (1%) 1 s (1%) 1

p(3) 2,1 (1*)

D
(3

s(2,1)

51

1

when p > 3

(By convention, omitted matrix entries are always zero.)
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13 SEMISTANDARD HOMOMORPHISMS

Carter and Lusztig [1] observed that the ideas in the construction
of the standard basis of the Specht module can be modified to give a
basis for HomF<; (SX,MU) when char F # 2. A slightly simplified form
of their argumen% is given here, and some cases where the ground field
has characteristic 2 are included.

We keep our previous notation for the modules Sx and Mx, but it is
convenient to introduce a new copy of M. This requires the introduc-
tion of tableaux T having repeated entries, and we shall use capital
letters to denote such tableaux. A tableau T has type u if for every

i, the number i occurs ui times in T. For example

2211
1

is a (4,1)-tableau of type (3,2).
13.1 DEFINITION (x,u) = {T|T is a A-tableau of type ul.

Remark: We allow M to be any sequence of non-negative integers, whose
sum is n. For example, if n = 10, u can be (4,5,0,1). The definition
of M" as the permutation module of G_ on a Young subgroup does not

n
require My oz Uy 2 .., and M(4'5'O’l) = M(5'4'l).

For the remainder of section 13, let t be a given A-tableau (of
type (1%)).

If T e J(A,u), let (i)T be the entry in T which cccurs in the same
position as i occurs in t. Let G act on & ,u) by

1

(i) (Tm) = (im )T (L=is<n, TedOu,me ).

The action of 7 is therefore that of a place permutation, and we are

forced to take v-l in the definition to make the G%-action well-
defined.

13.2 EXAMPLE Ift=1345 and T =2 211 then
2 1

T(12) =1211 and T(1 23 =2111.
2 2

Since Gn is transitive on J(A,u), and the stabilizer of an ele-
ment is a Young subgroup (Su, we may take M" to be the vector space
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over F spanned by the tableaux in 97(A,u). It will soon emerge why we
have defined M" in a way which depends on both A and u.

If T, and T, belong to 9(A,u), we say that Ty and T, are row

(respectively, column) equivalent if T2 = Tln for some permutation

m in the row (respectively,column) stabilizer of the given A-tableau t.

13.3 DEFINITION If Te U(A,u), define the map 6, by

6p ¢ {t}s + L{T{|T; is row equivalent to T}S (Se¢F@& ).

It is easy to verify that 8, belongs to Homp g (MA,MU).
n
13.4 EXAMPLE If t =13 45 and T = 2 2 11 then

2 1

{t}ST =2211 + 2121 + 2112 + 1221 + 1212 " 1122
1 1 1 1 1 1

and

{t}(123)@T =2111_ 1121 _,1112_ 2121 _2112+1122

2 2 2 1 1 1

Notice that the way to write down {t}@T is simply to sum all the
different tableaux whose rows contain the same numbers as the corres-
ponding row of T,

It is clear that

13.5 T Ke = O if and only if some column of T contains two identical
numpers.

If we define O by
eT = the restriction of eT to Sx,

then 13.5 suggests that sometimes O, is zero, since e,8_ = {t}éTK

T tT

£
To eliminate such trivial elements of Hon@,g (SA,MU), we make the
n

following

B.6 DEFINITION A tableau T is semistandard if the numbers are non-
decreasing along the rows of T and strictly increasing down the col=-
umns of T. Let ﬁ;(k,u) be the set of semistandard tableaux in & (A,un).

13.7 EXAMPLE If A (4,1) and u = (2,2,1), then vg(x,u) consists
of the two tableaux 1122 and 112 3.
3 2

We aim to prove that the homomorphisms 6T with T in Sg(k,u)
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usually give a basis for Homg e (SA,MU). These homomorphisms will be

called semistandard homomorphisms, and, as with the standard basis of

the Specht module, the difficult part is to decide whether the semi-
standard oromorphisks span Homg I~ (SX,MU). The proof that they are
linearly independent uses a partial order on the column equivalence
classes [T] of tableaux in &/(A,n) (cf. 3.11 and 3.15):

13.8 DEFINITION Let [Tl]<3 [T2] if [T2] can be obtained from [Tl]
by interchanging w and x, where w belongs to a later column of Tl than

¥ and w < X, Then <« generates a partial order <« .

13.9 EXAMPLE When A = (3,2) and u = (2,2,1), the following tree

indicates the partial order on the column equivalence classes:

1)1}

/ N

I
|12 |2|1‘1I 2 1)2|
2 73 1
| >
|1 1} ‘11 2 ] 2|1l3|
213 3|2 211
/
EBR
2
N
|1, ] 113|
143 2

\

The crucial, but trivial, property of this partial order is:

3!

13.10 It T is semistandard, and T' is row equivalent to T, then
[T'] <« [T] unless T' = T.

13.11  LEMMA iéTlTE J (A} is a linearly independent subset of
Hom p & (SX,MU)-
n

Proof: (cf. Lemmas 8.2 and 8.3). If EaT OT is a linear combination of

homomorphisms with T in gb(k,u) and not all the field coefficients

equal zero, choose T, such that aTl # 0, but a; =0 if ([T;] < [T].
Then from the definition of OT and 13.10,
{t} tag Op = ar, T, + a linear combination of tableaux
T

, satisfying [T;] % [T,].
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Since the column stabilizer of t preserves column equivalence

classes, and Tl Ky # O, this shows that

{t}Kt Ta eT = {t} ZaT ek, =0

T T 't

Therefore, ZaT ) is a non-zero element of Homp & (SA,M“), as required.
n

T

We now have to be careful about the case where our ground fielad

has characteristic 2:

13.12 LEMMA Suppose that © is a non-zero element of HomFlg (SA,M“),
n

and write

{t}Kt@ e, T (cTeF,Te T(x,u))

T

where t is the given A-tableau. Unless char F = 2 and A is 2-singular,

then

(i) Copx = O for every tableau T* having a repeated entry in some
column,
and (ii)_cTl # O for some semistandard tableau T;.

Procf: Part (i) Suppose that i # j are in the same column of t, and

(1)T* = (§)T*. We wish to prove that Copx = O,

Since Kt(i,j) = <Ky
Lcp T(i,3) = {the, ©(4,3) = -L ¢, T
Because T*(i,j) = T*, it follows that cpx = 0 when char F = 2,

If char F = 2 and A is 2~-regular, let m be the permutation rever-
sing the order of the numbers in each row of t. By Corollary 10.6 ,
{t}Kt T oK = {t}Kt .

Therefore

L cpl= {t}|<t ®={t})<t9'rr Kp =LCcp TT Ke oo
By 13.5, no tableau which has a column containing a repeated
entry appears in I Coq T 7 Kt, so Cow = O.

Part (ii) TIf 7 is in the column stabilizer of t, then 1 -(sgn 7)7

annihilates {t}Kt . Therefore

L Co T =1 cT(sgn m)Tn ,

and so
CTl = % cT2 when Ty and T2 are column equivalent.
Since 6 = O, we may choose a tableau Ty such that ch =z O, but
¢p =0 1if [T;] <« [T]. The previous paragraph and part (i) of the
Lemma show that we may assume that the numbers strictly increase down
the columns of T, -
We shall be home if we can derive a contradiction from assuming
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that for some j, a; < a, <...< a_ are the entries in the jth column of
Tye bl < b2 < ...< bS are the entries in (j+1)th column of Tl and
a >b for some q.

q q

1 by
- A
. A
a b
a > “q
A .
. b,
A
ar

Let xij be the entry in the (i,j)th place of the tableau t, and
let ZI(sgn 0)0 be aGarnir element for the sets
}. Then

{xqj"“’xrj} and
{xl,j+l""’xq,j+l

¢y T I(sgn olo = {t}Kt I(sgn o0)g® = O.

For every tableau T, T Z (sgn o)o 1is a linear combination of
tableaux agreeing with T on all except the (1,j+l)th, (2,j+l)th,...,
{g,3+L)th, (gq,j)th,...,(xr,3j)th places. All the tableaux involved in
Tl Z{(sgn o)o have coefficient * Cops and since [ Cq T Z(sgn o)o is
zero, there must be a tableau T = Tl with Cqp # O such that T agrees
with Tl on all except the places described above. Since bl <o L bq
< aq <...< a., we must have [Tl] ¢ [T], and this contradicts our

initial choice of Tl'

13.13 THEOREM Unless char F = 2 and X is 2-singular,
{QTIT e ¥ ()} is a basis for HompG;n(Sx,M“).

Proof: Suppose O is a non-zero element of Honw‘gh(SA,Mu). By Lemma
13,12,

{t}Kt ® = Ic, T, where ch = O for some T, e Qg(k,u).
We may assume that Cp =0 1if Te @B(A,u) and [Tl] < [T]. Then, by

13.10, {t}Kt(e = Cqp @.rl) is a linear combination of tableaux T, with
(191 4 [T,]. By induction, & - e éTl is a linear combination of semi-
standard homomorphisms, and so the same is true of ©. The Theorer now

follows from Lemma 13.11.
13,14 COROLLARY Unless char F = 2 and A is 2-singular,

dim Hon¢.gn(sx,Mu) equals the number of semistandard A-tableaux
of type u .

Remark If v is obtained from p by reordering the parts (e.g. u =
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(4,5,0,1) and v = (5,4,1)), then visibly

dim Hom, (s*,m¥) = aim Homg Gn(S)‘,M\))
n

Equivalently, we may choose an unusual order of integers in definition
13.6. Therefore, the number of semistandard tableaux of a given
shape and size is independent of the order we choose on the entries.
For example, we list below the elements in 92“(4,1),(2,2,1)) for
different orderings of {1,2,3}:

1122 1123
3 2 when 1 < 2 < 3
3211 3221
5 1 when 3 < 2 <1
1132 1122
> 3 when 1 < 3 < 2

13.15 COROLLARY Unless char F = 2 and A is 2-singular, every element
of Homp e (S)‘,Mu) can be extended to an element of Homp Gn(M)‘,Mu) .
n

~

Proof: OT can be extended to OT.

Of course, Corollary 13,15 is trivial if char F = O, but we know
of no direct proof for the general case.
That Theorem 13.13 and Corollary 13.15 can be false if char F = 2

and A is 2-singular is illustrated by the easy:

| eok

13.16 EXA%PLE If char F = 2,
2(5(12) u(2)y
2(M(l ),M(Z)).

+ + 1 2 defines an element of

ol

HomF which cannot be extended to an element of

Hon%.g

13.17 COROLLARY Unless char F = 2 and X is 2-singular, A & u
implies Homp e (SX,Mu) = O, and HonE.G (SX,MX) = F,
n Y 6Gn

Proof: There is just one semistandard A-tableau of type u if X =y,
and none at all unless A & p . (cf. the proof of Lemma 3.7). Corollary
13.14 gives the result.

Corollary 13.17 has already been proved under the hypothesis that
A is p-regular (Lemma 11.3), and we now provide an alternative proof
for the case where char F = 2,

Let Q¢ Homp - (SA,MH), and suppose that t is a A-tableau and t, is

1
n
a u~tableau. If X % pu , or if A = u and {tl} is not involved in eLs
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then some pair of numbers a,b belong to the same row of tl and the same

column of t. Therefore

< etO,{tl} > = =< et(a,b)O,{tl} >

-< e, 0,{t }(a,b) >
= =< ete,{tl} > .

Since char F = 2, < etO,{tl} > = 0. This proves that © = 0 if
A 8% u , and that ete involves only tabloids involved in ey when A = yu.
If A =y and 1 belongs to the column stabilizer of t, then
< e, {thr > = <e.0 w-l,{t} >=sgn 7 < e0,{t} > and this shows that

e, 0 =< etO,{t} > e Thus © is multiplication by a constant.

£
13.18 COROLLARY Unless char F = 2 and A is 2=-singqular, SA is inde-
composable.

Proof: If SA were decomposable, we could take the projection onto
one component, and produce a non-trivial element of Hon%w; (SA,MA),
n

contradicting the last Corollary.

Remark: There are decomposable Specht modules ~ see Example 23.10(iii).

When we investigate the representation theory of the general linear

group, we shall need the simple

13.19 THEOREM LQTIT e ¥(\,1) and the numbers are non-decreasing
along each row of T} is a basis for HomF & (MA,MH).
n

Proof: Our set of homomorphisms has been constructed by taking one

representative Tl’TZ""’Tk from each row equivalence class of 97(A,u).

The linear independence of the set follows from the definition of @T.
Suppose that © is an element of Hon@wgn(Mx,Mu). If T and T' are

row equivalent, then T' = Tn for some 7 in Rt’ and so

1

< {t}e,T' > = < {t}o,Tm > = < {t}ow —,T >

< {tl}o,T >
Hence _ §
{t}e = 2 < {t}o,T; > {t}og,

i=1 1

and since M" is a cyclic module, © is a linear combination of Op 's
. i
as required :

0 =1

< {t}G,Ti > Op, .
i

1 i
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14 YOUNG'S RULE

It is now possible to describe the composition factors of Mg
explicity.
14.1 YOUNG'S RULE The multiplicity of S; as a composition factor of
Ma equals the number of semistandard A-tableaux of type u.

Proof: Since @Q is a splitting field for Gn, the number we seek is

dim HomQ'G (SX,M“), by 1.7. But this is equal to the number of semi~-
n

standard A-tableaux of type p, by Corollary 13.14,

Remark : An independent proof of Young's Rule appears in section 17.

Young's Rule shows that the composition factors of MZ are obtained
by writing down all the semistandard tableaux of type p which have the

shape of a partition diagram.

14.2 EXAMPLE We calculate the factors of M(é,2,2). The semistandard
tableaux of type u are:

1112233 111223 11122
3
111233 11123 11123
3
12 12 133
2 2
1 13 113
1

Therefore in the notation of 6.4,
(31021C02] = [7] + 206,11 + 3[5,2] + 2[4,3] + [5,12] + 204,2,11 + [3%,1]

+ [3,22]

Remark: Young's Rule gives the same answer whichever way we choose to
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order the integers in the definition of "semistandard", and does not

require u to be a proper partition:
14.3 EXAMPLE The factors of M£3’2) are given by

by 11122 1112 111

or by 22111 2211 221

Therefore, [{3][2] = [5] + (4,11 + [3,2] (cf. Example 5.2).

14.4 EXAMPLE If m < n/2 then

[n-m][{m] = [n] + [n-1,1] + [n-2,2]+ ... +[n-m,m].

(n-m,m)

Since dim M (;), we deduce that

g{n-m,m) _ M - (M.

dim m n-1

Notice that Young's Rule gives Sz as a compositiin factor of Mz
with multiplicity one, and the other Specht modules Sﬂlwe get satisfy
A > p  in agreement with Theorem 4.13. Remembering that this shows
that the matrix m = (mku) recording factors of Mé as A varies (see 6.1)
is lower triangular with 1's down the diagonal, we can use Young's
Rule to write a given [p] as a linear combination of terms of the form
[All[kz]...[kj] (The method of doing this explicitlvis given by the
Determinantal Form - see section 19). Hence we can calculate terms
like [pllvyl...[v,] ( =5y @ s@g"l)@...@ Sé\)k)+6n) for integers
ViresesVy . More generally, Young's Rule enables us to evaluate

[pllvl( = Sg ® Sg + G!n) for any pair of partitions py and v . The pro-
duct [ullv] is the subject of the Littlewood-Richardson Rule (section
16), and the argument we have just given shows that the Littlewood-
Richardson Rule is a purely combinatorial generalisation of Young's

Rule.

14.5 EXAMPLE We calculate [3,21[2] = Sé3'2) ® Sé?)+ G7 using only
Young's Rule. By Example 14.4,
[3,2] = [3102] - [4]C1] .

To find [4][1]1[2], we use Young's Rule:

1111233 111123 11112
3 33



53

111133 11113 11113
2 2 3 2
3
1111 1111
233 2 3
3

[3,2102] = [31(21C2] - [4]01]1(2] , and using Example 14.2, we have
(3,202 = [7] + 2[6,1] + 3[5,2] + 204,31 + [5,1%]1 + 2[4,2,1]

+ [32,11 + [3,2%1 - [7] - 206,11 - 205,2] - [4,3] - [5,1%] - [4,2,1]

= [5,2] + [4,3]1 + [4,2,1] + [3%,1] + [3,22]. (cf. Example 16.6).
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15 SEQUENCES

In order to state the Littlewood=-Richardson Rule in the next
section, we must discuss properties of finite sequences of integers.

A sequence is said to have type u if, for each i, i occurs By times in
the sequence.

15.1 EXAMPLE The sequences of type (3,2) are
22111 21211 21121 21112 12211
x x vV /Y x vV /Y IR AR ARE x v/ /YA Y/ x /Y

12121 12112 11221 11212 11122
Yy v/ Yy VvV /Y VY /Y Y /YA A Y Y /YA

15.2 DEFINITION Given a seguence, the guality of each term is deter-
mined as follows (each term in a sequence is either good or bad).

(i) All the 1l's are good,

(ii) An i + 1 is good if and only if the number of previous

good i's is strictly greater than the number of previous good (i+l)'s.

15.3 EXAMPLES We have indicated the quality of the terms in the
sequences of type (3,2) above. Here is another example:
31123323212
xyY /A xS A xAA

It follows immediately from the definition that an i+l is bad if
and only if the number of previous good i's equals the number of prev-

ious good (i+l)'s. Hence we have a result which will be needed later:

15.4 If a segquence contains m good (c-1l)'s in succession, then the
next m c¢'s in the sequence are all good.

15.5 DEFINITION Let p = (ul,uz,...) be a sequence of non-negative
integers whose sum is n, and let u* = (u?, u;,...) be a seguence of

non-negative integers such that for all i,
e £

<
Hig1® Hi S Wy o

Then u*, b is called a pair of partitions for n.

Remark: As here, we shall frequently drop the condition Ly 2 2 ..

n
2

on a partition p, but will still refer to u as a partition of n.

If the condition Ly Z Uy Z .. holds we shall call u a proper partition

“

of n. So, for example , p¥ is a proper partition of some n' < n in

definition 15,.,5. Note that a Specht module s¥ is defined only for u
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a proper partition, but the moduLaMuspanned by u-tabloids may have
U improper.

15.6 DEFINITION Given a pair of partitions v, u for n, let s (u#,yu)
be the set of sequences of type u in which for each i, the number of
good i's is at least uf .

We Write O for the partition of 0O, so that s(0,u) consists of all
sequences of type u. Since the number of good (i+l)'s in any sequence
is at most the number of good i's there has been no loss in assuming
that u# by

i+l = Mie

15.7 1If f; = up and Aﬁ = uz for i > 1, then S(A*,u)= s(u¥,u), since

every 1 in a sequence is good.

Thus we can absorb the first part of u into u#.

15.8 EXAMPLE s(0,(3,2)) = s((3),(3,2)). The sequences in the second
and third columns below give s((3,1),(3,2)) and the sequences in the
last column give s((3,2),(3,2)).

s((3),(3,2)) D s{(3,1),(3,2)) > s((3,2),(3,2))

22111 21211 12121
21121 12112
21112 11221
12211 11212
11122
(3,2)

Conipare Example 5.2, where M has a series of submodules with

the factors of dimensions 1,4 and 5. This is no coincidence!

Given a pair u“, U of partitions, we record them in a picture
similar to a diagram. We shall draw a line between each row and enc-
lose u# by vertical lines. The picture for ﬁ# ,u will always be ident-
ified with the picture obtained by enclosing all the nodes in the first
row (cf. 15.7).

15.9 EXAMPLE Referring to Example 15.8, we have
s XXX = s XX » s KX > s XX
X X X X XX X X

This nesting suggests that we should have some notation which adds

a node from u to u”. We need only consider absorbing a node which is
not in the first row.
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15.10 DEFINITION Suppose u#' # u. Let c be an integer greater than

#* #* -
1 such that Mo < Ko and S, = M

c-1°
(i) 1If “::1 > u:, then u# Ac, p is the pair of partitions
R * #*
obtained from u* 4 by changing u: to uz + 1. If Mooy = Hg v then
u#Ac, y is the pair 0,0.

(ii) u“*,uRc is the pair of partitions obtained from u# U

#
by changing u to u and u to wu + Mo = Hg -

c c c-1 c-1

. . *
The operator R, merely moves some nodes lying outside u~ to the end

of the row above (R stands for "raise" and A stands for "add"). Both
+#

H and y are involved in the definitions of Ac and Rc’ and note that
. #

we stipulate that LY equals Meop *

15.11 EXAMPLE K | 52 KX XXX - T X%

X X X Rg X X X[X = X X X
X |X X X

Other examples are given in 15.13, 17.15 and 17.16.

Since Rc raises some nodes, and we always enclose all the nodes in
the first row, any sequence of operations AC,RC on a pair of partitions
leads eventually to a pair of partitions of the form A,A (when, per-

force, A is a proper partition.) It is also clear that

15.12 Given any pair of partitions, u“,u, there is a partition v
and a sequence of operations AC,RC leading from O,v to u# P

15.13 EXAMPLE To obtain ((4,3,1),(4,5,22)), apply

Ag Ay Ry Ry Ry Rg Ry Rg to (0,(4,3,1,2,1,2)):
A£A3 X XXX R4Ry [E XXX
X X X X X X > X X X}X X
X X X
XX XX -
X X p:S
X X X X X X

|
|
|
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R5R6 X X X X R4R5 X X X X

d X X X|X X -+ X X XX X
X X1X
X 21X
X X

The critical theorem for sequences is

15.14 THEOREM The following gives a l-1 correspondence between

sw*w\ sw*A ,u) and s@® JuR):

Given a seguence in the first set, change all the bad c's to

(c—-1)'s.

Proof: Recall that our definition of the operators Ac and Rc required

o1 = “:Ll . Therefore, a sequence S, in s(u¥, 1)\ s(u*’Ac,u) contains
oop = “;:l (c-1)'s, all good.

+* [] - # L}
L good c¢'s and U MG bad c's.

The bad c¢'s are changed to (c-1)'s to give a sequences S
that

2° We claim
15.15 For all j, the number of good (c-1l)'s before the jth term of
§, 2 the number of good (c-1)'s before the jth term in Sp-

This is certainly true for j = 1, so assume true for j = i. Then
15.15 is obviously true for j = i + 1, except when the ith term is a

(c-1) which is good in s, but bad in s.,. But in this case, the inequ-

1 2
ality in 15.15 (with j replaced by i) is strict, because the number of
(c-2)'s before the ith term is the same in both s, and s,. Therefore,

15.15 is true for j = i + 1 in this case also.

15.15 shows that 52 has at least ugil good (c~1l)'s, and that all
the c's in s, are good. Hence, for i # c~1 or ¢, i is good in s, if
and only if i is good in Sy, and so S, belongs to s(u#',uRc).

It is more difficult to prove the given map 1l-1 and onto.

Given any sequence replace all the (c-1)'s by left-hand brackets,

( , and all the c's by right-hand brackets, ). For example, if ¢ = 3

1212312332211311223

goes to 1 (1 ()1 ()) ((11)y111¢(() .

Now, in any sequence belonging to s (u*¥ ,uRc), all the c¢'s are good.
Therefore, every right-hand bracket is preceded by more left-hand brac-

kets than right-hand brackets, and the sequence looks like
L
- 2Ucl

Po(py(Pyleealp,  with r = u__; ¥ u,
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where each Pj is a closed parenthesis system, containing some terms i
with 1 # c=1 or c.

It is now clear that there is only one hope for an inverse map;

namely, reverse the first Mo = u:

"extra" brackets (precisely the
brackets which are reversed must become unpaired right-hand brackets,
to give us an inverse image.)

Let s belong to s(u*:,uRc). We say that a c-1 is black in s if it
corresponds to an extra bracket; otherwise it is wiite.

Let s* be the sequence obtained from s by changing the first U, <

u:’ black (c-l)'s to c's. We must prove

15,16 gvery c-1 in s* is good.

The Theorem will then follow, since every c¢ appearing in both s and
s* will be good, and s* will be the unique element of s(u# SU)
s (u¥ A_,u) mapping to s.

We tackle the proof of 15.16 in two steps. First

15,17 For every term x in s, the number of white (c-1)'s before x

< the number of good (c-1l)'s before x.

Initially, let x be a black c-1l. The number of white (c-1)'s before
X = the number of c's before x (by the definition of "black") < the
number of good (c-1)'s before x, since every c in s is good. This
proves 15,17 in the case where x is a black c-1l.

The same proof shows that the number of white (c~1l)'s in s < the
nunber of good (c-1)'s in s. Thus, we may start at the end of s and
work back, noting that 15.17 is trivially true for the (j-1)th term of
s if it is true for the jth term, except when the (j-1l)th term is a

black c-1, which is the case we have already done.
Next we have

15.18 Either ¢ = 2, or for every c-1 in s*, the number of previous

good (c=2)'s > the number of previous (c-1)'s in s*.

For the proof of 15,18, assume c > 2, Now, s contains at most
Ue - ug bad (c-1)'s since s belongs to s(p* ,uRc), so for any c-1 in
s, the number of previous good (c-2)'s > the number of previous (c-1)'s
in's - (g - u: ). Therefore, 15.18 holds for a c-1 after the (u_ -
u¥ ) th black c-1 in s.

If the term x in s~ is a c-1 appearing before the (uc - “: ) th black
c-1 in s, then x was white in s. Also, the number of (c-1l)'s before x

in s* = the number of white (c-1)'s before x in s s the number of good
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(c=1)'s before x in s by 15.17 (the inequality being strict if x is a
bad ¢~1 in s, by applying 15.17 to the next term) < the number of good
(c=2)'s before x (the inequality being strict if x is a good c-1 in s),
and 15.18 is proved in this case too.

From 15.18, 15.16 follows at once, and this completes the proof of
Theorem 15.14.

15.19 EXAMPLE Referring to Example 15.8, the 1l-1 correspondence
between s((3),(3,2)) \ s((3,1),(3,2)) and s((5),(5)) is obtained by:

22111 ~ 11111
x x /Y

The 1-1 correspondence between s((3,1),(3,2))\s((3,2),(3,2)) and
s((4,1),(4,1)) is given by

21211 11211
x /A

21121 11121
x Vv /A A N

21112 11112
x VvV

12211 12111
Y/ x /Y
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16 THE LITTLEWOOD~RICHARDSON RULE

The Littlewood-Richardson Rule is an algorithm for calculating
[(AJfu] where A is a proper partition of n-r and u is a proper partition
of r. Remerber that [AJ[u) is a linear combination of diagrams with n
nodes, and the interpretation is that when a, is the coefficient of
[vl, Sk ® s* 4+ le has s’ as a composition factor with multiplicity

a a 28
a .+ It is a well-known result that every ordinary irreducible repre-

s;ntation of G x H, for groups G and H is equivalent to Sl x 52’ for
some irreducible G-module Sl and some irreducible H-module Sz, so the
Littlewood-Richardson Rule enables us to calculate the composition
factors of any ordinary representation of a Young subgroup, induced up
to Gn'

For the moment, forget any intended interpretation, and consider
the additive group generated by {[A]|) is a proper partition of some

integer}. Given any pair of partitions p¥

,u as in definition 15.5,
we define a group endomorphism [pu%¥,u1 of this additive group as folle
ows: .
16.1 DEFINITION [k][“# o X av[v] where a, = O unless Xi < vy
for every i, and if Xi < vy for every i, then a,, is the number of ways
of replacing the nodes of [v]\[A] by integers such that

(i) The numbers are non-decreasing along rows
and (ii)} The numbers are strictly increasing down columns
and (iii)When reading from right to left in successive rows, we have a
sequence in s(u# sU) .

If y* =y, when u is a fortiori a proper partition, we write [ul’
for [u,u]'.

The operators are illustrated by the next Lemma and by Examples

16.6 ard 16.7.

16.2 LEWMA If u= (u),upse.epw), then [010074] - LupdlrpleeLigd.
If y is a proper partition, then [O][u] = [ul.

Proof: When p¥ = 0, condition (iii) of definition 16.1 merely says
that we have a sequence of type u. But [ul][uzl...[uk], by definition,
describes the composition factors of MM , and the first result follows
from Young's Rule.

Let [v] be a diagram appearing in [O][uj . Then the nodes in [v]

can be replaced by My 1l's, Hy 2's, and so on, in such a way that
conditions (i) to (iii) of 16.1 hold. Suppose that some i appears in
the jth row with j < i, and let i be the least number for which this

happens. There are no (i-1l)'s higher than this i, by the minimality of
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of i; nor can there be any (i-1l)'s to the right of it in the same row,
by condition (i). Thus, this i is preceded by no (i-1)'s when reading
from right to left in successive rows, and the i is bad, contradicting
condition (iii). But no i can appear in the jth row with j > i, by condi-

tion (ii). This proves that every i is in the ith row, and [v] = [ul.

16.3 rEmA  [u® ,u1° = tu®aA ,pl° + [w* ur I

Proof: Assume that p is a partition of r, and that A and v are sproper
partitions of n-r and n, respectively, with Ai < vy for each 1i.

Replace each node in [v]I\[A] by Uy 1's, 2's and so on, such that we

u
have a sequence in s(u¥® ,u)\ s(u¥ Ac,u) wﬁen reading from right to left
in successive rows. We must prove that changing all the bad c¢'s to
(c-1)'s gives a configuration of integers satisfying 16.1 (i) and (ii)
if and only if we start with a configuration of integers satisfying

16.1 (i) and (ii), since the Lemma will then follow from Theorem 15.14.

Suppose we have not yet changed the bad c's to (¢c-1)'s and condi-
tions 16.1 (i) and (ii) hold for our configuration of integers. There
are two problems which might occur. A bad c might be to the right of
a good ¢ in the same row. This cannot happen, because a ¢ immediately
after a bad ¢ must itself be bad, !More complicated is the possibility
that there is a bad c in the (i,j)th place and a c-1 in the (i-1,j)th
place. To deal with this, let m be maximal such that there are c¢'s in
the (i,j)th,(i,j+1)th,...,(i,j+m~1)th places. Then by conditions 16.1
(i) and (ii), there are (c-1l)'s in the (i-1,j)th,(i-1,j+1)th,...,(i-1,
j+m-1) th places. Since all the (c~1)'s are good in a sequence belonginyg
to s(u¥ TR AN s(u#'Ac,u), our ¢ in the (i,j)th place must be good,after
all, by 15.4. This shows that all the bad c's can be changed to (c-1l)'s
without affecting conditions 16.1(i) and (ii).

Conversely, suppose that after changing the bad c's to (c-1)'s we
have a configuration satisfying conditions 16.1 (i) and (ii). We dis-
cuss the configuration of integers we started with. This must satisfy
conditions 16.1 (i) and (ii) unless a bad c occurs immediately to the
left of a (good) c-~1 in the same row, or a bad ¢ lies immediately above
a good ¢ in the same column. The first problem cannot occur by 15.4.
Therefore, we have only to worry about the possibility that a bad c¢ is
in the (i-1,j)th place and a good c is in the (i,3j)th place. Reading
from right to left in successive rows, we see that the number of (good)
(c-1)'s in the (i-1)th row to the left of our bad ¢ in the (i~1,3)th
place is at least the number of good c's in the ith row. But every
c-1l in the (i-1l)th row to the left of the (i-1,j)th place must have a
good ¢ immediately below it in the ith row (sirmce there is a good ¢ in
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the (i,3j)th place, and we end up with a configuration satisfying condi-
tions 16.1 (i) and (ii)). This contradicts the fact that there is a
good ¢ in the (i,3j)th place, and completes the proof of the Lemma.
16.4 THE LITTLEWOOD-RICHARDSON RULE

oM - g

Proof: (James [10]) If v is a proper partition of n, then applying
operators AC and RC repeatedly to O, v we reach a collection of pairs

of partitions w,w. By Lemma 16.3, we may write
[o,v] = E) a lwl

where each a, in an integer, a, = 1 and a = 0 unless [w] & {v].

Hence there are integers ba and cB such that

[0,83.

(A1 = z ba[O,a]'and [ul” = g g

By Lemma 16.2

[ul* _ LA Lwd"

[A) (03
_ [03% Pal0,al’z c4l0,8]

= g ba [all...[aj] g g [Bl]...[Bk]

by ba[O,a]'[O]Z cB[O,B]

[O][X]'[O][u]

[o]

(AT

16.5 COROLLARY [v1'f{pl’ = [pl1'[vl = ([plilvl)’

Proof: For all [A1, [A10¥1 DM o ragrvicel = oaateioes
= (atrITvls oy (Qudlv])

The Corollary is extremely hard to prove directly. More generally,
it follows from the Littlewood-Richardson Rule that for every equation
like [3102]1 = [5] + [4,1] + [3,2] there is a corresponding operator
equation [31'721° = (51" + [4,11° + [3,21° .

Of course, the Branching Theorem (part (i)) is a special case of
the Littlewood-Richardson Rule.

When applying the Littlewood=-Richardson Rule, it is best to draw
the diagram [X], then add uy 1's, then H, 2's and so on, making sure
that at each stage [A], together with the numbers which have been added,
form a proper diagram shape and no two identical numbers appear in the

same column. Then reject the result unless reading from right to left
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in successive rows each i is preceded by more (i-1l)'s than i's. (This
condition is necessary and sufficient for every term to be good.)

16.6 EXAMPLE [3,21(2] = (3,2]02]

= 5,21 + {4,3] + [4,2,1] + [3%,1] + [3,2%], by looking at the
following configurations: (cf. Example 14.5).

XXX11 XX X1 X X X XXX X X X
X X XX1 X X XX1 X X
1 1 11

16.7 EXAMPLE  [3,2](21[2]1 = [3,2)t2] (2]

XXX11 XXX11 XXX11 XX X1 XXX1
XX 22 X X 2 X X XX12 XX1
2 2 2 2 2 2
X X 1 XXX1 X X X XX
X X 2 X X 1 X X
1 12 12 1
2 2 2 2
XX X112 XXX112 XX X12 XX X12
X X 2 X X X X12 X X1
2 2
XX X12 XX12 XX X12 X X XXX1
X 2 X X X 2 X 2
1 12 1 1 12
2
X X 2 XX X2 X X XX X2 X X
X1l X X1 X X X X 2
12 1 122 11 11
2 2 2
XXX1122 XX X122 XXX122 XX X22
X X XX1 X X X 1
1 1
XXX 22 X X 2

oo
N
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We have arranged the diagrams so that, reading from right to left
in successive rows, the diagrams in the first batch (before the first

line) give sequences in s((2,2),(2,2)), so

[3,2102,2] = [3,215%72) = (5,47 + [5,3,11 + [5,22] + [4%,1]

+ [4,3,2] + [4,3,1%2] + [4,2%2,1] + [3%,2,1] + [3,27]

The diagrams before the second line give [3,2][(2’1)’(2'2)]

The reader may care to check that changing a @ad 2 to a 1l in the sec-
ond batch gives the same answer as [3,2][3’1] ’

16.3.

in agreement with Lemma

3,2103,11 = 03,2153 = (6,37 + [6,2,11 + [5,4] + 205,3,1]

+ [5,2%] + [5,2,123 + [42%,1]1 + 20(4,3,2] + [4,3,12]1 + [3%] + [4,2%,1]
[3?,2,13.

The last batch contains all the configurations where both 2's are
bad, and by changing the 2's to 1l's, Lemma 16,3 gives

[3,2104] = (3,214

+ [4,3,21 ,

=10[07,2]1 + (6,31 + [6,2,1] + [5,3,1] + [5,2%]

which is simple to verify directly.
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17. A SPECHT SERIES FOR MY

A better form of Young's Rule can be derived over an arbitrary field.
What happens in this case is that M" has a series with each factor iso-
morphic to a Specht module; such a series will be called a Specht
series. Since MY is not completely reducible over some fields, we must
take into account the order of the factors in a Specht series. The

next example shows that the order of the factors does matter:
(n-1,1)

is uniserial, with factors D(n)’D(n-l,l)
(n-l,l)’D(n)
’

17.1 EXAMPLE Let char F divide n > 2, and consider M
Example 5.1 shows that M(n-l’l)
p{™ and that s 141 jg uniserial with factors D

from the top. Thus M(n-l’l)
g(n)

reading
has no Specht series with factors S(n_l'l),
reading from the top. The Specht series in Example 5.1 has factors
in the order S(n),s(n-l'l).

In this important section, we shall use only Theorem 15.14 on seg-
uences, and deduce both Young's Rule and the standard basis of the
Specht module. At the same time, we characterize the Specht module SA
as the intersection of certain F Gn—homomorphisms defined on Mx, in the
case where X is a proper partition. Throughout this section F is an
arpitrary field.

Let u¥ ,u be a pair of partitions for n, as defined in 15.5, Recall
that u¥ must be a proper partition, while we do not require p to be
proper. We want to define a submodule Su# Woof Mu, and to do this we
construct an object eE# ‘M yhich is "between" a tabloid and a poly-
tabloid.

17.2 #DEFINITION Suppose that t is a p-tableau. Let

ez ' = 1 {sgn m{tin|me C, and m fixes the numbers outside tu#®1}
17.3 EXAMPLE If t = {1 3 5 and v ¥ = (3,2,0), u = (3,4,2)
2 7 49
8 6
(part of t is boxed-in only to show which numbers will be moved), then
#
el M= 135 235 I75 215
2 749 - 1749 -~ 2 349 + 1 349
8 6 8 6 8 6 8 6

F*
17.4 DEFINITION s¥ '¥ ig the subspace of e spanned by et tHoag

as t varies.

9 +* I+
st" 'Y is an F Gn-submodule of M", since el Hp=e i

0f co
urse, £
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# *
If = 0, then st M = ¥ and if y¥ =y, then gt M= gH,
u

&+

4t
17.5  1f A¥ =y ana 1Y - w¥ for i > 1, then gt oMo gHT M 5o

we can absorb the first part of u into u# (cf. 15.7).
Sequences now come into play by way of

17.6 CONSTRUCTION Given a sequence of type u, construct a corres-
ponding p-tableau t as follows. Work along the sequence. If the jth
term is a good i, put j as far left in the ith row of t as possible.
If the jth term is a bad i, put j as far right in the ith row as poss-
ible.,

7.7 EXAMPLE 311233232121 € s((4,3,2),(4,4,4))
x YA A A XA A A A

and corresponds to

Different sequences in s(0,u) correspond to tableaux which belong
to different tabloids, so

17.8 The construction gives a l-1 correspondence between s (O,u) and
the set of y tabloids.

Remark We have already encountered the concept of viewing a basis of
M as a set of sequences, for in section 13, the tableau T of type u
corresponds to the sequence (1)T, (2)T,..e.,(n)T.

The construction ensures that a sequence in s(u**,u)corresponds to
a tableau which is standard inside [p* ] (i.e. the numbers which lie in-
side [p*®¥] increase along rows and down columns- cf. Example 17.7). But,
if t is standard inside [u¥],then {t}is the last tabloid involved in

#®
et THo(cf. Example 17.3), and so Lemma 8.2 gives

L
17.9 { et i |t corresponds to a sequence in s(u#® ,u) by 17.6} is

Y
a linearly independent subset of W™ ¥

#*
We shall see soon that we actually have a basis of s ¥ here.
. g s u¥ o, u®Ag,u u¥ ,uR
Our main objective, though, is to prove that S /S c z S c,

where the operators Ac and Rc are defined in 15.10. First, note that

3 ”
sH” Acr¥ c s¥ ¥ | this is trivially true if u¥ A_,u = 0,0 (i.e. if
uZLl = uz), since we adopt the convention that S©s© is the zero module.

Otherwise, given t, we may take coset representatives cl,...,ck for
the subgroup of C, fixing the numbers outside (u®¥ ] in the subgroup of
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w¥ Bc,u
Cy fixing the numbers outside [u“A 1, whereupon e, c’ =

M ¥ (sgn o, oy
t i=1

# L
Now we want an F & ,~homomorphism mapping s ¥ onto sHT sHRe -
17.10 DEFINITION Let p = (Hyskyses.) and

v o= (ulluz,..-,ui 1M Y Wiy T VeVelyipees.) o Then ¥, belonging to

Homy, c (M",M’) is defined by {t}wi,v =t {{t }I{t } agrees with {t} on
all except the ith and (i+l)th rows, and thé (i+l)th row of {tl} is a
subset of size v in the (i+l)th row of {t}}.

Remark It is slightly simpler to visualize the action of wi,v on the
basis of MY viewed as sequences. wi,v sends a sequence to the sum of
all sequences obtained by changing all but v (i+l)'s to i's. Whichever
way you look at it, wi,v is obviously an F(Sn-homomorphism. Every
tabloid involved in {t}wi,v has coefficient 1, so wi,v is "independent
of the ground field."

17.11 EXAMPLES
(1) When u = (3,2), ¢ and ¢ are the homomorphisms ¥ _ and
1,0 1,1 [}
wl appearing in Example 5.2,

(11) If u = (4,32,2), then

wz L0 10 1 2 10 1 2 10
' -+ 3 7 8 + 3 4 6 8
6 1.8 s 1
11 12 11 12 11 12
+ 1351
349 67
8
11 12

(1ii) If n 2 6 and 4 = (n-3,3) and

v=123 + 124 + 134 + 23 4 (replacing each tabloid by its
second row only), we have

v wl,o =4eF

v¢1’l=I-_+'2't§:i+'2'+3+'i+§+2+§+§+3
=3(1 + 2 + 3)
v¢112=2(1_2+1_3+1_4+2—3+ﬂ+3_).
Therefore, ve Keru;llo n Ker w1,2 if and only if char F = 2
and v e Ker wl,l if and only if char F = 3.
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(iv) Taking n = 6 in example (iii),

T56-156)y ;= 1+5+6-1=-5=6=14-=-1
!

(456 -156-426+12 G)wl 1= 0.
r

That is, for t = F , u¥ = (3,1) and u = (3,3), we have
56

w¥ n* URy
' = ’ = 12356
ey wl,l etR2 where tR,
4
+
and b A, ,u =
ey 270 ¥, =0
Compare the last Example with
# #
~H  sH U7 sUR,
17.12 LEMMA S Vom1, ]
*
sH Aced =
and S wc_l'uz 0.
Proof: Let t be a p-tableau, and let
k# =L {sgn m)w|m fixes the numbers in t outside [p™¥ 1}.
Choose a set B of u: numbers from the cth row of t, and move the rest

of the numbers in the cth row of t into the (c-1)th row.

If B consists of the first ug numbers in the cth row of t, then

we get a tableau, tR_, say, and
c >4
* +HRo

u
{tRc}Kt# etRc .

For any other set of ug numbers from the cth row of t, we still get
a pR, -tabloid, {tl} say, but now one of the numbers, say x, which has
been moved up lies inside [p¥ 1 . Let y be the number above x in t.

Then (1-(x y)) is a factor of Ki o and so

{tl}Kt“ = 0.

#
TR TR - * = #
Now, e, ' wc_l’uz {t}Kt“wc-l,“c {t} wc-l,uc Kew and

{t} wc-l u# is the sum of all the tabloids obtained by moving all
rtc

except u: numbers from the cth row of {t} into the (c-1)th row.

Therefore, u®
’ =
St wc-l,uz €tR ¢

#
Since p¥ Aeu has one more node enclosed in the cth row (or a Acr¥ o

s90 =0 if u::l = uz), the proof we used to deduce that {tl}K£#= (o}

*
shows that M AC’“w “«=0
t c—l,uC
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17.13 THEOREM (James [101)

# ¥ R
(1) 8% ¥ gy, . = g¥"HRe  ana

-
sH ¥ ker Yo

# *
(ll) SU ;U/SU Acll‘l -4 Sl-l luRc

#
(iii) dim s* M = |s(u*,uw)|: indeed,

# .
igtu ' | t corresponds to a sequence in s(p*,u) by 17.6} is a basis of

gh¥ru

“
(iv) s* ' has a Specht series. The factors in this series are
[optn®.ule

given by

Proof: Let O,v be a pair of partitions from which we can reach the pair
u“,u by a sequence of A, and R, operators (cf. 15.12)

dim Sg,v = dim M¥ = |s(0,v)| by 17.8. We may therefore
assume that dim s* ‘M = |s(u¥,u)| and prove that dim s Ber¥ o
it
|s(u*Ac,u)| and dim s "M*Rc - |s(u*
®
Now, |s(u*,w) | = dim s¥ ¥

* B
dim s* Per¥y ginm s? rHRe by Lemma 17.12
[s*ac,w | + [s®*ur)| by 17.9
|s (u*,u)| by Theorem 15.14 .

VoWV

it

Everything falls out! We must have equality everywhere, so results
(i), (ii) and (iii) follow.

When u“=11 Su#'u = Su, and so has a Specht series whose factors
are given by [O][u].(see Lemma 16.2). Therefore, we may assume induct-
ively that Su AC'“ ana s¥ 'PRe have Specht series whose factors are
given by [O][u Acsul® and [O][u 1URcI® . Since we have proved conclusion
(1), and [p*,u1° = [W*Ac,u1° + [u™,uR,1" (see Lemma 16.3), s¥ ‘¥ has
a Specht series whose factors are given by [O][u#'“].

All we have used in the above proof are the purely combinatorial

results 15.14 and 16.3 (In fact, it is much easier to show that
[O][u“.u] - [O][u*Ac,u]' + Eu‘,u&Q' than to prove Lemma 16.3 in its

full form.) We have therefore given alternative proofs that the standard
polytabloids form a basis for the Specht module (take u# =y in part
(iii)), and of Younag's Rule (take u#= 0 in part (iv)).

17.14 COROLLARY MY has a Specht series. More generally,
Sk e S(u1)®...@ S(uk)+ G’ has a Specht series. The factors and their
order of appearance are 1ndependent of the ground field, and can be
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calculated by applying the operators A, and R. repeatedly to [O,u] and

(AyQsbyger.om )], respectively. The factors of s’ e sH1)s...0 S(uk)+G%
][ul]'[uzj'...[uk]'.

are given by [A

(By (A,ul,...,uk) we mean the partition (Al,...,xj, Mpreeerby)

where Aj is the last non-zero part of A).

Proof: It is simple to see that

ghr Qubigreeiig) 2 gd g il g MKy G,
and we just apply Theorem 17.13(ii) to obtain a Specht series.+ The last
[A,(X,Ul,--.,uk)].= [)\][”l]."'[”k].

sentence is true because [0] as can

be easily verified.

Remark James and Peel have recently constructed a Specht series for
the module s ® Sxf G; - Here again, the factors and their order of
appearance are independent of the ground field. The Specht faetors are
given by the Littlewood-Richardson Rule.

(3,2,1)

17.15 EXAMPLE We construct a Specht series for M In the tree

below, we always absorb the first part of p into p®* (e.g. M(3’2’l)

03,2, 5(3)'(3’2’1); cf. 17.5). BAbove each picture we give the

dinension of the corresponding module.
6 6 1
Rp R R
X] 5 [xxx X x| o XXX XX 2 [XXXXXX]|

X
X X L+
X A,

X
— 5
A3 XX XXX
A, 0,0 X
54 24 14 5

R Ry | R
XX X] @2 [xxxx 3 X 2

S — XXX 3 |XXXXX
x| x X X |X X
X

X
A3 AZ
A2 10 9
Y X X X X X X X X
X X X
X
30 14 9
R R
3
X X X N X X X ;2 [Xx X XX
X X X X|x X X
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16 Y 5 Y

X X X X X
X X X X X
5,1
Therefore, mi3:2,1) has a Specht series with factors 5(6), S( ! ),

2 2
5(5’1), 5(4’2), sl4rd )r S(d’?), (3 ), S(3’2'1), reading from the tonp.

This holds reqardless of the around field.

2 2 2 lZ
17.16 EXAMPLE Consider s‘%/2 /1y @ = 4,27/ 1), (4,27,17%)

10
X X X x] X x] X X X x] X X X X i]
X X R R4Ry  |X X[X R, [xx

——|x X —>—|Xx X

%] %]

wi
LR B e
L Bl Bl B

X X X X| X X X X

X X X X X X X

X X X X X X

XV X X X

B

Hence, S(4’2Z’l)f has a series with factors, reading from the

2 3 2 2
top, isomorphic to (72 D, s(4,3,2,1)  g(4,27)  S(4,27,1%) (g

Examples 9.1 and 9.5).

17.17 EXAMPLE Following our algorithm, we find that when m < n-m,
M(n-m’m)has a Specht series with factors S(n), S(n—l’l), !S(n~m,m)’

reading from the top (cf. Example 14.4).

There is a point to beware of here. It seems plausible that
M(n—m-—l,m+l)/ g (n-m-1,m+1) msm . Sfter all, both

modules have Specht series with factors as listed above. However, this

is sometimes false. For instance, when char F = 2, S(6’2) has composi-

is isomorphic to M

tion factors p(6r2) and D(7’l) (see the decomposition matrices in the
Appendix.) Since D(6’2) is at the top of 5(6’2)
p{7/1) z S(6,2) n gl8r2)L o M(6’2)/ (5(6,2) + S(6r2)l).

1(6:2) (7,1)

/ S(G’z) has a top factor isomorphic to D
does not (see Example 5.1).

Therefore,

» while
M(7,l)

Theorem 17.13 provides an alternative method of showing that all
the irreducible representations of Gh appear as a DV, thereby avoiding
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the quotes from Curtis and Reiner in the proof of Theorem 11.5. Since
s¥* has the same factors as Mu/Su, all the composition factors of M

come from DV (if u is p-regular), and from M“/Su. But Theorem 17.13
shows that Mu/Su has a series with factors isomorphic to SA's with

AP u . By induction, since SA < MA ; every composition factor of m!

is isomorphic to some p”. Applying this fact to the case where u = (ln),
when MM is the regular representation of F G%V Theorem 1.1 shows that

every irreducible F Gh—module is isomorphic to some pV.

Theorem 17.13(i) has the useful

17.18 COROLLARY If p is a proper partition of n, with k non-zero

parts, then k
sH =

ui-1

0

ker ¢, _ .
i=2  v=0 i-1

'V

The Corollary is perhaps the most important result of this section,
since it characterizes s" as a subset of MV consisting of vectors having
certain properties (cf. Example 5.2). It will be discussed at greater
length in the section dealing with decomposition matrices of (;n'
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18 HOOKS AND SKEW-HOOKS

Hooks play an important part in the representation theory of (;n,
but it is not clear in terms of modules why they have a réle at alll
For example, it would be nice to have a direct proof of the Hook for-
mula for dimensions (section 20), without doing all the work required
for the standard basis of the Specht module.

The (i,j)-hook may be regarded as the intersection of an infinite

I' shape (having the (i,j)=-node at its corner) with the diagram,

18.1 EXAMPLE XX XX The (2,2)-hook is X X X X
X XXX X3 aa
XXX XaX

and the hook graph is 6 5 4 2
5431
321

18.2 DEFINITIONS
(i) The (i,j)-hook of [u] consists of the (i,j)-node along with
t?e ui—j nodes to the right of it (called the arm of the hook) and the
uj-i nodes below it (called the leg of the hook). .
(ii) The length of the (i,j)-hook is hij = + “j +1-4i-=-3
(iii) If we replace the (i,j)-node of [u] by the number hij for
each node, we obtain the hook graph.
(iv) A skew-hook is a connected part of the rim of [u] which can

be removed to leave a proper diagram,
18.3 EXAMPLE XX XX and X X X show the only two
X z—I~X X X
X X X
skew 4-hooks in [42,3]. The diagram also has one skew 6-hook, two

skew 5~-hooks, two skew 3-hooks, two skew 2-hooks, and two skew l-hooks.
Comparing this with the hook graph, we have illustrated:

18.4 LEMMA There is a natural 1-1 correspondence between the hooks
of [p] and the skew-hooks of [ul.

Proof: The skew hook
€«ith row

»
jth column
corresponds to the (i,j)~hook.
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19 THE DETERMINANTAL FORM
We have seen that when Al 2 Azz cee ey
[kl][kzl[k33-- = E My [ul

and the matrix m = (mxu) is lower triangular with 1l's down the diagonal
(see 6.4 and 4.13). It follows that

_ -1
(Al = E (m ))‘u [ul][uzl[u3]....
and m-l is lower triangular with 1's down the diagonal.
19.1 EXAMPLE Inverting the matrix m for <55 given in section 6, we
find

(5] (41011 [31C2) [3]C13% [21%C[11 C[21C11% [118

(53 (1 A
(4,11 -1 1
[3,2] o) -1 1
nto=r3,121 | 1 -1 -1 1
[2%,1] 0 1 -1 -1 1
[2,1%1 | -1 1 2 -1 -2 1
[1°] L 1 -2 -2 3 3 -4 1)

The coefficients in the matrix m are given by Young's Rule, and the
entries in m-l can be found directly by

19,2 THE DETERMINANTAL FORM If )\ is a proper partition of n, then
[A] = I[Xi - i+37]
where we define [m] 0 if m < Q.

The way to write down the determinant for [A] is to put [Al],[kz]..
in order down the diagonal, and then let the numbers increase by 1 as
we go from one term to the next in each row. Beware of the distinction
between [0] (which behaves as a multiplicative identity) and O (0 x any-
thing = 0).

19.3 EXAMPLES

’[3] [41] = [3101] - [41 =[3,1] + [4]1 -~ [4] = [3,1]

(0l r[1]

l[a] (41| = [31C2] ~ [4101] = [3,2] + [4,1] + [5]1 - [4,1] - [5]
[11 [23 = [3,2]

19.4 EXAMPLE Suppose we have proved the determinantal form for 2-



75

part partitions. Then expanding the following determinant up the last

column, we have

(31 [4]1 (3] = ‘[3] (4] (21 -
(11 r21 (3] (11 2]
(01 [11 (2]

[31 (43} (3]
(o3 [11'

<+

(1] [2]| [5]
(o1 (11

which, by induction, is [3,21[2] - [3,1103] + [(121(51]

= [3,2%] + [3%,1] + [4,2,1] + [4,3] + [5,2]
-([3%2,1] + [4,2,1) + [4,3]1 + [5,2]) - ([6,11 + [5,1%*])
+ [6,11 + [5,1%]1=[3,22]

A 4 ¢

Diagrams Diagrams Diagrams
containing containing containing
XX@ XX @ XX@®
X® X &
X&
Proof of the Determinantal Form: It is sufficient to prove the result
in the case where A = (xl,xz,...,xk) with Xk > 0, since zero parts at

the end of A do not change the determinant. The result is true when A
has no non-zero part, so assume that we have proved the result for A
having fewer than k non-zero parts.

The numbers in the last column of ([)\i - i+j]) are the "first

1 " P x
column hook lengths of [A]", nll'th""’hkl' since

Dy = Ay + A +1l-4i-1=2x -i+k.
Let s, be the skew hook of [A] corresponding to the (i,l)-hook (In
Example 19.4, S3sS, and s, are X XX ¥ XX X@ &
X X xa Xa ).
8K 8 a8 [

Omitting the last column and ith row of ([)\i - i+j]) gives a matrix
with diagonal terms

YR SV PRSUY SV I S VT IS 5 PRSINN o WEESS B

and these are precisely the parts of [A\s;] . Therefore, the result
of expanding the determinant |[xi - i+j]} up the last column and using
induction is
- *
M8y 1lhy 4] [A\sk_l][hk_l'l]+...t[A\Sl][hll] (*)
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Now consider [A\ s;1[h;;]. This is evaluated by adding hjj nodes
to [A \si] in all ways such that no two added nodes are in the same
column (by the Littlewood-Richardson Rule, or Corollary 17.14).

CAN si] certainly contains the last node of tiie 1lst, 2nd,...,{i-1l)th
rows of [A], so we deduce that all the diagrams in [A\ si][hil]

(1) contain the last nodes of the lst,2nd,...,(i-1)th rows of [A],
and (ii) do not contain the last nodes of the (i+l)th, (i+2)th,...,kth
rows of [A].

Split the diagrams in [A\ si][hil] into 2 set, according to whether
or not the last node of the ith row of [A] is in the diagram. It is
clear that [A] is the only diagram we get containing the last nodes of
all the rows of [A], and a little thought shows that in (x) we get sets
cancelling in pairs to leave [A]. This proves the Determinantal Form.

1

19.5 COROLLARY dim S” = n! —
I (A = i+3):

Rl

where =0 if r <o

Proof: [ul][uzl... (1] has dimension T T
— Pree ety

(see 4.2), and the Corollary is now immediate.
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20 THE HOOK FORMULA FOR DIMENSIONS

20.1 THEOREM (Frame, Robinson and Tnrall [4])

The dimension of the Specht module Sx is given by

I (h;qy = h ,)
i<k il k1l _ n!
I , " T(hook lengths in [AJ)
; h,.!
1 il

20,2 EXAMPLE The hook graph for [4,3,1] is
6 4 31
421
1

1
Therefore, dim 5(4’3’1) =8 70.

6.4.3.4.2

The hook formula is an amazing result. It is hard to prove directly
even that n! is divisible by the product of the hook lengths, let alone
show that the quotient is the number of standard A-tableaux.

Proof of Theorem 20,1 We show that the result is true when X has 3
non-zero parts, 1t is transparent that the proof works in general, but
a full proof obscures the simplicity of the ideas required.

By Corollary 19.5,

dim s* _ 1 1 L
- v - H H
T (hll 2) 7 (hll 1)% hll'
1 1 -
- 1 -
Wy, - )7 - DT R0
1 1 .
- s -
My, - 2)° (hy; - DY !
hypthy; = 1 hyy 1
=1 1 1
[ ] 1} [} -
hyat hgpt Byt | hyy(hy; = 1) hyy 1
(hy, = h.,) (h,y = ho(hoy = h..)
- 11 ﬁl h il i 31" 21 31 giving the

. h,.e
11° 21" 731 first result,
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_ 1
" T(hook lengths in [A])

y as required.

3

(hll - l)(hll - 2) hll -1 1
1 1 1 )
= 1] - - -
Rjps by Ry (hyy = Lthyy = 2) hyy =1
(h3l - l)(h31 - 2) h3l -1 1
_ 1 1
- - i - I - T
hll h21 h31 (hll 3): (hll 2)! (hll !
1 1
- B — T p Y
(h21 31 (h21 2) 7321 1):
1 1
= T - T - T
(h31 3)! (h31 2)! (h3l 1)1
1 ’
hll h21 h31 N(hook lengths in [kl-l,kz-l,k -1])

by induction
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21 THE [{URNAGUHAN-INAKAYAMA RULE

The Murnaghan-Nakayama Rule is a very beautiful and efficient way
of calculating a single entry in the cliaracter table of Gn.
In the statement below, the leg-length of a skew-hook is defined to

be the same as that of the corresponding hook.

21.1 THE MURNAGHAN-NAKAYAM/: RULE
Suppose that 7p € Gn where p is an r—-cycle and 1 is a permutation

of the remaining n-r numbers. Then
Xk(ﬂp) =1 {(-1)% y¥Y(m ] [A1 \ [v] is a skew r-hook of leg length i}.
Y

As usual, an empty sum is interpreted as zero. The case where p is

a l-cycle is the Branching Theorem.

21,2 EXAMPLES
(i) Suppose we want to find the value of ¥

ST I

There are two ways of removing a skew 5-hook from [5,4,4) and the

(5,4,4) on the class

Murnaghan~Nakayama Rule gives:

5,4,4
X( rxe ) on (5’4'3'1) = X(3’3'2) - X(5I3) on (4’3’1)

2 2
(21 G @ gy,

applying the rule again

2
= X(2 ) on (3,1), because we cannot
remove a skew 3-hook from either [2,12] or [3,1].

= —x on (1)
= -1.

is zero on any class containing an 8,9,10,11,12 or
13-cycle, since we cannot remove hooks of these lengths from [5,4,4].

(iii) m XX
=X

2
X(5'4'4) X(3 ) on (3,3)

- 2h 3

on (7,3,3)

+ on (3)
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(0)

= X +X(O)

on (0)
= 2.

The only character table required in the construction of the charac-
ter table of Gh using the Murnaghan-Nakayama Rule is that of GO'
Remember that GO is a group of order 1, and a computer is unrecessary in
evaluating the character table of GO!

Nur proof of the Murnaghan~Nakayama Rule needs several preliminary
lemmas. We first prove the special case where p is an n-cycle, then
examine what the Littlewood-Richardson Rule gives for [v][x,lr-x], and
finally we combine these pieces of information to prove the Rule in
general, See the remarks following 21.12 for an alternative approach.

A hook diagram is one of the form [x,ly].

21.3 LEMMA Unless both [a] and [8] are hook diagrams, [al[B] contains
no hook diagrams. If [a] = [a’ln-r—a] and [B] = [b,lr-b] then

[al[B8] = [a + bLln-a-b] + [a +Db - l,ln_a_b+1] + some non-hook diagrams.

Proof: If one 9f [a] and [B] contains the (2,2)-node, the so does
[allB] = [a][B] = [B][u] . This proves the first result.

Suppose, therefore, that [a] = [a'ln-r—a] and [B] = [b,lr—b]. In
order to obtain a hook diagram in [a][B] , we have to put b 1's in

the places shown, then 2,3,... in order down the first column:

[al »
*
The second result follows.

21.4 THEOREM (A special case of the Murnaghan-Nakayama Rule).
Suppose that p is an n-cycle, and v is a partition of n. Then

~1yn=x - n-x
W (p) = {( 1) £ I[v] = [x,10 ]

(e} otherwise

Proof: Let [al] and [B] be diagrams for <§r and (gn-r with O < r < n,
Then the character inner product

-(n— -2 12} - n
(X[u][B]p X(n) (n-1,1)+(n-2,1%)- ... t (1 ))

is zero, since [al[B] contains two adjacent hook diagrams, each with
coefficient 1, or no hooks at all by Lemma 21,3,
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-(n=1,1)+ ... = (1M
By the Frobenius Reciprocity Theorem, x(n) (n=1,1) ¢

restricts to be zero on all Young subgroups of the form G with

(r,n-r)

O <r <n; in particular, it has value zero on all classes of Gn,

except perhaps, that containing our n-cycle p. Therefore, the column

- n=x
vector which has (-1)™¥ (x,177%)

opposite ¥ and O opposite all other
characters is orthogonal to all columns of the character table of G?n,
except that associated with p. Since the character table is non-singcu-
lar, this column vector must be a multiple of the p-column. But the

(n)

entry opposite ¥y is 1. Therefore, it is the p-column, as required.

Remark: Theorem 21.4 can also be proved using the Determinantal Form,
but the above proof is more elegant.

21.5 LEMMA Suppose that A is a partition of n and v is a partition
of n-r, Then

(i) The multiplicity of [1A] in [v][x,lr—x] is zero unless [AJ\ [v]
is a union of skew-hooks.

(ii) The multiplicity of [A] in [v][x,lr_x] is the binomial coeffi-
cient (2:i) if [AJ \[v] is a union of m disjoint skew hooks having (in
total) ¢ columns (and r nodes).

Proof: The Littlewood-Richardson Rule assures us that the diagram [A]
appears in [v][x,lr—X] if and only if {v] is a subdiagram of [A] and we
can replace the nodes in [A] \[v] by x 1's, one 2, one 3,..., one (r-x)

in such a way that

(i) Any column containing a 1 has just one 1, which is at the top
of the column.
(ii) For i > 1, i+l is in a later row than i; in particular, no
two numbers greater than 1 are in the same row.
(iii) The first non-empty row contains no number greater than 1.

(iv) Any row containing a number greater than 1 has it at the end
of the row.

Suppose that the multiplicity of [A] in [v][x,lrnx] is non=-zero.

Then [A] \ [v] does not contain four nodes in the shape

X X
X X

since neither left hand node can be replaced by a number greater than 1
(by (iv)):; nor can they both be replaced by 1 (by (i)). Therefore,
[AJ\N[v] is a union of skew hooks.

Suppose that [A] \ [v] is a union of m disjoint skew-hooks, having
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c columns. When we try to replace the nodes in [AJ\ [v] by numbers, we
notice that certain nodes must be replaced by l's and others by some

numbers b > 1, as in the following example

11
11X
11b
b
11 ¥ c =11, m = 4
b
X
b
b

Fach column contains at most one 1 (by (i)). Also, each column
contains at least one 1, except the last colurn of the 2nd, 3rd,...,
mth components (by (ii),(iii) and (iv)). Therefore, (c-m+l) 1l's are
forced. There remain (x-c + m~1l) 1l's which can be put in any of the
m-1 spaces left at the top of the last columns in the 2nd, 3rd,...,mth
components. The position of each number greater than 1 is determined
by (ii) once the 1l's have been put in, The multiplicity of [A] in

r=x., . m=-1 _ m~1 .
[vllx,1 ] is therefore (x-c + m—l) = (c—x) , as we claimed.
Proof of the Murnaghan-Nakayama Rule:
[vIful
X H

= (4P .
Let a,, = (x~ + Gkn-r,r), ), where u is a partition of r
and v is a partition of n-r.
If p is an r-cycle and 1 is a permutation of the remaining n-r

numbers, then

A
x (mp) = L avuxv(ﬂ) xu(p)
V,u
_ v r r-x
= 5 x (m) xilav'(x'lr_x)( 1) , by 21.4.
r-x
But av,(x,lr'x) = (xk, X[v][x,l ]) by the Frobenius Reciprocity
Theorem
_ =1
= (c-x) by Lemma 21.5.

The definitions of m and ¢ give r > ¢ 2 m, so

I m-1 r=x
I (goy) (1)

r-c, m-1 m-1 m=-1
= (-1) {( ) = O+ e 2 (D))

0
- {(-1)1"C ifm=1
o] ifm= 1.
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However, when m = 1, [A1\ [v] is a single skew r-hook of leg length
r-c. Therefore,
xx(np) = I {(-l)lxv(n)l [AI\ [v] is a skew r-~hook of leg length i},
v

which is the Murnaghan-Nakayama Rule.

21.6 COROLLARY Suppose p is a prime. If no entry in the hook graph

for [A] is divisible by p, then Xk is zero on all permutations whose

order is divisible by p.

Proof: The hypothesis shows that no skew kp~hook can be removed from
[Al, so the Murnaghan-Nakayama Rule shows that xx is zero on all permu-
tations containing a kp-cycle (k > 0O).

Remark The hypothesis of Corollary 21.6 is equivalent to the statement
that | Gnl / deg xx is coprime to p, by the Hook Formula. The Coroll-
ary therefore illustrates the general theorem that if y is an ordinary
irreducible character of a group G and |G| / deg x is coprime to p,
then x is zero on all p-singular elements of G. (In the language of
modular theory, X is in a block of defect 0.)

The Murnaghan-Nakayama Rule can be rephrased in a way which is use=-
ful in numerical calculations, especially in the modular theory for G;n.

21.7 THEOREM If v is a partition of n-r, then the generalised charac-~
ter of Gh corresponding to

£ {(=1)i21 | [AIN[v] is a skew r-hook of leg-length i}

is zero on all classes except those contaiming an r-cycle.

Proof: Suppose that [A] is a diagram appearing in
[vl(Crl - [r-1,1]1 + [r-2,1%] - ... ¢ [1F]).
Then, by Lemma 21.5, [AJ\ [v] is a union of m disjoint skew hooks and
its coefficient is
r - -
ARG NS
x=1

As before, this is (_l)r-c if m = 1, and zero if m # 1. Therefore

(vl(Cxr] - [r-1,1] + ([(r-2,1%] - ... £ [1F])
= I{(-D*[A1 | [AI\[v] is a skew r-hook of leg length i}.

-(r- r
But, by definition, x° X(r) (r=1,1)+ ...z (1T) *+ G, is zero on

all of G’n except the subgroup G(n-r r)* However, it is zero even
’
here, except on mp (p an r-cycle), by Theorem 21.4.
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t - . e
Remark: The proof shows that”the operator [r]® - [r-1,11"+ ...% [17]

wraps skew r-hooks on to the rim of a diagram".

21.8 EXAMPLES (i) When v = (3,2) and r = 3

+ XXX oo _ XX X. _ X.§;¥a + X XX
X X XX o W X X X X

shows the ways of wrapging skew 3-hooks on to [3,2]. The generalised

. 2
character X(G'Z) - x(4 ) x(3’2 by x(3'2’13) is zero on all classes

of G% except those containing a 3-cycle.

- 2
(n) + X(n-2,2) - x(n 2,1 )is zero on all classes

(ii) For n =z 4, ¥
of Gn except those containing a 2-cycle.

(6,2)

as

3 2 2
sy (302,10 h) L (3,2%,1)

These examples show that ¥

a 3-modular: character, since this equation holds on 3-regular classes,
(n-2,1%) _ X(n-2,2) + (n)

(n-2,12) (n-2,2)

as a 2-modular character. At once, it
(n)
X

and ¥
follows that x ’ s ang are i? the same 2-block of
G;n. Also, X(G'Z), X(3’2’1 ), x(4 ) ana x(3’2 1) are in the same 3-
block of & since

8'

21.9 THEOREM Let L a, XA = O be a non-trivial relation between
characters on p-reqular classes., Then a

is non-zero for some p-

A
singular A, and if a, is non-zero for just one p-singular )X, then all

the characters with non-zero coefficients are in the same p-block.,

Proof: If the only non-zero ceefficients belong to p-regular partitions,
consider the last partition i whose coefficient a_is non-zero. The
character xu contains a modular irreducible character ¢“ corresponding
tc the factor D" of sM. By Corollary 12.2, ¢u is not a constituent of any
other ordinary character in our relation, and this contradicts the fact
that the modular irreducible characters of a groupare linearly independent.

If the partitions with non-zero coefficients lie in more than one
p-block, then there are two non-trivial subrelations of the given one,
and each subrelation must involve a p-singular partition, by what we
have just proved. The Theorem now follows.

Although it is fairly easy to prove that all relations between the
ordinary characters of Gh, regarded as p-modular characters, come from
applying Theorem 21.7, there seems to be no way of completely determin-
ing the p-block structure of (Sn along these lines.
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21.10 EXAMPLE It is an easy exercise to prove from the Murnaghan-
Nakayama Rule that when n = 2 is even

(n) _ >((n—l,l) + X(n—2.2) - 4 X(m,m)

X

is zero on all classes of G _ containing an odd cycle. Hence

x(n), x(n-l'l),..., X(m,m) are all in the same 2-block of &, , by

Theorem 21.9.

This is a convenient point at which to state

21.11 THEOREM ("The Nakayama Conjecture"). s¥ and SA are in the
same p-block of (;n if and only if there is a (finite) permutation ¢
of {1,2,...} such that for all i

A, = i =

A - ic modulo p.

Hig

We do not prove the Nakayama Conjecture here - the interested reader
is referred to Meier and Tappe [17] where the latest proof and refer-
enceg to all earlier ones appear. It seems to the author that the
value of this Theorem has been overrated; it is certainly useful (but
not essential) when trying to find the decomposition matrix of GA for
a particular small n, but there are few general theorems in which it is
helpful., 1In fact, there is just one case of the Nakayama Conjecture
needed for a Theorem in this book, and we prove this now:

21,12 LEMMA If n is odd, 8™ ana s 1+1) .ic in different 2-blocks
of Grm'

Proof: Let m = (1 2)(3 4)...(n-2,n-1), Then | énl is odd, where 6

is the conjugacy class of G%I containing . But X(n)(ﬂ) = 1 and

x(n-lyl)(ﬂ) = 0, by Lemma 6.9. Therefore,

6,1 x™ @ | 6,1 x{*7 2 ()
T &) E w =T mod 2,
X (1) X O}
General theory (see Curtis and Reiner [2], 85.12) now tells us that
S(n) and S(n-l'l) are in different 2-blocks.

The proof we have given for the Murnaghan-Nakayama Rule has been
designed to demonstrate the way in which skew-hooks come into rlay.
The Rule can also be deduced from the Determinantal Form, and we conclude
this section with an outline of the method.

21.12 LEMMA Suppose that 7p E‘gx where p is an r-cvcle and 1 is a

permutation of the remaining n-r numbers. Let (“1127""LP.) be a

partition of n. Then

n

L X
i=1

Xru1]ru2]...[un](ﬂo) - Ty Mg deeeCugy I0ng=rI0uy41 deeelund gy
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Proof: x[ulj"'[un]

n

= igl (the number of u~tabloids fixed by w in which all the numbers

moved by p lie in the ith row), since a u-tabloid is fixed bv p if and

(mp) = the number of u~tabloids fixed by mp

only if each orbit of p is contained in a single row of the tabloid.
n
Xl (the number of (ul,u?,...,ui_l,ui-r,ui+l,...,un)-tabloids fixead

i=
by )
(1), as we wished to show.

i

3 MATHIS TR PRSI BT EES ISTTFE R PP TR
i¥1

As usual, [k] is taken to be zero if k < O, and xo(v) = 0,
21.14 EXAMPLE (cf. Example 21.,2(i)). Suppose that mp € Gl3 where
p is a 5-cycle and 1 is a permutation of the remaining 8 numbers. Then

{5,4,4) [51 (61 [71]
X (mp) = the character of [3] [47 5] evaluated at mp, bv the
(77 [3] [4] Determinantal Form
(01 (17 (2] [51 [61 (7] (51 (61 {71
= £31 (4] [5] + [-2]1 [-1] (O] + [31 (41 (51 at w, by
(21 £37 4] [21 (31 [4] [-3] [=-2] [-1]1 Lemma 21,13
[3]1 [41 15) (51 (61 [7]
= [21 (37 [4] - [21 [31 [4) at T
(01 [11 [2] [-21 [-1]1 [0O]

((303:2) _(5,3,0

( ){(m), by the Determinantal Form.

By inspecting the above example, the reader will see what is required
to prove the Murnaghan-Nakavama Rule from the Determinantal Form, and
should have no difficulty with the details.
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22 BINOMIAL COEFFICIENTS

In the next couple of sections, we shall put our mind to the repre-
sentations of Gn over a field of finite characteristic p. Many of the
problems which arise depend upon deciding whether or not the prime p
divides certain binomial coefficients, and the relevant Lemmas are

collected in this section.

22.1 DEFINITION Suppose n = n
O < n, < p and n,# O. Then let

r .
+ + ... + wher for each i
° n;p . n.p ere, '

i
(1) v,(n) = max {i|nj =0 for j < i}
(i1) op(n) =ng +n; t+ ...+,

(iii) lp(n) =r + 1,
For a positive rational number n/m, let vp(n/m) = vp(n) - vp(m). We do

not define vp(o), but we let op(o) = lp(O) = 0.

22.2  LEMMA v (ni) = (n - op(n))/(p - 1).

Proof: The result is true for n = 0, so we may apply induction. If
n = pY, then v_{(pF-1)!} = (pF¥-l-rr+r)/(p-1), by induction, But vn(pr!)
= r+v“{(:r~l)!} = (p*=1)/(p=1), and the resnlt is true in this case.

& 1
Assume, therefore, that O < n—pr < pr+‘

- pr. Since vp(pr+ x) =
r+l r
- pf,

vp(x) for O < x < p

vp{n(n-l)...(pr+ 1} = vp{(n—pr):} .

[

Therefore vp(n!) vp(pr!) + vp{(n - p5) !}

= (" - 1+n=-p" -0 (n) +1)/(p-1),

by induction, and this is the required result.

22,3 LEMMA Assume a 2 b > O. Then vp(s) < lp(a) - vp(b).
Proof: We may apply induction on a, since the result is true for
a =1,
If p| b, let ' = b/p and a' = (a-ao)/p, where O < a, < p and
a = aj modulo p. Using the last Lemma, we have
a ;
v () = + - - -
plp) = log) + o (a-b) -0 (a)}/(p - 1)
= {0 ! + [ § - t -
o' + o (a’=b") o (a Y/ (p - 1)
- a'
= vp(b.).
a' ' . . =
But vp(b.) < lp(a ) - vp(b'), by induction, and lp(a) = lp(a') + 1 and

N Ly a _ . .
VP(D) vp(o ) + 1, so vp(b) < lp(a) vp(b), in this case.
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Now suppose that vp(b) = 0. Since (g) = a+g-l (bfl),
vo(g) = v (a=b+l) + vp(bfl).
Because the result is true for b = 1, we may assume that b > 1, and
Vp(bfl) < 1p(a) - vp(b-l). Hence, unless vp(a-b+l) > 0,
volp) < 2 (a).

But if vp(a-b+l) > 0, then

a _ a _ -
vp(b_l) = "p(a-b+1) < 1p(a) vp(a b+1),
by the first paragraph of the proof. Therefore, vp(g) < 1p(a) = Qp(a)

- Vp(b) in this case also.

22.4 LEMMA Assume that

r
a=a t+tap+...*+ap (0 < a; < p)

_ ; r
b = bO + bp + . T+ brp (O < bi < p).

a, - ,ag,,a; ay . I a
Then () = (bolibl) e (br) modulo p. In particular, p divides (;)

if and only if aj S—bi for some i.

Proof: As a polynomial over the field of p elements, we have
r
(x+1) % = (x+1) %0 (xP+1) %L ., (xPT+1) %r |

Comparing coefficients of xb, we obtain the result.

22.5 COROLLARY Assume a 2 b 2 1. Then all the binomial coefficients

(g),(g:i),...,(a—?+l) are divisible by p if and only if

a=b = -1 mod plp(b).

Proof: By considering Pascal's Triangle, p divides all the given
binomial coefficients if and only if p divides each of

a~b+1 a=b+1 a-b+1

S I A I A P

Then the last sentence of the Lemma gives our result.
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23 SOME IRREDUCIBLE SPECHT MODULES

The Specht module s¥ is irreducible over fields of characteristic
zero, and since every field is a splitting field for Gn, s is irre-
ducible over field of prime characteristic p if and only if it is
irreducible when the ground field has p elements, This then, is the
case we shall investigate and, except where otherwise stated, F is the
field of order p in this section. The complete classification of irre-
ducible Specht modules is still an open problem, but we tackle special
cases below.

(s",s") = F, rThen s" is irreducible

23.1 LEMMA Suppose that HomFe,
n
if and only if s¥ is self dual.

Proof: If s is irreducible, then it is certainly self-dual (since its
modular character is real.)

Let U be an irreducible submodule of Su. 1f s” is self-dual, then
there is a submodule V of sM with Su/V = U. Since

st » sfv s U
canon iso
gives a non-zero element of homFG (Su,Su), we must have U = Su, so sV
is irreducible,

The hypothesis Homp, F G, (s ,Su) = F cannot be omitted from this Lemma
(see Example 23,10(iii) below), but Corollary 13.17 shows that the
hypothesis holds for most Specht modules.

Before applying the Lemma, we want a result about the integer gu
defined in 10.3 as the greatest common divisor of the integers
< € rCx >'  where ey and €% are polytabloids in S (u' being the par-

tition conjugate to p, and < , >' being the blllnear form on Ma Y
Remember that Ky = L (sgn m)m., Let p,_ = I m.
t
nect neRt

23.2 LEMMA Let the ground field be @, and t be a u~tableau. Then

(i) The greatest common divisor of the coefficients of the tabloids
[]
involved in {t}Ktpt is g% .

and (ii) {t}Ktpth = I (hook lengths in [ul) {t}Kt;

]
Proof: (i) By definition, gu = g.c.d. < Cir€, T >' as the permuta=-
tion nvaries. But
]
SGn T < epis@p T > = sgn w < {£'},{t Ik Mk, >
= L {sgnm sgno sgn1t|o, T € Cirr 0T T € Ry, }
= l -l

L {sgn o |t eCieyw ™l a™te Cerr w € Ryl
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Z {sgnw |t eR wt ol R, weC_}

t 14

< {t},{t}Ktpt a1

W

< {t}n,{t}Ktpt >

and result (i) follows.

(ii) Corollary 4.7 shows that {t}x = C{t}Kt for some c ¢ Q.

p K
t't 't
To evaluate ¢, it is best to consider the group algebra @ Gn. (See the
remarks at the end of section 4). We have pthpth = Cpth .

The right ideal Q.Gn of a i (which is isomorphic to s") has

P K
t°t
a corplementary right ideal U, by Maschke's Theorem.

Multiplication on the left by P LK gives a linear transformation of

t

a Gn. Taking a basis for P LK Q @n’ followed by a basis of U, this

t
linear transformation is represented by the matrix

dim s™

On the other hand, taking the natural basis {m|m ¢ Gn} for @ G,
the linear transformation is represented by a matrix with 1's down the
diagonal, since the identity permutation occurs with coefficient 1 in
the product Pk

A comparison of traces gives ¢ dim s¥ = n! By the Hook Formula for
the dimension of Su, c = [l (hook lengths in [ul).

Since {t}Ktp T = {tn}Kt Peqe the first part of the Lemma and Coro=-

t m
llary 8.10 show that we may give:

23.3 DEFINITION Suppose that F is the field of p elements. Let O be
the non-zero element of Hom.F‘5 (Mu,su) given by
n
1
6:{t} » (—E- {t}Ktpt)p
g
where this means that the image of {t} is obtained from the vector
iﬁ' {t}Ktpt in Sz’by reducing all the tabloid coefficients modulo p.
g
23.4 THEOREM
(i) If Im O c Su, equivalently if Ker 0 o Sul, then s" is reducible.
(ii) If Im 0 = Su, equivalently if Ker 0 = Sul, and if
EQﬁ&.Gn(Su,Su) = F, then s" is irreducible.
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Proof: If F = @, the the homomorphism ¢ defined by

I
{tle = gu {the oy
sends {t}Kt to a non-zero multiple of itself, by Lemma 23.2(ii). There-
fore dim Ker ¢ = dim S;l , and by the Submodule Theorem, Ker ¢ = Szf.

By Lemma 8.14, Ker O > Sul, when we work over the field of p elements.
s*t if and only if Im 0 c s¥.
The first part of the Theorem is now trivial, since Im O is a proper

Therefore, Ker 0 »

submodule of S" in this case.
If Ker 0 = Sul, then 0 gives an isomorphism between Mu/sul and s,

and result (ii) follows from Lemma 23.1.

23.5 THEOREM Suppose that py is p-regular. Then s¥ is reducible if

and only if p divides the integer
L}
{Il (hook lengths in [ul)}/g¥

Proof: The last Theorem and Corollary 13.17 show that s¥ is reducible
if and only if Ker 0 > s"l. But, since p is p-regqular, Mu/sul has a
unique minimal submodule (s* + s¥!)/s"! (by Theorem 4.9). Therefore,
s¥ is reducible if and only if Ker 0 > sV .

_ 1
But {t}Kt e = (§u.{t}Ktpth)p

(H(hook leng?hs in [pl) {t}Kt)
g P
by Lemma 23.2 (ii). Since s¥ is a cyclic module, s¥ is reducible if

and only if p divides the integer [I(hook lengths in [ul).
)

gu

23.6 EXAMPLES (i) If p does not divide TM(hook lengths in [u]), then
(u is p-regular and) s¥ is irreducible. This is just the case where u
is in a block of defect O (cf. The Hook Formula).

(ii) If both u and u' are p-regular, then from Corollary 10.5, p
does not divide gul. Thus SY is reducible if and only if p divides
Il (hook lengths in [ul). For instance, s" is reducible of u = ((p—l)x)
where 1 < x < p.

(iii) If w = (3,2) and t =1
4

that {t}Ktpt =
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The g.c.d. of the edge coefficients is 4, so gu' = 4, But the pro-
duct of the hook lengths in [(ul] is 24, so s¥ is reducible if and only
if char F = 2 or 3. When char F = 2, {t}© is the vector called T in
Example 5.2, and when char F = 3 ,{t}0 = -I'(-4) - T'(-5).

23.7 THEOREM Suppose that W is a hook partition, and let s" be defined

over the field of p elements. Then sY is irreducible if and only if

one of the following holds:
(1) p=(n) or 1M

(ii) pt+ nand y = (n-1,1) or (2,ln_2)

(iii) p ¢ n and p = 2.

(n) (1n)

and S
ducible. Thus, we may assume that p = (x,1¥) with x > 1, y > O and

Proof: Since S have dimension 1, they are certainly irre-

Xx +y =n.

1 (y+2) ... (y+x)
Let t = 2
(y+1)
and let E; = L {sgn 0)o | o ¢ 6%2'3'...'y+1}}. Then
ke = (1 - (12) - (13) - ... - (1,y+1))Et .

For the moment, work over @. Then

{t}Ktoth = {t}Kthpt = y!{t}KtDt
Therefore,
1] —-— - — =
y.{t}Ktpt(l (12) . (1,y+1)) {t}Ktpth
= II(hook lengths in [uJ){t}Kt, by 23.2
= (x - 1! y!(x+y){t}'<t .
1
But gu = (x - 1)! by Lemma 10.4, and so

iu.{t}xtot(l - (12) = .om (L (y*D) = (ehy) {edey

Let © be the homomorphism of definition 23.3. Then
{t} (1 - (12) - ...-(1,y+1))0o = (X+y){t}Kt,
where we are now working over the field of p elements. This shows that

if p/ n, Imo = sH . Therefore,

23.8 If p4 n, s(x/1¥) 4o self-dual.



93

But Homp o (Su,su) X fp if p# 2 or if y = (n-1,1), by Corollary
13.17. Using Permma 23.1, s is irreducible in the cases where p tn
and p = 2 or p = (n-1,1) (also when u = (2,1n—2), by Theorem 8.15).

Next suppose that p | n. Then
{t}(1 - (12) - ...—-(1,y+1l)) € Ker ©

(y+x) (y+x = 1)...(y+2) 1
. 2
Let ¢ = .
(y+1)
Since x > 1, all the tabloids in e , have 1 in the first row. Hence
{t} = {t*} is the unique tabloid involved in both e s and
{£¥ (@ - (12) - ...~(1l,y+l)), and so

< {tIl - (12)-...~(l,y*1)), e o > = 1.

Therefore, {t}(l - (12) = ...~(1,y+1))c Ker © \ s"', and Theorem 23.4
proves s¥ is reducible in this case, where p | n.

Finally, we prove that s" is reducible when p = (x,1Y) with x > 1,
y > 1 and p = 2. By Theorem 8.15, we may assume that x z y. Observe
that

[x1[yl = [x+y]l + [x+y-1,1] +..+[x,y]
and  [x101Y1 = [x+1,2Y711 + [x,1¥1
y
by the Littlewood-Richardson Rule. But when p = 2, x(y) and x(l ) are

the same 2-modular character, and thus
-1 y -
X(x+1,1Y ) 4 X(x,l) - X(x+y) + X(x+y LY, .4 X(x,y)

as a 2-modular character, Whence, by induction,

X(x,ly) (k) ,  (x42,y-2) ,  (x+d,y=4)

=y + + + .

(x,1Y)

and so x is certainly a reducible 2- modular character.

Remark: The last part of the proof shows that
(n),(n-2,2),(n-4,4),... are in the same 2-block,

and (n-1,1),(n-3,3),(n-5,5),... are in the same 2-block of
Gh (see Theorem 21.9). When n is even, all the 2~part partitions of
n are in the same 2-block of Gn’ since Example 5.1 proves that (n)
and (n-1,1) are in the same 2-block (see also, Example 21.10). When
n is odd, the 2-part partitions of n lie in two different 2-blocks,
since Lemma 21.12 shows that (n) and (n-1,1) are in different 2-blocks.

Theorem 23.7 will help us in our first result in the next chapter
1
on the decomposition matrices of Gh. For hook partitions, gu 18 easy

to calculate; unfortunately, this is not the case for other types of
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partition, for example:

23.9 LEMMA If y = (x,y), then

1

g = y! g.c.d. (x! (x=1)1!1, (x-2)120 ..., (x=y)lvil

Proof: Let tl and t2 be p'-tableaux. Let

Xij = {k]k belongs to the ith column of t and to the jth column of
. t,}
!
X1 Y X X101 Y X % v x
X, u X 12 22
1721 22

[}
The polytabloids e and etz in s¥ have the tabloid {t3} in common

t; Q
if an only if no two numbers from any one of the sets X113 v %o

i . A
x21 U x22, xll v le, x12 U x22 are in the same row of {t3} ny row
of {t3} must contain a number from X2 and a number from x21 or no
numbers from X u X

Therefore, < eg r€ey > =0 unless |X
| x

12 21" 12l =
21"

Suppose now that |x12| = |x211. The tabloid {t;} is common to etl
and et2 if and only if each of the first Yy rows of {t3} is occupied
by just one number from x21 u x22 and each row containing a number from
X21 contains a number from x12' Thus, et and et, have
y! |X12[l (x - |X12|)! common tabloids.

Assume that the tabloid representative t3 for the common tabloid

{t3} has been chosen such that ty = tym, for some T, in the column sta-
bilizer of tl' Let ¢ be the permutation in the row stahilizerof t

interchanging each number in x12 with a number in X

21" leaving the3other
numbers fixed. Then t3c = t2v2 for some T, in the column stabilizer of
t,, and sgn o = (-l)lle[. Therefore, t, mo w;l = t,, and (sgn wl)
(sgn m,) depends only on t) and t, and not on {t3} . But {t3} = {tl}ﬁl

= {tz}wz, and hence
< etl, etz > = 1y: 'x12|: (x - lezl):

)
By definition, gu is the greatest common divisor of such integers,

and, since 0O < IX12| < Yy, the Lemma is proved.

23,10 EXAMPLES

(1) If u = (5,2), then g* = 2! g.c.d.(5!,4'1!,3'2!) = 2%,3. But
I(hook lengths in [wl) = 2%,32,5. Therefore, s¢°/2) jig reducible if and
only if the gramd field has characteristic 3 or 5.
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(ii) Similarly, s¢®3)

is reducible if and only if the ground field
has characteristic 2 or 5.

2
(iii) If p = 7, st3/1)

field have characteristic p = 2. Then the first exam?le proves S

is irreducible, and Example 21.8(ii) shows that S(S;l )
(5:2) 149 5D gince s(5/1%)

(5,1%)

is self-dual, by 23.8. Now let the ground
(5,2)
has composition
factors isomorphic to S is self-dual, these
factors can occur in either order, and so S is decomposable over a

field of characteristic 2.

The last Example prowes that the hypotheses cannot be omitted in
13.17, 13.18, 23.1 or 23.4.

23.11 DEFINITION The p-power diagram [uiP for u is obtalned by rep-

lacing each integer hij in the hook graph for u by vp(hij).

23.12 EXAMPLE If u = (8,5,2), then the hook graph is

109 765321
6 5321
21

¢

010100
100

[}
[
o]

and {uj]?

10010010
10010
10

and {nJ?

We now classify the irreducible Specht modules corresponding to
2-part partitions.

23.13 THEOREM Suppose u = (X,y) is p-reqular (i.e. if p = 2, we assume

X # y). Then s" defined over the field of p elements, is reducible if
and only if some column of [u]p contains two different numbers,

Proof: The hook lengths hij for [u] are given by

hlj =x -3+ 2 for 1 < j <y
hlj =Xx -3+ 1 for y < j <
h2j =y -3 +1 for 1 < j < vy.

If there is a j with vp(hlj) z vP(h consider the largest j with this

230
property and let vp(hzj) = r. Then j + pr < y+ 1 and

r
= j < i j +
vp(hli) \Y (h2i) < r for j + 1 <1 < 3 P
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But {hlilj <1< 3+ pr} is a set of pr consecutive integers, so

= ). si . h X - j+2) >
vp(hlj) 2 r vp(hzj) Since vp(h ) = vp(hzj), we have vp( j+2)

1j
vp(y - j+l). Writing b = x - j+2 and noting that vp(b) > vp(b - x+y - 1)
if and only if vp(b) > vp(x - y+1l), this proves

23.14 some golumn of [x,y1P contains two different numbers if and only
if there is an integer b with x - y+2 < b < x+1 and vp(b) > vp(x ~ y+1).

Now, Il(hook lengths in (x,yl) = (y!(x+1)!)/(x - y+l) and
!
g = y! g.c.d.{x!, (x - i1, ..., (x - y)ly!} by Lemma 23.9, so Theorem

23.5 proves that Su is reducible if and only if p divides

x+1

X X X
X - y+1 lecome L0, (2 veeen (I

x-1 X=y

since (x+1) (,*) = b(Xh

23.15 S(x,y) is reducible if and only if there is an integer b with
b X+1
X Y+l < b < x+1 and\)p{x_—m(b)}>0.
Comparing 23.14 and 23.15, we see that S(x’y)is reducible if some
column of Cx,y]P contains two different numbers.
On the other hand, suppose that no column of [x,y]p contains diffe-
rent numbers. Then, for every b with x - y+2 s b < x+1,
v _(b) s v - y+1).
p( ) p(x y+1)

Let _ _ r r+l ]
b4 y+l = ap +a .4p + ... 4+ agp
(O =< ai < p, ar 2 0 = as).
Then x - y+tl < (a + pttt o+ a_ ptt2 + a p°
r+l r+2 e s

r+l S .
and \)p((ar+l + 1l)p + ...+ a.p ) > vp(x - y+l). Thus our supposi

tion gives x+1 < (ar+l + l)pr+l + ...+ asps. Therefore

- r r+l s
X+1 = S5 + clp + ...+ crp + a 1P + ... + asp

(Osci<p)
and if x -y + 1 < b s x+1, then

b=bpd+pn pItl 1

r r
q q+lp + ...+ brp + ar+lp

]
+ ... + a
gP

(0 <by <p, b =0).

Therefore, - n q-1 q r
X+1 b = co + clp + ... + Cq-lp + dqp + .. + drp

(0 <d; <p)



. r . r _ q - - r
wnere dqpq + ...t drp cqpq +...+ Cp bqp . oo brp
By Lemma 22.32,
x+1
v = {o_(b) + o _(x+1 -~ b) - o (x+1)}/(p - 1)
p( b ) { b b p /(p
= (bq + ...t b+ dq + ...+ dr - cq - ee. - cr)/(p - 1)

= d r
vp (qu + ...+ c.p )

q r

bqp + ... + brp

A

r - q, by Lemma 22.3 (since b_ =z 0)

q
= - y+l) - b) .
vp(x y+1) vp( ) .
Therefore, for x - y+l < b s x+l, vp{;—:gy;f (xg )} =0

and S(x,y) is irreducible,as required.

23.16 EXAMPLE S(Zp-l,p) is irreducible over the field of p elements
if and only if p = 2 (cf. Example 23.10). This is interesting because

an earlier author believed, apparently on the evidence of the case p = 2,
that s(2P71/P)
(3p-1)

always has two composition factors, one being the trivial

module D (2p-1,p)

Since dim S z 1 mod p?® for p odd - this follows
from the Hook Formula - the mistake would have provided counterexamples
to a conjecture of Brauer which states that vp([G[/dim D) 2 O for each

p-modular irreducible representation D of a group G.
R.W. Carter has put forward

23.17 CONJECTURE No column of [qu contains two different numbers if
and only if y is p-~regular and s¥ is irreducible over the field of p
elements.

It is trivial that [u]p has a column containing two different numbers
if u is p-singular. The author [1ll] has proved that the given condition
is necessary for a p-regular Specht module to be irreducible, and has
proved it is sufficient in the case where p = 2.

Over the field of 2 elements, it turns out that S(x,x)
if and only if x = 1 or 2 (This is the only 2 part partition not consi-
dered in Theorem 23.13). We conjecture that (2,2) is the unique parti-

tion y such that s is irreducible over the field of 2 elements but

is irreducible

neither y nor u' is 2-regular.



24 ON THE DECOMPOSITION MATRICES OF @n

There is no known way of determining the composition factors of the
general Specht module when the ground field F has characteristic a prime
p. Thus we cannot decide the entries in the decomposition matrix of
<§n, which records the multiplicity of each p modular irreducible repre-
sentation DA (A p-regular) as a composition factor of s¥, except in

some special cases. The theorems we expound give only partial results.

24.1 THEOREM (Peel [18]) Suppose p is odd.

(i) If p 1 n, all the hook representations of (Sn remain irreducible

modulo p, and no two are isomorphic.

(ii) If p | n, part of the decomposition matrix of (Sn is

(2,172 O 1

(™M

Proof: The result is true for n = O, so we may assume that it is true
for n - 1. Note that

Yy y-1
X(x,l) e X(X.l )

o o (x-1,1Y)
n-1 X

+ if x>1,y >0,
x+y = n.
Case (i) p does not divide n.
In view of Theorem 23.7, we need prove only that no two hook repre-
sentations are isomorphic. But this follows at once, since they have

non-isomorphic restrictions to tSn_l.

Case (ii) p divides n. v
Suppose x > 1, y > O. Then by restricting to G;-l’ x(x’l ) has at

most two modular constituents, and therefore precisely two, by Theorem

23.7. Let ¢; be the modular constituent of x(x'ly) satisfying

-1
+ - (x=1,1Y) - e - o (x,1Y7h
o+ Gy =X and ¢, be that satisfying ¢  + G;n-l = oy !
(and let ¢; = 0 and ¢I = 0). We must show that for every x, ¢;_1 = ¢; H

no other equalities can hold because there are different restrictions
to Gn-l'
The following relation between characters holds on all classes

except (n), in particular on all p-regular classes:
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- - 2 n
X(n) - X(n 1,1) X(n 2,1%) . X(l )

+ = 0.

(This comes from Theorem 21.7 or direct from Theorem 2l1. 4, by using the
ordinary character orthogonality relations).

In terms of modular characters; we have

+ - + - + -

¢, - (¢n—l + ¢n—l) + (¢n—2 + ¢n—2) T oeeet $; = 0.
X-1
this relation, contradicting the fact that the modular irreducible

If some ¢ were not equal to ¢;, then ¢;_1 would appear just once in

characters of a group are linearly independent.

From now on, we shall label the rows of our decomposition matrices
by partitions, and the columns by p-regular partitions. Thus the entry
in the puth row and Ath column is the multiplicity of DA as a composition
factor of s¥ over a field of characteristic p. Omitted entries in
decomposition matrices are zero. We write xu for the p-modular character
of s¥ ana ¢A for the p-modular character of DA.

24.2 EXAMPLE When p = 3, the decomposition matrix of GS is

(5) (4,1) (3,2) (3,1%) (22%,1)
(5) 1
(4,1)
(3,2)
(3,1%) 1
(22,1) 1 1
(2,1%)
(1%) 1

-
(=

Proof: The rows corresponding to (5), (4,1) and (3,1%) come from
Theorem 24.1.

Taking [v] = [2] and r = 3 in Theorem 21.7, we find that

2 3
(3) -y 25 + X(2,l ) = 0O on 3-regular classes.
But x(s) ?nd x(z’l ) are irreducible and inequivalent, by Theorem 24.1.
Thug, x(z 1) has precisely two factors. Since one of these must be
62" /1) | it follows that
2 2
(25D ) (22,1
3 2
ana  y(2/1%) _ %1

The rest of the matrix is similarly deduced from the equation:

15 3,2 4,
X( ) _ X( ) X( 1)

+ = 0 on 3-regular classes.

24.3 EXAMPLE When p = 3, the decomposition matrix of G% is that
given in the Appendix.
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(4,2) (22,1%)

Proof: First note that x are irreducible by Example
23.6(1) .

By Theorem 24.1, part of the matrix is

and x

(6) (5,1) (4,1%)

(6) 1

(5,1) 1 1
(4,12) 1
(3,1%)

(2,1%)

(1%)

Applying Theorem 21.7, with r = 3 and [v] = [3] [2,1] and [1%] in
turn we get,

L8 4 37 32,1 3017
LB 3T @) (21
X(4,12) _ X(3,2,1) + X(z’) + X(l") =0
on 3-regqular classes. These equations, together with
L8 _ (5,0 L 41 (3,10 (2,1 L (f)

enable us to deduce that the remaining two columns above should be
labelled (3,2,1) and (32 ), respectively, and the equations let us write
(3 ) (3 2,1) and x(2 ) in terms of ¢(6), ¢(5’1), .es, in the way

shown in the complete decomposition matrix in the Appendix.

Note that Examples 24.2 and 24.3 have been computed without using
the Nakayama Conjecture, and without resorting to induction (except
where it is implicit in Theorem 24.1). We agree that it is quicker to
deduce the decomposition matrix of G% from that of G% using the Bran-
ching Theorem and block theory, but this traditional method of finding
decomposition matrices fails to determine the factors of S(2p—1,p),
even for p = 2 (cf. Example 23.16), and very rapidly leads to further
ambiguities.

It seems to us that if a method is eventually devised for finding
the decomposition matrices of Gh, it will include information concerning
the order of the factors of each Specht module, as well as the multipli-
cities of the composition factors. For this line of attack, the most
useful Theorems we know are Theorem 13.13, giving a basis of Homp G,

(s ,Uu) and Corollary 17.18, describing s as a kernel 1ntersectlon.

It is unfortunate that these two results look rather ugly, and that the
notation which has to be used obscures the simplicity of their applica-
tion, but we embark upon the task of employing them.

We return to the notation of section 13, where M" is described as the
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space spanned by A-tableaux of type u. The remarks following 17.8 and

17.10 show that the homomorphism LT acts on M" by sending a tableau
(4

T to the sum of all the tableaux obtained by changing all but v (i+l)'s

to i's.

e.qg. wl,l 11122 , 11111 11112 _ 11121

233 233 133 133
The first result we prove could be subsumed in Theorem 24.6, but we
present the special case to help the reader become familiar with the
relevant ideas.

24.4 THEOREM Over a field of prime characterigtic p, s¥ has a sub-
(n) if and only if for all

module isomorphic to the trivial Gn—module S

1418

i, By = -1 mod pﬁ- where 2, = £Piu

Proof: By Theorem 13.13 (or trivially) there is, to within a scalar
(n),Mu)' T is the semi-
standard (n)-tableau of type u, and O sgnds {t} to the sum of the (n)-
tableaux of type u .

(3,2), then

{t}OT =11122+11212+11221+121l1l2+12121*+
12211+21112+21121+212111+22111.

multiple, a unique element O in Homp ¢ (s

e.g. if y

Now, the crucial step is that when Tl is an (n)-tableau of type
(”1’”2""'”1—1'“1 + Mis1 v,v,ui+2,...) there are

(“1 LTS V)
Hivh — Y

tableaux row equivalent to T in which all but v (i+l)'s can be changed
to i's to give T1
e.g. 11111 comes from (g) tableaux above, by changing all the 2's
tol's, andeachof 11112,11121,11211, 12111,

21111 comes from (i) tableaux by changing all except one 2 to 1l.

Wi41-1
Therefore, {t}eT belongs to ﬁﬁ ker y, _ if and only if each of
14

=0
(“i * “1+%) ' (“1 tHia T 1) e (“1*1)
Mis1 Higp — 1 :
is divisible by p. This is equivalent to ¥y # -1 mod pzi where

zy = Ep(“i+l)' by Corollary 22.5. Thus, Corollary 17.18 shows that
{t}eT belongs to s¥ if and only if this congruence holds for all i = 1.

(8,2,2,1)

24.5 EXAMPLES (i) S contains a trivial submodule if and only
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if the ground field F has characteristic 3.

(ii) S(5’2) does not contain a trivial submodule if char F = 2.

(p=1,p=1,.../P71iT) Gitains a trivial submodule if char F = P

p—l—r) is the partition
u' conjugate to p = ((p - l)x,r) Since HomF g (S( ),Su) z O, and

s¥ @ S(ln) 13 isomorphlc to the dual of Su it follows that

Homg &, (Su ,S(l )) # O. By constructlon, Su is p-regular, s? u' is the
(M (Remember that DM is the

(iii) s
and r < p. Write n = x(p - 1)+r. Then ((x+l)r X

unique partitlon of n such that DV = s

unigue top composition factor of Su ). Compare Example 24.2, where
g(1%) = ;(3,2)

(iv) Consulting the decomposition matrices in the Appendix, we see
that S(4’2)

not have a trivial bottom composition factor, by Theorem 24.4.

has a trivial composition factor for p = 2, but S(4’2) does

It is interesting to see that for any given A and u, we can use
Theorem 13.13 and Corollary 17.18 to determine whether or not
Hon@-sn(sx,su) is zero (except in the rather uninteresting case where
char F = 2 and A is 2-singular), for we may list the semistandard homo-
morphisms from Mx into M" and then test whether some linear combination
of them sends {t}Kt into the kernel intersection of Corollary 17.18.
This is a tedious task, but not altogether impossible, even for fairly
large partitions. For example, after a little practice on small parti-
tions, the reader should have no difficulty using the technique of Theo-
rem 24.6 below to prove that Honq\gn(sx,s(lo'5’3’))= O when char F = 3
and A = (16,2), (13,5) or (10,8). Using the Nakayama Conjecture, this
proves that S(10'5’3) is irreducible over fields of characteristic 3
(cf. Carter's Conjecture 23.17).

When applying Theorem 13.13 and Corollary 17.18, we are usually
interested in the case where Sx is p-regular, since then Homp Gn(sx,su)
# O implies that Dx is a composition factor of s¥ . Unfortunately, a
completeclassification of the cases where Homp @ (SA,Su) is non-zero is
not sufficient to determine the decomposition matrix of Gi; in
Example 24.5(iv) D(s) (4,2)
ents, but Homgp ¢n(s

is a factor of S
(6) .(4,2)
'S )

over the fleld F of 2 elem-
= 0. Even so, sometimes a modification
of the method is good enough to classify all the composition factors of
Su; see Theorem 24.15 below, for example.

In section 13 we saw that there is much choice in the way we define
a semistandard A-tableau of type pu. It turns out that it is often most
useful to consider tableaux where the numbers are non-increasing along
the rows and strictly decreasing down the columns; we shall call such
a tableau reverse semistandard. The second part of the next Theorem
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probably classifies all cases where there is a reverse semistandard
horomorphism in HomF‘gn(SA,Su). When considering linear combinations
of more than one semistandard homomorphism, the situation becomes

horribly complicated.

24.6 THEOREM Assume that A and u are (proper) partitions of n and
that char F = p. Suppose that T is a reverse semistandard A-tableaux

of type Y, and let Nij be the number of i's in the jth row of T.

2 -
(1) If for all i 2 2 and j 2 1, N -1 mod p *J where

£

1-1,3
= H AL
éij = 2F(Nij), then 6q belongs to Homp(gn(M ,S") and Kir BT c 8§ .
(1) If foralliz2andj 21, N, ) sZ-lmodp 13 yhere
. 11 — il o _
by = mln{zp(Nij), L by (Aj+m—l —s£j N g))}, then 6, is a non-zero

element of Hon@.gn(sk,su).

Proof: Since T is reverse semistandard, Ker 65 3 SA by Lemma 13.11
and the Remark following Corollary 13.14. Therefore, Ker eT < SAL
by the Submodule Theorem.

Let t be the A-tableau used to define the GSn action on MY. Then
{t}eT is, by definition, the sum of the A-tableaux of type u which are
row equivalent to T.

Let 1 2 2, 0 £ v g My - 1. Since,cf1 Nij = Uy, we may choose
J:
VirVyree. such that O < vj < Ni' for'each j and £ v. = v. Choose a

tableau Tl row equivalent ¢o T, and for each j change all except v. i's
in the jth row of T1 into (i-1)'s. Let T, be the resulting tableau.
By definition, each tableau T, involved in {t}eTwi_l v is constructed

I

i . ;
n this way, and T2 appears in {t}eT wi-l,v from
pd N. .+ N.. = v,
jgl( i-1.3 +J J)
N,. —- v.
1) J

different tableaux row equivalent to T.

Since LI N,. = yu, > v = v., there is an integer k with
iy 1D i i J
Jj=1 j=1
0O < vk < Nik
If for all j N . % -1 mod paij then
i-1,3
(Nl—l,k * Ny Vk)
Nik = % /

is divisible by p, by Corollary 22.5. Thus if the hypothesis of part (i)
of the Theorem holds, Corollary 17.18 proves that MAGT < s¥ as reguired.
Under the hypothesis of part (ii), it again follows that
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{they Vio1,v does not involve T,, except if

i=-1 ®
N -v,. > (A 1 = L N__) .
ik k m=1 k+m=-1 g=kx M8

o

But form < i - 1, T, has I Nms numbers equal to m in rows k,k+l,...
sS=

since T2 hgs come from a tabEeau row equivalent to T. Similarly, T

at least I
s=k

2 has

Ni-l,s + Nik - Ve numbers equal to i - 1 in rows k,k+l,...,

since Nik - Yy i's have been changed to (i-1)'s in row k. Altogether,
therefore, T2 has at least

i=-1
N,, - v, + z I N
ik k m=1 s-k M8
numbers less than or equal to i~1 in rows k,k+1,... . If we assume

i=l

that this excedes LT it follows that some column of T2 cont-

- k+m-1"'
ains two identical %ﬁ%bers. Therefore, T2 is annihilated by Ke o This
shows that in part (ii) of the Theorem, {t}@Tw Kk, = 0 when i = 2

i-1,v "t
and 0 <€ v < u; - 1;  thus, {t}KtGT belongs to SH, as we wished to prove.

Since MA/SAL is isomorphic to the dual of Sx, and SA n SAL is the
unique maximal submodule of SA when A is p-regular we have

24.7 COROLLARY Under the hypothesis of part (i) of Theorem 24.6, every

composition factor of Sx is a composition factor of s¥. Uunder the

second hypothesis, DA is a composition factor of s if A is p-regular.

There are very many applications of Corollary 24.7. We give just
one, but we shall use the Corollary again later to find all the compo-

sition factors of Specht modules corresponding to 2-part partitions.

24.8 EXAMPLE (cf. Example 24.3). Let u = (3,2,1) and char F = 3.
Then all the factors of S(S’l) are factors of Su; take T =3 2 2 11 .
2 1
D(3 ) is a factor of Su; take T = 3 2 2
111
2
D(4’l ) is a factor of Su; take T =3 211
2
1
Theorem 24.6 also gives
24.9 COROLLARY If for all i > 2, y,_, = u; = -1 mod p°l where

2z = Lp&ui :—Ei+l), then Su is irreducible over a field of characteristic

B

Proof: The unique reverse semistandard u-tableau T of type u has

Nig = Hitg-1 7 Hisg
24.6 show that ©,, belongs to Hom (MU,SU) and Ker o_ < sMt
T FGp, T =

. Our hypothesis and the first part of Theorem
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By dimensions, MU/Sul z s¥. The parts of py must be strictly decreasing,

so U 1is certainly p-regular. The result now follows from Lemma 23.1.

When p = 2, it is straightforward to verify that the hypothesis
of the above Corollary is equivalent to the statement that no column
of the 2-power diagram [ul? contains two different numbers; cf. the
comments following the Carter Conjecture 23.17.

To describe another special case of Theorem 24.6, we write u i A
if we can obtain [X] from [u] by moving some number 4 > O of nodes from

the end of the ith row of [ul] to the end of the (i-1l)th row of [ul and

each node is moved through a multiple of plP(d) spaces. (See Example
24.11).
24.10 COROLLARY Let char F = p and u(l),u(z),...,u(r) be (proper)
partitions of n with

U(l) k u(2) k-1 U(3) k-2 L k-r+2 u(r)

If 1l <a<b<r and )\ = u(b), o= u(a) then Homp Gh(SA,Su) z O,

Proof: We may suppose that a = 1 and b = r, since otherwise we may
restrict our attention to the sequence u(a) Fee> u(b{ .
Let dj be the number of nodes moved in u(k_3+l) 3 u(k-3+2)

defining dj =0 if j > kor j <k -1 + 2). By construction, for all
i,

(r) _ (1) _

My D om R tdyyg o dy
fp(dy) - (L _ (1) _
and p P71 divides ] uy di+l + di + 1
_ (L _  (r) - () _ . (r) .
Let Nil = U, Mil and Nij = ui+j—l Ui+j for j = 2,
(r) (1)

and let T be the corresponding u ~-tableau of type u in Theorem

24.6 (It is simple to verify that T is reverse semistandard).

Now, i-1 (r) o« .
E (uj+m—l - E.Nms) = di if j =1, and O if j =z 2.
n=1 s=j
_ (1) o (x) _ (1) _ (1) _ . L.0d; ),
Also, Ni-l,l = ui—l ui =W uy di+l + di Z -1 mod p"P i
so Theorem 24.6(ii) gives the result.
24.11 EXAMPLE Suppose char F = 3
Y | o v e e s 3 e e e e e 2 « e e e e s e
> > >
. e . * & . . e o X X * e s
. . . X x . .

Therefore, HomFG-ll(sA ,8") 2 0 for A & u and A,u any pair from (7,3,1),
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(52,1),(5,3%) and (5,3,2,1). Compare the following 4 by 4 submatrix
of the decomposition matrix of G&l for the prime 3.
5(7,3,1) (s%,1)  (5,3%) (5,3,2,1)

5(7,3,1) 1
5(5%,1) 1
5(5,3%) 1
g(5,3,2,1) 1 1

Note that the number of nodes we raise to the rowv above need not be

tne same for each u(k—j+l) 1 u(k—j+2) in Corollary 24.10; in parti-

cular, the Corollary includes the case
i1 i ir-1 . . . .
u(l) > u(z) +2 u(3) > E u(r) with i; > 12>...>1r_l

since we are allowed to raise zero nodes at any stage. The hypothesis

il > i2 >0 ir_lcannot be omitted, since when char F = 2,
XX 2 XXX 52 XXXX
> >
X X X

(3,1) g(2%),

(4),5(3’1)) and HOKT-G4(S are non-zero

and while Hom (s
F 6
(4) S(22)]

(by the Corollary), Homp 54(5 is zero (by Theorem 24.4).
For our next Theorem we require

24.12 DEFINITION Given two non-negative integers a and b, let

r
a=ag+ap+ ...+ ap (0 < a; < p,a. = 0)
= s
b = bo+ blp + ...t bsp (O < bi < p, bS z 0).
Wwe say that a contains b to base p if s < r and for each i bi = 0 or
b, = a, .
i i

24.13 EXAMPLE 65
0,2,9 = 1.3% and 11

]

2 + 0.3 + 1.3%2 + 2.3%, so 65 contains precisely
2 + 1.3%2 to base 3.

24.14 DEFINITION The function fp(n,m) is defined by fp(n,m) =1 if

n + 1 contains m to base p, and = G, otherwise.

(n-m,m)

Since the only composition factors of s have the form

D(n_J'J) with j < m, by Corollary 12.2, a sensible first step towards

evaluating the decomposition matrix for (;n is to prove

24.15 THEOREM (James [6] and [81). The multiplicity of D'®73/3) 45 a
factor of S(n—m,m)

is fp(n-Zj,m—j).

Proof Since the result is true when n = O or 1, we may assume it for
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n' < n. Let t be the (n-j,j)-tableau used to define the Gn action on
M(n—m,m). Let T be the (n-j,j)-tableau of type (n-m,m) having 2's in

tne (1,l)th,(1,2)th,...,(l,m)th places. As in the proof cf Theorem

24.6 , the Yy maps defined on M(n—m,m) have the property that
m-1 _
{tlop ¢ N ker Y14 if n-m~3j = -1 mod p%)(m r)
i=r
Also (n=3,49) 1
ker @, c s'P733
T = (n=14,4) m-1
Therefore, all the composition factors of S 3:3) oeccur in N ker wl
i=r
But, by the second isomorphism theorem,
n-1 m-1 m-1 r-1
N ker y, . / f\ ker ¥ £ (N ker vy F N ker ¢y, )/
1, 1,1 1, I
i=r i=r i=o
-1
/\ ker wl
i=o
(n-m,m) ol
c M "/ MNN ker yoo
- : 1,1
i=o
m-1
Thus, every composition factor of /) ker wl is either a factor of
-1 i=r
g (p-m,m) f\ ker wl ; or of y (PR / f\ ker Yy,i + BY Theorem
i=o i=o

17.13 we have:

24.16 If n-m~j = -1 mod pzp(m—r), then every factor of s(m=3.3) 45 4
factor of s P ™™ o1 of one of (s i) 1o <4 < r-1) .
Now suppose that fp(n—2j,m~j) =1, Thenm =2 3j 20 and n-2j + 1

contains m-j to base p. If m > j, then there is a unique integer jl

such that

n-2j+ 1 = (m-j) + (j;~3) mod p tp (m=3)

and 0 = jl—j < m-j

But then n-23j + 1 contains jl-j to base p. Hence we may find integers
such that

o 731 7 3g 7 g4 T3

and n - ~1 mod plp(jk“j)

Ik 7 Ik
Then, by 24.16 every factor of s(™=3:3) 5 4 factor of s (M IsrIs)
(n_l’l)lo < i < j-1}. But D(n—J’J) is not a factor of

for 0 < i £ j-1, by Corollary 12.2, so D(n_]’J) is a factor of
S(n—jSIjs) .

or one of {s
S (n"ili)

Applying 24.16 again, every factor S(n-]s’js) is a factor of



108

s(n=3s-1+3s5-1) or of one of {S(n_i'i)lo s i s j-1} . Therefore,
p{™=3:3) 5 4 factor of s (P Is-1rg-1) Continuing this argument to
jo = m, we have proved

24.17 When fp(n—2j,m—j) =1, D(n-J’J) is a factor of S(n—m,m)

L
Next, consider the case where n = m-1 mod p P(m) . Then let

r-1
m-1 =a+ ap+ ...+ a _p (0 < a, <psa. = 0)
r-1 r
= + ...
so n ao+ a;p + + a._1p + brp
where br =0 if m = pr . Thus, n contains m-1 to base p, so
fp(n-l,m—l) = 1. Similarly, fp(n—l,m) = 0 and fp(n,m) = 1.

Returning to the case of general n and m, we prove

24.18 If m 2 1 and fp(n—l,m) + fp(n—l,m—l) > f (n,m), then there is

Y o
(n=3%3) is a factor of

(1) Gien

some integer j with 1 < j < m such that D
sn=mm g p(0=3.3)y 6 _, contains the trivial factor D
multiplicity fp(n—l,m) + fp(n—l,m—l).

To prove 24.18, consider first the case where m is a power of p,
say m = pr. The inequality fp(n~l,m) + fp(n—l,m—l) > fp(n,m) easily
implies that pr divides n + 1, and the argument above proves that

+ -
pr 1 does not divide n-m+l. Therefore, v_(n-n+l) = r. Hence S(n m,m)

P -
is irreducible in this case, by Theorem 23.13, and D(n mem) S
® S(n—m,m—l)

(n-m-1,m)
with multi-

(n-m,m)

Since S(n—m,m)+ Gn—l has the same factors as S

(n-m,m) (n-1)

by the Branching Theorem, D + G}—l contains D
plicity fp(n—l,m) + fp(n~l,m—l), by the induction hypothesis. This shows

that we may take j = m in 24.18 when m is a power of p.

Suppose, therefore, that m is not a power of p. Since fp(n-l,m) +
fp(n—l,m—l) 2 1, n contains m or m~1 to base p. The fact that m is not

a power of p now shows there is a unique j with

it

0O < j<m n n+j-1 mod pzp(m)

Further, j 2 1, since we have shown that n = m~-1l mod Plp(m) inplies

that fp(n—l,m) + fp(n—l,m—l) = fp(n,m). Now the above congruence shows
that n + 1 contains m to base p if and only if n+l contains j to base p,
and n contains m to base p if and only if n contains j-1 to base p, and

n contains m-l1 to base p if and only if n contains j to base p. Therefore,

£f (n-1,3j) + £ -1,3-1) = £ -1,m) + £ (n-1,m-1
o ¢ J) p (A=L,3-1) p(n ,m) p( sm—1)
> £ ,m) = £ +3) .
p(n ) p(n 3) o
By induction, there is an i with 1 < i < j < m such that D(n_l’l) is a
(n~3,3) (n-1)

factor of S and D(n_l’l)+ Gh—l has D as a factor with
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. - . 2
multiplicity £ _(n-l,m) + £ (n-1,m-1). But, since n Z m+j-1 mod p P(mz
P P (n=3,3) (n-m,m)

is a factor of S In

(n-m,m)

24.16 shows that every factor of S

D(n—l’l) is a factor of S

(n)

particular, and so 24.18 is proved.

(n—m,m) is at most

(n-1)

as a factor of S
(n-m,m)
¥ Gn_

The multiplicity of D

fp(n—l,m) + fp(n—l,m—l), since S has D as a factor

1
with this multiplicity, by our induction hypothesis. Further, 24.18

shows that D(n) is not a factor of s(n-m,m) when fp(n—l,m) + fp(n—l,m-l)

> fp(n,m). This proves our next main result, namely

(n)

(n-m,m)

24.19 The multiplicity of D as a factor of S is at most

fp(n,m).

Finally we prove

24.20 If j =z 1, D(n_J'J) is a factor of s(n—m,m)

most fp(n—2j,m-j).

with multiplicity at

The way we show this is to consider a subgroup H of Gh, and find
a modular representation Dj of H such that D(n—3’3)+ H has D. as a

factor, but s(n-m,m)¢ H has Dj as a factor with multiplicity £ (n-2j,

m~j). 24.20 then follows at once. We should like to choose or

n-2
Gh_l as our subgroup H, so that we can apply induction. Since the
prime 2 is excertional, we consider first
Case 1 p is odd.

The ordinary irreducigle representations of &
by s & s{?)  ana Sq @ st

28 a (2) a
Since p is odd, D

(n-2,2) are given

as U varies over partitions of n-2.
are inequivalent representations. Hence
the p-modular irreducible representations of &

n (2) n (12) (n"2,2)
D" & D , D" ® D as U varies over p-regqgular partitions of n-2,
and the multiplicity of D

(n—j_llj—l) & D(lz)
- - 2
S(n m-1,m-1) ® S(l ) is fp(n—2j,m~j) when j 2 1, by induction.

are given by

as a factor of

Now, by the Littlewood-Richardson Rule, § 77T/, TR 2) has the
S(n—m—l,m—l) 2] S(lz), together with some
modules of the form s™ @ 5(2). In particular, the multiplicity of
p(p=3-1,3-1) o (1%) (n-m,m) | g
(n-2,2)
On the other hand, S(n—j’j)+ Gﬂn—Z 2) has D(n_j—l'j_l) ® D(lz)
as a factor with multiplicity one (since,f (n-23,0) = 1), and for i < j
sln-i B, G(n—Z ;) does not have p(M=3=1,3°1) ¢ p(1*) .5 4 factor
(sin;e'fp(n-Zj,i~j) = 0). Now, every factor of S(n_j’j)
p(""3:3) " has the form D7) i 1 < jo o it follows that

(n-3,3) (n-j-1,3-1) (1)
D v Gﬂn—Z,Z) has D ® D

same composition factors as
as a factor of S is fp(n—2j,m—j).
, besides

as a factor with multip-
licity one.
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The results of the last two paragraphs prove 24.20 in this case.

Case 2a p = 2 and n is even.

(n-m,m-1)

(n-m-1,m) & S .

g (n-m/m) Gh_ has the same factors as S

L (n-3-1,3)

By induction, this contains the factor D with multiplicity

fz(n—l-Zj,m—j) + fz(n—l—Zj,m—j—l). It is simple to verify that this
equals fz(n—Zj,m—j), since n is even.
(n-3-1,3)

In particular, for 2j < n, S(n_3’3)+ (4 has D as a

n-} .7,
factor with multiplicity one, and for i < j, SJ(n l’l)+ G;—l does not

nave D(n_J_l’j) as a factor. As before, D(n_3’3)+ Gh—l therefore has
D(n—J_l’J) as a factor with multiplicity one, and 24.20 is proved in

this case too.

Case 2b p = 2 and n is odd.‘

(n-m-2,m) (n-m—-1,m-1)

g (n-m,m) Gn—Z has the same factors as S ® 25

(n-m,m-2) (n-3-1,3-1)

& S This contains D with multiplicity

fz(n—Zj,m—j+l) + 2f2(n~2j,m—j) + f2(n—2j,m—j—l), which equals 2f2(n~2j,
m-j) when m-j is even,
thus, s ™33, @
n-2
city 2, and for i < j-2, S

has D(n—j—l’j_l)
(n-1,1) g

(n-373f

as a factor with multipli-

does not have D(n_J_l’J—l)

(n-3,3)

as

a factor. But every factor of S
D(n-i,i)

, besides D has the form

with 1 < j-2, by the Remark following Theorem 23.7, so

p‘n=3.3), €, _, has p(~3-1:3-1) 5 4 factor with multiplicity 2.

The results of the last two paragraphs prove 24.20 in this final
case.

Now 24.17, 24.19 and 24.20 together give Theorem 24.15.

24.21 COROLLARY If § > 1, the multiplicity of b " 973) a5 4 factor

of S(n—m,m) is the same as the multiplicity of D(n—J_l’]—l)
of S(n-m-l,m—l)

as a factor

By the way, we conjecture that Corollary 24.21 is a special case

of a general theorem involving the removal of the first column.

24.22 EXAMPLE Suppose p = 3. The rows of the following table record,

respectively, n, n+l written to base 3, and the numbers contained in
n+l to base 3, for O < n < 13.

o] 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 10 11 12 20 21 22 100 101 1lo2 110 111 112
o] o] o] 0 (0] (0] (0] (6] (6] o] o] (6] 0 o]
1 2 1 2 1 2 10 1 2

10 10

11 12
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Under n = 13, for example, we have 0,2,10,12 which are integers
to base 3. There are 1l's in the (0+1)th, (2+1)th, (3+1)th and (5+1)th
places (counting from the diagonal) in the column labelled 13 in the
following pair of matrices. Another example: 10+1 contains O and 2 to
base 3. There are 1's in the (0+1)th and (2+41)th places of the column
labelled 10.

Y f 1 3
1 1
1
1 1
1 1 1

1 1 1
L 1 { 1 5
12 10 8 6 4 2 0 13 11 9 7 5 3 1

The part of the decomposition matrix of Gh corresponding to
2-part partitions for p = 3 and n < 13 can be read off these matrices
at once. Simply truncate the matrix at the column labelled n, and label

the rows and columns by 2-part partitions in dictionary order.

(9) (8,1) (7,2) (6,3) (5,4)
(9) 1
(8,1) 1 1
e.g. n =9 (7,2) 1
(6,3) 1
(5,4) 1 1

For p an odd prime and n small, most of the decomposition matrix
of G% is given by Theorems 24.1 and 24.15.

24.33 EXAMPLE Suppose p = 3 and n = 9. Applying Peel's Theorem 24.1,
the column labkels can be found as in Example 24.2 . Alternatively, they
are given explicitly in [9] page 52. Combined with the information
above, this gives
(9)  (8,1) (7,2) (6,3) (5,4) (7,1%) (6,2,1)(5,2%) (4,3,2)(4%,1)
(9) 1
©,1) 1 1
7,2) 1
©,3) 1
(5,4) 1 1
7,1%) 1
6,1%)
G,1%) 1 1
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(4,1%) 1
(3,1%)
(2,17)

(1%)

Applying Theorem 8.15 to the first five rows, another part of the

decomposition matrix is

(5,4) (4%2,1)
(1%) 1
(2,17) 1 1
(22,1%) 1
(23,1 1 1
(2*%,1) 1 1

(The rows corresponding to (1°) and (2,17) already occur above).
Using Theorem 21.7 we find that the last three columns should be labelled
(4,3,1%),(3%,2,1) and (9). Incidentally, we do not know how to sort out
efficiently the column labels once we have taken conjugate partitions
as above (although Theorem A in [9] gives some partial answers).

We have now accounted for 12 of the 16 3-regular partitions
g(5:3,1) g S(3,22,1)

23.6(i), so we have two more 3-modular irreducibles to find, namely

labelling columns. are irreducible, by Example

those corresponding to (4,22,1) and (5,2,12). But

(7,2 4,2%,1 4,2,13
y o )y )

4+

on 3~regular classes (using Theorem 21.7 with [v] = [4,2]). Appealing
to the theory of blocks of defect 1 (or to the Nakayama Conjecture)

part of our decomposition matrix is

(7,2) (4,2%2,1)

(7,2) 1
(4,2%,1) 1
(4,2,1%) 1

By taking conjugate partitions, we get

(5,2,1%) (4,3,1%)

(5,2,1%) 1
(4,3,12) 1
(2%,1%)

Now Theorem 21.7 enables us to complete the decomposition matrix,
since we can write every ordinary character which corresponds to a 3-
singular partition in terms of ordinary characters corresponding to 3-

regular partitions, on 3-regular classes.
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When p = 2, Theorem 24.1 cannot be applied. However, all the
rows of the decomposition matrix for partitions of the form (n-m-1,m,l)
are known for p = 2 (see James [61]).

Our sources for the decomposition matrices in the Appendix are
Kerber (131 (p = 2,n < 9), James [61(p = 2, n = 10), Mac Aogdin [15]

(p = 2,n = 11), Stockhefe [21] (p = 2,n = 12,13), Kerber and Peel [14]
(p = 3, 8 <n < 10) and Mac Aogéin [151(p =3,11<n <13 ,completed by
James [12]) . Mac Aogdin[l5] gives the decomposition matrices for p=5,n<l13.

The most difficult cases are p = 2,n = 12 and 13, and for these
Stockhofe used a computer to find dim D(5’4’2’1) and dim D(7’4'2),
employing Theorem 11l.6.
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25 YOUNG'S ORTHOGONAL FORM

We turn now to the problem of finding the matrices which represent
the action of permutations on the Specht module s". This has been post-
poned to a late stage in order to emphasize the fact that the represen-
tation theory of Gn can (and we believe should) be presented without
reference to the representing matrices.

Since Gh is generated by the transpositions (x-~1,x) for 1 < x < n,
is is sufficient to determine the action of these transposition on a
basis of s¥ . Consider first the basis of standard polytabloids e, .
Here we have
25.1 (i) 1If x-1 and x are in the same column of t, then et(x-l,x) = -e, .

(ii) If x-1 and x are in the same row of t, then et(x—l,x) = e,
+ a linear combination of standard polytabloids e s with {t*} @ {t}
(by combining 8.3 and the technique used to prove 8.9).

(iii) If t(x~-1,x) is standard, then et(x—l,x) = et(x—l,x) .

In case (ii), the relevant standard tableaux t* may be calculated
by applying the Garnir relations.

25.2 EXAMPLE TIf pu = (3,2) and we take the standard p-tableau in the
order tl,tz,t3,t4,t5 =135 125 134 12 4 123 then
2 4 3 4 25 35 4 5
r--l o O O O\ r0 1 0 O O\
-1 1 0 0 O 1 0 0O O ©
(1 2) <> 0O O0=~1 0O O (2 3) <> 0O 0O 0 1 o
o-1 1 O o O 1 o0 oO°
| 1 0-1 o 1| (1-1 0 o 1]
-1 0 0 0 0] (o o 1 0 o
-1 1 0 0 O 0O 0 0 1 o
(34) < |-1 0 1 0 O (4 5) > 1 0 0 O ©
o 0O 0 o0 1 0O 1 0 0 ©
o o o0 1 o] |1 0-1 0 1

In many ways, Young's natural representation, as this is called,
is the best way of describing the matrices which represent permutations;
for example, it is independent of the field. However, we must take three
Ccases into account, and the second one, where x-1 and x are in the same
row, involves an unpleasant calculation. It turns out that these prob-
lems can be avoided when we work over the field R of real numbers, and
the rest of this section will be devoted to the case where the ground
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field is IR.

Let tl < t2 <...< td be the standard u-tableaux, in the order
given by definition 3.10. Wherever possible, we shall use the abbre-
viation ey for the standard polytabloid eti .

Since we are working over the reals, we may construct from S
€yr+-er€y an orthonormal basis fl’fz""’fd of S; using the Gram-
Schmidt orthogonalization process. It is with respect to the new ortho-
normal basis that we get "nice" matrices representing permutations.

To fiX notation, we remind the reader of the Gram-Schmidt orthogona-
lization process.
. of the space spanned

J
fj are orthonormal relative to the

Suppose we have constructed a basis fl,...,f
by el,...,ej over R, and that fl,...,
bilinear form < , > . Then there is a non-zero linear combination
f of el,...,e

tabloid {tj

541 with < ei,f >=0 for 1 <i < j (see 1.3). ©Now, the
+l} is involved in f (otherwise f would be a linear combina-

tion of el,...,ej by the proof of 8.9, contradicting the fact that
< ei,f >=0 for 1 < 1 < j.) Therefore, we may take

£..0 = (+£)/(< £,£ )%,

j+1

the sign being chosen so that {tj+l} has a positive coefficient in fj+l'

This determines fj+l uniquely.
0f course, the new basis fl,f

2""’fd of S%{ depends on the order

of the original basis €17€ 7.0/ However, we prove

a -
25.3 THEOREM The orthonormal basis fl,f f. of s® constructed

greccrly R
from the standard basis is independent of the total order we choose on

the standard tableaux, provided that the total order contains the partial

order 4@ , given by definition 3.1l .

At the same time, we prove

25.4 YOUNG'S ORTHOGONAL FORM

If (x~1,x) is a transposition in Grﬂ then for all r

fr(x-1,x) = plfr + pzfs

where tp = tr(x—l,x) and pl(= gl(x,r)) equals (i-k+ IL—j)-'l if x-1 is in

the (i,j)th position and x is in the (k,f)th position of tr' and
Ri + pé = 1 with 92 > Q.

Remark: It does not matter that there is no tg equal to tr(x~l,x) when
Xx-1 and x are in the same row or column of tr, since py = O in these
cases. Young's Orthogonal Form says that fr(x—l,x) = ifr if x-1 and

X are in the same row or column of tr respectively.
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Before embarking on the proofs of 25.3 and 25.4, we require a

preliminary Lemma.

25.5 LEMMA Suppose that t and t* are any two pu-tableaux, and that
x-1 is lower than x in t*. TIf {t} <4 {t*} then {t}(x-1,x) < (£*} (x-1,%).

Proof: Recall from definition 3.11 that miu(t) is the number of entries
less than or equal to i in the first u rows of t. Since {t} 4« t*} ,

* ;
miu(t) < miu(t ) for all i and u.

Let x-1 be in the alth row and x be in the blth row of t. Let
x-1 be in the a2th row and X be in the b2th row of t*. We are given
that b2 < a; .
. * -
Using 3.14, we deduce from miu(t) < miu(t ) that miu(t(x 1,x)) s
miu(t*(x—l,x)), except perhaps for i = x-1 and either bl < u < min(al,bz)

or max (bl,az) <u < ag.

For bl < u < min(al,bz),

m (t(x-1,x)) = m (t), since x-1 is in the a,th row and x is in the
x-1,u X, 1
blth row of t and bl s u < a

< my u(t*), since {t} <« {t*}

= mx—l,u(t*(x_l'x))' since u < b, < a, .
For max (bl’az) <u < ap,
mx_l,u(t(x—l,x)) = mx—2,u(t) + 1, since b; < u < a;
< mx—2,u(t*) + 1, since {t} < {t*}
= mx—l,u(t*(x-l’x))' since b, < a, < u .

Therefore, miu(t(x—l,x)) < miu(t*(x~l,x)) in all cases. Thus
{t(x-1,%x)} 2 {t*(x-1,x)}. We do not have equality, since {t} = {t*}.

Proofs of Theorem 25.3 and Young's Orthogonal Form:

Assume that both results are true for all Ilch_ Specht modules

1
(Both are vacuously true when n = 0). The proof now proceeds in 3 steps.

Step 1 The matrices which we claim represent (x-1,x) are correct for
X < n.

We take our notation for the proof of Theorem 9.3, so that Vi is

the I(Gh_l—module spanned by those e_'s where t is a standard u-tableau,

t

and n is in the rith, rzth,...,or rith row of t. Since Vl < V2 C weay

the proof we gave for Maschke's Theorem shows that

Vi = Ul & U2 & ... @ Ui’

where Uy is the R G| _;-module spanned by those ft's where n is in the
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rith row of t. (Recall that our total order on tabloids puts all those

with n in the rlth row before all those with n in the rzth row etc.)

In tae proof of Theorem 9.3 we constructed an RG__,-homomorphism
AL . .
i 2 . . u, 9

Si mapping Vi ento S]R whose kernel is Vi-l Since V

i-1 1 .o
3 Ui_l.and vi=U; 8...9 U%, we thereifc: e know that Oi is an R &, _,-1so~
norpnism from U; onto S

H =

R
o~ Y s *
Define abilinear form < , > on U, by
< u,v >* = < uo., vo, > for u,v in U,,
i i i

where tne second bilinear form is that on S;:. Since Ui is an absolutely
irreducible E!G%_l—module, our new bilinear form on Ui must be a multiple
of the original one, by Schur's Lemma. That is, there is a real constant
c such that

*
< u,v > = ¢< u,v > for all u,v in Ui'

Becausa both forms are inner products, ¢ is positive.

For each standard pu-tableau t having n in the rith row, let t

denote t with n removed, and write ét for ex and %t for fE . Suppose
that tp’tp+l""’tq are the standard u-tableaux which have n in the rith
row. If p < r < g then

£ = + + + ...

r u apep ap+lep+l + ae,
for some u in Vi—l and a. > o. Therefore, by 9.4,

frOi = apep + ap+lep+1 + ool + ae. .

Since the last tabloid here is {Er} with a positive coefficient, and

since < fzei’frei > = ¢< fz’fr > for p < z £ r, we deduce that
£ 0, = /c £ .

We are assuming that Young's Orthogonal Form is correct for the
i
R Gn_l—module sh , so for x < n,

fr(x—l,x)ei /c f(x-1,x%)

=/ (p B+ 0y ) = (pyf * p,E 00, -

Here, tS = tr(x—l,l), and the real numbers Py and p, are those in the
statement of Young's Orthogonal Form (the positions of x~1 and x in tr
are the same as their positions in tr). Since Oi is an isomorphism, we
have proved the desired result of Step 1, namely that

fr(x—l,x) = plfr + pzfs, for x < n.

Step 2 The proof of Theorem 25.3 .

We know that there are real numbers al,az,...,ar with
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f_ = a

e. + a,e, + ... + a_e and a_ > O.
r 1 r

1 272 rr

Theorem 25.3 will follow if we can show that a. = O unless
{tj} 2 {t_}. By induction, we may assume that when (el < {2}, fj
is a linear combination of standard polytabloids e; with {t;} = {tj},
and prove the corresponding result for fr’

Case 1 For some x < n, X is lower than x-1 in tr and not in the same

row or column as x-1.

Let tr(x—l,x) =ty - Then {tk} q {tr}. Therefore,

f + where ¢, = O unless {t,} =2 {t }.
i i k

Kk = S1°1 + ... crey
Using 25.1, and applying Lemma 25.5, fk(x—l,x) is a linear combi=-

nation of polytabloids ey for which {ti} 9 {tr}.
Since x < n, Step 1 shows that

f_ = a multiple of £

r + a multiple of fk(x-l,x).

k
Therefore in this case,

= .o , = .} o2 .
fr aje, + + ae. where aJ 0O unless {t?} {tr}

Case 2 For every X < n, X is higher than x-1 in tr or is in the same

row or column as x-1.

Since tr is standard, it is easy to see that the hypothesis of
Case 2 implies that Er (= tr’ with n removed) has 1,2,...,n-1 1in order
down successive columns.

We may certainly write

fr = blfl + ...+ br—lfr-l + brer where b = O.

Let x be the smallest integer such that bj z O for some j and
mxu(tr) < mxu(tj) for some u, if such an integer x exists. We aim to
produce a contradiction.

First, 1 < x < n, since for all u, mlu(tr) = mlu(tj) =1 (tr and
tj being standard),and mnu(tr) = mnu(tj) =y + ... + My for all u-
tableaux tr and tj

By the minimality of X, m (t) 2 (t;) for all u.

x=l,u’r mx-l,u J
Let x be in the (y,z) place of t,+ Then y > 1 (otherwise, for all

u, m (tp) = mx—l,u(tr) + 1 Z_mx—l,u(tj) + 12 mxu(tj), contradicting

the definition of X). Since tr has 1,2,...,n-1 in order down successive
columns, x-1 is in the (y-1,z) place of t,. Therefore, using Step 1,

er(x—llx) = -e, and £ (x-1,x) = ~f. .

For u =2 y, mxu(tr) =m (tr) +lzm -l,u(tj) +12m  (ts).

x-1,u X Xu' )
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The definition of x therefore shows that

m o ft) < mxu(tj) for some u < y.

But mx—l u(tr) = uz for u < y (since Er has 1,2,...,n=-1 in order down
[
successive columns), and the first row of t. contains at most z numbers
- i ) < = .
less than or equal to x-1 (since mx—l,l(tj) mx-l,l(tr) z) Because
t. is standard, this means that x must be in the (1,2+l1l) place of t.,

J
and x-1 is in a column of tj no later than the zth column.

z . z Z+1l

[ x|

x-1

If tk = tj(x—l,x), then Step 1 gives

fj(x—l,x) = clfj + 02fk where 0O < o4 < 1.
Therefore,
blfl + ...+ bjfj + ... + br—lfr-l + brer
= fr = -fr(x—l,x)
= —blfl(x—l,x) - L. - bj(clfj + csz) - ... brer .

Since b, = 0 and 0y * -1, fj must appear elsewhere in the last
(t,)

line. This means that b, is non-zero. But m =z + 1>z =
and this contradicts our minimal choice of x.

k x-1,1
mx-l,l(tr)'
We have thus prowed that in the expression

f,=Dbyf, + ...+ br—lfr~l + boe.

bj = O unless {tj} 9 {tr}. Oour induction hypothesis at the beginning
of Step 2 shows now that fr is a linear combination of polytabloids ey
with {ti} g {tr}. This concludes the proof of Step 2.

Step 3 Calculation of the matrices representing (n-1,n).

Take a new total order on tabloids, containing < , in which {t}
and {t(n-1,n)} are adjacent if both are standard. (This is possible in
view of Lemma 3.16.) We fix our notation by saying that {H} < {t2} <
...<{td} are the different standard tabloids ordered by definition 3.10,
and {tln} << {t2n} << ,.<< {tdﬂ} is the new order. Thus, 7 is a
permutation of {1,2,...,d} and if both t.lTT and tin(n—l,n) are standard

then tin(n—l,n)= t(itl)ﬂ.
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We plan to evaluate frﬂ(n—l,n). Assume, for the moment, that if

trﬂ(n—l,n) is standard, then tr“(n—l,n) = t(r+l)n'

Let G denote the group {1, (n-1,n)} .

Let X denote the space spanned by e reees€

1m' €2 (r-1)7m °

Let Y = X + € RG (so that dim Y = dim X + 2 or 1, depending
on whether or not both tr1T and trﬂ(n—l,n) are standard.)

Since our new total order contains <, for every standard t,
neither or both e, and et(n—l,n)
X and Y are G-invariant.

By Step 2, £

belong to X (using 25.1). Hence both

lﬂ""’f(r—l)n is an orthonormal basis for X and

. . : . - i £
fln’ ’frﬂ’f(r+l)ﬂ is an orthonormal basis for ¥ (Omit f(r+l)ﬂ i
dim ¥ = dim X + 1). The space spanned by fr1T and f(r+l)n is the ortho-
gonal complement to X in Y,and because our inner product is G-invariant,
the space spanned by fr1T and f(r+l)n is G-invariant (Omit f(r+l)ﬂ if
dim Y = X + 1).

Now, fr" = an element of X + b er , where b > O(since the coeffi-

cient of {trﬂ} in fr1T is chosen to be positive). Therefore, when n-1
and n belong to the same row or column of e

f (n-1l,n) = an element of X + b e
rm rm

{+l if n-1 and n are in the same row of tr1T
e =

W . :
here -1 if n-1 and n are in the same column of tr1T

But we have just proved that frﬂ(n—l,n) is a multiple of frn in
these cases, and comparing coefficients of e, r we see that

frﬂ(n—l,n) = sfITr

and this completes the case where trn(n—l,n) is not standard.

On the other hand, when both tr1T anc trﬂ(n—l,n) (= t(r+l)ﬂ) are
standard,
frﬂ(n~l,n) = an element of X + b e(r+l)ﬂ (b > 0)
Since the space spanned by frﬂ and f(r+1ﬁr is G-invariant,
fppln=lin) = p £ 4 Pof(rel)m
where p, and p, are real numbers, and the coefficient of {t(r+l)ﬂ} shows

that Py is strictly positive. Now

< frﬂ(n-l,n),frﬂ(n—l,n) > = < frﬂ’frﬂ > =1

so pi + pé = 1 with P, > O. Also

frﬂ = plfrﬂ(n-l,n) + pi(r+l)ﬂ(n_l’n)'

whence

firrny 0=l = 0,f - P18 (rrl)

It remains, therefore, to show that p; may be calculated as in the
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statement of Young's Orthogonal Form in the case under discussion, where

- = . i i i operties of the
trﬂ(n 1,n) t(r+l)ﬂ This will be done using some prope
group G3 .

Since n-1 and n are not in the same row or column of trﬂ’ n > 3.
Also, tr1T q trﬂ(n—l,n), so n-1 is lower than n in trﬂ . There are 4

cases to consider

(i) n-2, n-1 and n appear in ton thus:

n-2 nl

n-1

(ii) Some two numbers from {n-2,n-1,n} are in the same row, but

no two are in the same column of trﬂ .

(iii) Some two numbers from {n-2,n-1l,n} are in the same column,

but no two are in the same row of trﬂ'

(iv) No two numbers from {n-2,n-1,n} are in the same row or column
of tr1T .
We tackle case (ii) first; case (iii) is similar and case (1) is

comparatively trivial. Finally we deal with the hard case (iv).

Case (ii) Let H be the group generated by g, = (n-2,n-1) and g, = (n-1,

n). Since n-1l is lower than n in trﬂ , trﬂ has the form:

r
rm °©

In the first case, let t = trn’ and in the second let t = trﬂ(n-l,

n). The space spanned by ft'f and ftg2 is H-invariant. In fact, our

tg1

results so far show that, with respect to the basis ft,ftgl,ftgz , the
action of H on this space is given by

g; 9, e} ey 0] T,
g, = (n-2,n-1) & 0, 0, O g, = (n-1,n) « 0 1 ¢]

(o} 0] 1 Ty 0] T,
where o, is known, from Step l. The axial distance from n~l to n in t
= ~(the axial distance from n-2 to n~l in t) + 1. We shall therefore
have finished if we can prove that 011 =1 + Tzl.

Therefore

Now, trace glg2 = -0,T, — 0, + 7T

1'1 1 1°
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trace glg2| < lOlTl| + Jo| + |T1| s +%5+1=2,

The character table of GB is

(1) (2,1) (3)

3 1 1
(21 o -1
y ) -1 1

The only representation of dimension 3 having trace 1 on the

. 2,1
transpositions and [tracel < 2 on elements of order 3 is x(3) + x( ! ).

Therefore, trace 919, = O, giving 11, =0

1 1t

+ g as required.

1 17
Case (iv) Let H, 9, and g, be as in Case (ii). We may assume that n-2

is higher than n-1, and n-1 is higher than n in t, and that t, = th for

some h in H. Taking fe 'ftgl'ftgz'ftngl'ftgzglgz'ftgzglgzgl as a

basis for f.RH, 91 and g, are represented by

f
"\)l \)2 1
Voo V1
gl = (n-2,n-1) © “wy Wy
w2 w
T T2
i -m
| 2 1
(- )
O.l 0.2
a _Bl a 82
2 1
g = (n-1,n) < -
2 Y1 Y2
Y2 Y1
By By
\ J

(Omitted entries are zero).

liere we know that each of vl,wl,ﬂl,a2,82,Y2 _iS non-zero: The

values of 1 + Tt = wil,

from Step 1. We want o] = Wy Bl = Wy and Yy ¥ V. There seems to

vl’wl and T, are known and v

be no more efficient way of proving this than equating (glgz)2 with
ngl' using the fact that 919, has order 3 (cf. Thrall {23]). The

(4,1),(5,2) and (3,1) entries in the relevant matrices give

w2 oy al Vl- wy w, al az oWy W, Yl 0, = o}

T My By vy By My My By vy = my M, By By =0
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_ 2 - 2 = -
and R + wy oy o, wy Yp 05 oy vy
: . 2 _ _ 2 -1 - -1 -1 :
Substituting wy = 1 wy and wy vy + LA these rapidly
give the required result: oy = Ty Bl = Wy and Yy = Vp-

This finishes Step 3 and completes the proof of Young's Orthogonal
Form.

25.6 EXAMPLE Here is the orthonormal basis of Sé?’z) in terms of
the graphs used in Example 5.2:

2 fl = =e; tl =1 5
2/3 ¢, = =-e;  +2, t, =125
4
2 /3 f3 = = -e; + 2e3 t3 =1 4
25
6 f4 = =e; - 2e2 - 2e3 + 4e4
t4 = 2 4
3 V/2 £g = =2, ~e, -e;-e,+ 3e5
t5 =123




For clarity, we have chosen the graphs
so that the edges have integer coefficients.
the graphs are orthogonal,

in G, .
1

< G,,G

(For example, 3165

The numbers multiplying each f
> =1 2,
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(= Ger

2"

.er GS’ say)

It is easy to check that

ensure that < f f >
SO (2/—) G

has norm l).

1

and that {t.} is the last tabloid involved

Corollary 8.12 has been used to write the graphs in terms of poly-

tabloids.
Theorem 25. 3.

Since {t,} # {t;}, e

2

is not involved in f3, illustrating

Writing out in full the matrices representing (1 2),(2 3),(3 4)

and (4 5) with respect to the orthonormal basis, fl’fz""’fS’ we have:
r—1 [ 1/2 V/3/2 )
1 Y3/2 -1/2
(1 2) <> -1 (2 3) «=> 1/2 V3/2
1 Y3/2 -1/2
L . L
-1 ( 1/2 Y3/2 1
1 1/2 Y3/2
(3 4) <= 1 (4 5) < v3/2 -1/2
1/3 2/2/3 V3/2 -1/2
2/2/3 -1/3
| / / L 1)

It is interesting to see that the last element of the orthonormal

basis is always a multiple of the vector {t}x,p
23.3 (cf. Example 23.6(iii) and f
fixed by the Young subgroup @

Pt used in definition

above). This is because both are
and to within a scalar multiple GS

fixes a unigue element of s¥ , by Theorem 4.13 (Theorem 4.13 shows that

H -
dim Hom:IR@:n (M]R' SIR) = 1).
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26 REPRESENTATIONS OF THE GENERAL LINEAR GROUP

The representation theory of G% is useful in the study of more
general permutation groups. For example, Frobenius used part of the
character table of 624 to find that of the Mathieu group M24 . There is
another, less obvious application of the theory, following from a study
of the group G L d(F) of non-singular 4 x d matrices over a field F.
Remember that any group which has a representation of dimension d over
F has (by definition) a nomomorphic image inside G Ld(F). Although the
results of this section will be stated in terms of the general linear
group, they apply equally well to any subgroup thereof. We plan to
construct, for each n and each partition of n, a representation of
G Ld(F) over F. Hence from any representation of &any group, we can
produce infinitely many new representations over the same field.

G Ld(F) acts naturally on a d-dimensional vector space, W(l) say,
over F. Let i, Z,...,é be a basis for W(l).

in G Ld(F)’ then

If g = (gij) is a matrix

ig==2£g,.3.
19 3 glj i
The general element of W(l) ® W(l)may be written as
z a,. 1 (a,.eF) .
i,jsd 33 1]
(The reason for this perverse notation will emerge later.) Let G Ld(F)
act on W(l)® w(l) by
b a,, ig= & a; 19519+ g (geG LL(F)),
i dea 133 i,9,kx,0 Ly d
as usual.
For the moment, assume char F = O. There are two natural G Ld(F)—
invariant subspaces of W(l)® W(l), namely those spanned by
{-Ji.—_+i-|1sisjsd}
and by _ _
{ % - i | 1 <i <3 < a}

(1)8 W(l) and the second

exterior power of w(l)(or the skew-symmetric part of W(l)® W(l))

respectively. Since char F = O

These are called the symmetric part of W

w(l)@ w(l) = (symmetric part) & (2nd exterior power).
Write this as
2
w(l)@ W) = w(2)e W)
Less wellknown is that
3
W(l) ® W(l) ~ w(3) @ 2w(2,1) @ W(l )
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(3)

2,1
for some subspaces W (called the 3rd symmetric power), W( 1) (of

3
which there are two copies) and W(l )(called the 3rd exterior power)

Also 2
W(l)® W(l)® W(l) ] W(l) = W(4)$ 3W(3'l)$ 2W(2'2)$ 3W(2'l )
M
C:] W(l )
"and so on". Further
w(2)® W(2)5 w(4) @ W(3’l)$ w(2,2).

Most of the work needed to prove these results has already been
done, since they are similar to those for the symmetric group (compare
the last example with S(2)® S(Z)+ G4 = 5(4) ® 5(3’l)® 5(2’2)
char F = 0).

, when

(g (1)

® W
skew-symmetric parts when F is arbitrary (allowing char F = 2)7 We

Consider again W How do we deal with the symmetric and

adjust our notation, by letting w(z) be the space of homogeneous poly-

nomials of degree 2 in commuting variables i, Z,...,é . We write

i j for the monomial i i

so that (2)
ij=31i and w is spanned by {1 j |1 < i s j < d}.
2
We keep our previous notation for w(l) ® W(l) and for w(l ), and
2
now (W(l)® W(l))/w(l ) w(2) as vector spaces, since
i - 2
% = % modulo w(l ).
Another way of looking at this is to define the linear transfor-
mation wl 0 w(l)® w(l)+ w(z) by
14
F—
1T
Then ker ¢ = W(lz) If 1 (2) 1
1,0 = . we let G Ld(F) act on W in the natural way,

then wl 0 turns out to be a G Ld(F)~homomorphism:
!

= k — _ T
9= I 995,75 7 I 949y, KEL=1J9
’ = ¥y,0 ke

It is the generalization of w(2)

(1)

, described in the way above, to
the kth symmetric power of W which we take as our building block for

the representation theory of G Ld(F).

26.1 DEFINITION The kth symmetric power of W(l) is the vector space
W(k) of homogeneous polynomials of degree k in commuting variables
i, Z,...,é, with coefficients from F. We write

I} 1,...1x for the monomial iIj i, ... iy
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(k)

and we let the G Ld(F) action on W be defined by

iqjis.eeip g9 = I g, . g, . g. .

St Rt 3 119174292 -0 Tk
where the sum is over all suffices jl,j2,...,jk between 1 and d, and
g = (gij).

3132+ Ik

The reader who is more familiar with the kth symmetric power as

(1)

the subspace Symmk(w(l)) of W ...8 W(l) (k times) spanned by certain

symmetrized vectors, may find it uséful to know that the connection

between this and W(k) is:
* *
w(k) = Symmk(w(l) )
where * denotes the process of taking duals.

Corresponding to MM = sOrH

in the representation theory of Gn,
we consider the space W(ul)e . ee® W(un). There is still a little more
preliminary work, though, before we come to this. It should, however,
be clear that it is useful to discuss vector spaces spanned by tabloids
with repeated entries (For the time being, it is best to forget any
intended interpretation in terms of the action of G Ld(F))'

Let X = xl Ky o X, be a sequence of non-decreasing positive
integers. If y is a partition of n and t is a u-tableau (of type (ln))
let t X denote the array of integers obtained by making the substitu-
tions i - Xy in t (1 £ i £ n). Let ty X ~ tzi if and only if for all
m and r the mumber of m's in the rth row of th equals the number of m's
in the rth row of t2X, and let {tX} denote the ~-class containing tX.

Then {t} » {£}X = (£X}

is clearly a well-defined map from the set of u-tabloids of type (ln)
onto the set of u-tabloids of type £, where the partition £ is defined

b
y Ei = the number of terms of X equal to i.

(As in some of our earlier work, we do not require u and £ to be proper
partitions of n.) Extend X to be a linear map on So’“, the space spanned
by the p-tabloids.

26.2 EXAMPLES (i) If X =1 1 2, then

SO,(2,1)2 is spanned by %—i and %—2
5(2’1)’(2’1)2 is spanned by %—l - %—l

(ii) If X =11 1, then

So’(2’l)§ is spanned by

[

S(2ll)l(2ll))—{ = 0.
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Certain linear transformations vy, were defined on the vector

i,v
O,u !

spaces S in section 17. Define the corresponding linear transfor-

mations on So’ui by
{t}Xx Yiv = {t}wi,V X .

(It is clear that this is welldefined.)

26.3 THEOREM Suppose that X is a sequence of type £, A is a proper

partition, and u®*,u are a pair of partitions as in 15.5.
Then

A

(i) dim S"X = the number of semistandard A-tableaux of type &
(1) sH®rug = gM"/URe %
(ii) s X wC—l’U: S X
(1i1) s"* ¥ X o ker y I
wc—l,uc
Proof: 1In 17.12, we proved that
» #* E3
¥ = MR W Ac,u =0
et Ve-1,% T G, © M e Yoo1,u¥ :
Applying X to these equations, we deduce that
" _ - -
gH M % " . = gH7rHRe %
C_lIUc
. 1.7 GRTRET -
d S [o] X ¥y = 0.
an vc—lluz

By considering last tabloids, as in the construction of the
standard basis of the Specht module, obviously dim s % EISB(X,E)ir
where S}JX,E) is the set of semistandard A—tab&eaux of type £. If
this inequality is strict for some A, or if s ‘¥ X n ker wc—l,u?

& -
strictly contains s AC’UX for some pair of partitions u*,u, then choose

a pair of partitions O,v and a sequence of operations A.,Rc leading

from O,v to A,X or u“,u, respectively (using 15.12). For each proper
partition ¢ of n, let a; be the multiplicity of Sg as a factor of

O,v . . 3 s

SC, - Then there is a series of subspaces of SO,v X with at least a4

factors isomorphic to s°% (cf. Corollary 17.14).

Therefore,

the number of v-tabloids of type £ = din SO,v X
> % a_ dim sY X
éd “o
>z a | 7, 0.8 ]
A O
= g a dir Loy Gn(bC'“é)' by Corollary 13.14.

At least one of the inequalities is strict (the first is strict if

our kernel is too big, and the second is strict if dim SA > | SB(K,E)])-

Recall that ag is the multiplicity of Sg as a factor of ME = Sg’v .
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Therefore,
£
)

v
(MC'MC

E) = dim Hom

. g
) a, dim Hom (SC’MC

C e, C Gn

= the number of v-tabloids of type £, by Theorem 13.19.

This contradiction completes the proof.

[ *» -
26.4 DEFINITIONS Let W" /" be the vector space direct sum of s 'M X
where X runs over all non-decreasing sequences whose terms are 1,2,...,d.
®
Let the ¢ maps act on wHoH by acting on each component separately. When

u is a proper partition of n, let w" = W'V,
We now have

26.5 THEOREM Let A be a proper partition of n. Then
(i) dim WA equals the number of semistandard A-tableaux with

entries from {1,2,...,d}

(ii) WA is an intersection of kernels of y-maps defined on WO’A.

Proof: This follows immediately from Theorem 26.3, since WX is the
direct sum of the spaces S* X .

Next, identify wo'" with w*lle w*2)e ... & wn). we have
defined the action of G Ld(F) on a symmetric power, and hence G Ld(F)

O,u

acts on W An unpleasant use of suffix notation shows that the

y=-maps commute with the action of G Ld(F), and then Theorem 26.5 shows
that WX is a G Ld(F) module, which we call a Weyl module.

From Theorem 26.3, we have

*
26.6 THEOREM w" ‘M has_a series, all of whose factors are Weyl modules.

The number of times WX occurs in this series equals the number of times
U

#
the Specht module SA occurs in_a Specht series for s¥

In particular, the number of times wx occurs in a Weyl series for
work - W(Ul)® W(UZ)G .. 8 w(“n) is given by Young's Rule. (Notice that
no "inducing up" takes place here, as it did in the corresponding symme-
tric group case). This justifies all the examples we gave at the beginn-
ing of the section; indeed, we have proved their characteristic-free
analogues. For example, W(l)e W(l)e W(l) has a G Ld(F)series with factors
isomorphic to W(l),W(z’l),w(z’l),w(ls),in order from the top,and this
holds for every field F.

We now investigate character values. Let

a] O

g = o € GLd(F)
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If F is algebraically closed, every elements of G Ld(F) is conjugate to
one of the above form, and so it is sufficient to specify the character

of g on a Weyl module.

26.7 DEFINITION For an integer k, let {k} denote the kth homogeneous

symmetric function of QpreeesOye That 1is,

{k} = b3 Oia 05 oeolla
1 i€ ...5 i< d 42 *k

(By convention {0} = 1 and {k} = 0 if k < Q)

26.8 EXAMPLES {1} = a, + a, + ...+a

= o2 2
{2} = aj ag + aja, tagay et oay q0y
= 2 2 2
{3} = a] +...4+ af + oo, + ogad +..o¥ af_qag + 0y j05 t aj0,0q
oot ag sag g0y

26.9 THEOREM {k} is the character of g on W),

Proof I g = a; I + a combination of J's with j < i. Therefore,
if 1 < il <uwoS ik < d, then the coefficient of 1ij...ip in il...ik g

(k)

is ail...aik . Since W has a basis consisting of elements of the

form i1...1xy » the result follows.

26.10  COROLLARY {Aj}...{A } is the character of g on wle ... @
wta) = 02 !

Now, recall from 6.1 that m = (mku) is the matrix whose entries
are indexed by proper partitions, given by
[Al][kzl...[kn] = L mku[u]

u
From Theorem 26.6, we have
26.11 O 0G) ) = 2 my ()

Since the Determinantal Form gives the inverse of the matrix m,
we have

26.12 THEOREM If ) is a proper partition of n, then the character of

g on_the Weyl module W is ]{Ai—i+j}|.

We write {A} = ]{Xi—i+j}[ = the character of g on w". Then
immediately

X

26.13 THEOREM {A}{u} is the character of g on W' @ W'.

The Littlewood-Richardson Rule tells us how to evaluate {A}{u}

as a linear combination of {v}'s (where A is a partition of r, u is a
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is a partition of n-r and v is a partition of n), since we know that
the Littlewood-Richardson Rule follows from Young's Rule.
It is worth noting that were we to define

{k} = b g

R . ll Cli
1511 Sea.siy

ees O3
2 1k
where {al,az,...} is countable set of indeterminates, then

OO e O = ©omy G

and (A} = [ (A, -i+3}]
are equivalent definitions of {A}, for A a partition of n (since our
results work for Opreessly in an infinite field, the above must be
identities in the indeterminates al,...,ad ).

{A} is called a Schur function, and the algebra of Schur functions

is thus isomorphic to the algebra generated by the [Al's, where A varies
over partitions of various n. The Littlewood-Richardson Rule enables us
to multiply Schur functions.

Schur functions can be evaluated explicitly by

26.14 THEOREM If u is a proper partition of n, then

vl V2 Vn
{u} =z m L I
v VU 1171, i,

Note: In all that follows, I' denotes the sum over all unordered sets
of n indices il’iz""’in (no two equal) chosen from {1,2,...,d} or
from {1,2,...} depending on whether we wish to define {ul}in terms of
{al,az,...,ad} or of {al,az,...}.

L) —
Proof of Theorem 26.14 (m m )Av = g m>\0m\)c
- g T
= (2 Mo X7 % My X )

z , this being an inner product of

characters of Gn.

([A130020- - D] Tv130v2 0o e IV )) | o the definition

f m.
A (o]
M)

dim Hom (M

C &,
the number of A-tabloids of type v, by Theorem 13.19.

= the coefficient of azlazz...azn in {3} 00}, by

considering how this coefficient is evaluated,

V] Vv v
Th - = ' ! 2 n
erefore, {Al} {An} 5 (m m )Av X ail ai2 ...ain.
-1
B =
ut {u} § (m &A {Al}...{kn} by 26.11,
-1 v V1 v Vn
= I (m ) m m z . e e O
A, V0 uAx Ao Tvo i, i, i,



132

v v v
= I m ! a.l .2... a , as required.
v VH i; "ip i,
k
26.15 DEFINITION Let Sk = I o, if k 2 1 and Sy = 1.
i i

We can now prove the useful

26.16 THEOREM Let p be a permutation of (;n with cycle lengths;gl,

RoreessfPp and let C(p) denote the centraliser of p in Gn. Let Xu(p)

be the value of the character of ‘;n corresponding to the partition

u, evaluated on p. Then

: H
e = I
(1) o1 S0, Son : X" (e) {u}
L. 1 u
= —_— .o
(ii) {u} L |C(p)| X (D)Splspz spn .
Proof )([\)l][\)2]"'L\)n:| (p) = the number of tabloids in M fixed by p.

= the number of v-tabloids of type (1") where each cycle of p is cont-

ained in a single row of the tabloid.
v

v v
= the coefficient of all a22... ann in Sy, Sp e Sy # by considering
1 2
how this coefficient is evaluated. n
[v,Jv,l...[v 1 v V1 V2 Vn
Therefor ‘e = I 1 2 n L 0y O, easO,
© orer spl sp2 Spn v X te) OLll 1z 1n

=1 x[\)ln\’a’-]"‘["nJ (p) (m )'l{u}, by Theorem 26.14
v, H uv

T xu(p) {u}, from the definition of m.
i

This proves part (i) of the Theorem.
By the orthogonality relations for the columns of the character
table of Gn,

1 A 1 A H
L= e = I =
o lc(p)l X (p) Spl sz Spn oo C(p) X (p)X (D){u} {X}r
and this is the second part of the Theorem.

26.17 COROLLARY If G is any group, and O is an ordinary character of

G, then for all n > O and all proper partitions y of n, o' is a
character of G, where

oMg) = L TerT ¥ e e(e®howef2) ..ot (ge )

The centraliser order |C(p)| and the character x" refer to the symmetric

group Gn and the sum is over all proper partitions p of n; p is written

as (pl,_gz,...,pu), where Pl 2 Py 2.0-20, > Q.

If © has degree d, then 0" has degree equal to the number of semi-
standard p~tableaux with entries from {1,2,...,d} .
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Proof: There is a homomorphism ¢ from G into G Ld(C). If ge G, let
¢ (g) have eigenvalues Upr OppevesOg » Then a?, ag,..., ag are the
eigenvalues of gk, and so 0(g"7) = alk + ... + ag . The result now

follows from Theorem 26.16(ii) and Theorem 26.5(1).

26.18 EXAMPLES Referring to the character tables of Gb, Gl, <§2 and

G

37 the last of which is

(1%) (2,1) (3)

Centraliser order: 6 2 3
y3 1 1

(2,1 5 o -1

I 1

we have, for any ordinary character © of any group G, and any ¢ in G,

O(O) = the trivial character of G

o) = o

02 (g) = 7T(a(gn? + Fo(g?)

oV (g) = H0(9)? - Fo(g?)

03 (g) = Fe(g))3 + Fo(g?)e(g +o(gd)

021 (g) = T(e(9)? + 0.0(gPe(g) - o(g?)

0o (@) = %) - ogdolg + Hoigd).
Note that 0Mg o(1) = g(2) , o(1%)

0(2)8 G(l) = 0(2’1) + 6(3), etc. (cf. Young's Rule)

If 0 has degree d, then

deg 02 = (§) 4 a = LG
(12 _ 4, _ da(da-1)

deg 0 3 = (;) = =5

deg ot o (g)

deg e(2,1) - (d+l)§(d—l)

deg e(3) _ (d;2)

(The last two degrees are most easily calculated by using the next
Theorem.)

Similar to the Hook Formula for dim SA, we have

26.19 THEOREM dim W* = I (a+j-1)

(i,3)elA]
M(hook lengths in [A]).

Proof: We prove first that dim W(k) = (kgle) if k is a non-negative

integer.

The natural basis of W(k) consists of (k)-tabloids with entries
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from {1,2,...,d}. There is a 1-1 correspoéndence between this basis and
sequences of "bars" (|) and "stars" (*) with d-1 bars and k stars

e.g. * | | *x *x | * l l | X ok ok | %
< 1 33 4 777 8
- . . k
There are (kgﬁll) such sequences, so this is the dimension of Wk,
Since {A} = [{A; + J - i}]|, we have
dimWA=|(>\i+d—l+j~i)|=lAi+d—l+j—i)|
d -1 A, + 3 -1
i
Id(d+l)...(d + A, -1+ - 1)1 - £(d), say.

. i
(Ai + 3 i)l

Let X have h non-zero parts (so we are taking the determinant of

an h x h matrix). It is clear that the polynomial £(d) has degree

Al + Az + ...+Ah and leading coefficient
S S R 1 , by 19.5 and 20.1.
(Ai + 3 - I)!| © T(hook lengths in [A])

Therefore, the result will follow if we can prove:

When k 2 -h+1l, and i* is the largest integer i such that

% x
Ai > k+i, then (d+k)1l divides £(d) for k > 0 and (d+k)1l +k divides

f(d) for k < O.

(k measures "how far right of the diagonal we are", and the above will

ensure that the numerator in the statement of the Theorem is correct.)

i*, d < d+k = d+ Ai—i. Examining the third determinantal

expression for f(d) above, we see that, for i < i*, (d+k) divides all
<%

the entries in the ith row of our matrix. Therefore, (d+k)1 divides

f(d).

Case 1 k =2 O.
<

For i

Case 2 k < O.
Here we claim that f£(d) = det(Mk(d)) where Mk(d) is a matrix whose
(i,3)th entry for all i, and for all j > =k, is

( Ay +d+ 3 -1 +k ) .

d + k
This is certainly true for k = -1 (by our first expression for
f(d)), so assume, inductively, that it is true for k. For all j = -k,

subtract the jth column of Mk(d) from the (j+1l)th column of Mk(d). In
the new matrix, for j 2 -k+1l, the (i,]j)th entry is
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()\.+d +
d

i + k) _ (Ai + 3 I -1-i + k) _ (Ai+d : 1—}:‘(.‘1 k—l)

j-i ]
+ k k

Thus, our new matrix may be taken as M (d), and the result claimed

k-1
is correct.
Since (A. + j—i) _ {o if A, + 3-i <0
ig = i
1 if Ai + j-1 2 O

and A; + j-i 2 O for i s i* and j = -k, M (-k) has the form

O's and 1's

et
-k~1 h+k+1

Therefore, the rank of Mk(—k) is at most (-k-1) + (h—i* + 1),
.k
whence the nullity of Mk(~k) is at least i* + k. Thus (d+k) 1 *Kk divides
det(Mk(d)) = f(d), as required.

26.20 EXAMPLES

() If A = (k) then dim w* = $d*D oo Wtkal) 1y porejcular,
2) _ d(a+l :
@) _a@t

dim W

(ii) If [X] = X X X , then the hook graph is 4 3 1
X X 21

Replacing the (i,j) node in [A] by j-i, we have Q 1 2
-1 0

Then the Theorem gives dim W = d(dzl;(§+i){d—l)d

As with the Hook Formula for the dimension of the Specht module
A
S, the formula of Theorem 26.19 is much more practical than the count

of semistandard tableaux when calculating dimensions of Weyl modules
A
W,



APPENDIX

THE DECOMPOSITION MATRICES OF THE SYMMETRIC GROUPS G% FOR THE PRIMES

2 AND 3 WITH n < 13

We have deliberately presented these decomposition matrices without
sorting the characters into blocks. This makes it easier to spot
patterns which might hold in general; for example, compare the part of
the decomposition matrix of Gl3 corresponding to partitions having 3
parts with the decomposition matrix of G&O’ and see the remark follow-
ing Corollary 24.21.
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The decomposition matrices of ¢  for the prime 2

n =0
] (0)
= 3
1 (3)
*2  (2,1)
1 aH

n = =6
1 (6)
5 (5,1)
9 (4,2)
*16  (321)
10 (41?)
5 (32%)
10 (31%)
5 (2%)
9 (2%21%)
5 (21%)
1 (1%)

— —
S n =1 :_—1/ n =2
1 %] (1) 1 1 (2)
1
— o~ — N — =
= 3 :i
oo n =y T n =25 ez
1 1 (4) 1 1 (5) 1
1 3 (3,1) 11 b (4,1) 1
1 *2 (22) 1 5 (3,2) 1
3 (21%) 11 *6  (312) 2
1 (" 1 5 (221) 1
boo(21%) 1
1 (1% 1
—~ o = W —~ W+ o C
— —~ o
SR ISRARSES
~ LI o\ ~ - o~ LYo\
AR n = 7 cee s
1 1 (7) 1
11 6 (6,1) 1
111 14 (5,2) 1
1 1y (4,3) 1 1
211 35 (421) 1 1 1
1 1 15 (512%) 1 1
211 21 (3%1) 1 1
1 1 21 (32%) 1 1
111 *20  (41?) i 1
11 35 (3212%) 1 1 1
1 14 (23%1) 1 1
15 (31%) 1 1
s (2213 1
6 (21%) 1
1 1" 1

(3,2) 4

o

(2 1

[



138

The decomposition matrix of €, for the prime 2

—~N®©wF 0 FC
—~ w =t
O =304
~ " e “noy M
@w~w W T
1 (8) (1% 1
7 (7,1) (21%) 11
20 (642) (221%) 11
28 (5,3) (2%12%) 111
64 (521) (321%) 1
70 (431) (3221) 2111 1
14 (42) (2*) 11
21 (612%) (31%) 111
56 (422) (3212) 2 1 1
42 *(322) 2 1
35 (51%) (41*) 1211
30 *(4212) 2221 1
Block number: 111121

The decomposition matrix of G, for the prime 2

N o w W ©wCO
~N T+~ WO
—~
TN o A0S
~ s A NMDM
(o2 N = o B o M o RN V5 JINK 4 @ R W B o
1 (9) (1) 1
8 (8,1 (217) 1
27 (742) (22153) 1 1
48 (6,3) (231%) 1
42 (5,4) (2*1) 1 1
105 (621) (321"%) 1 1 1
162 (531) (322%1%) 2 1 111
168 (432) (3221) 1 1
28 (71%) (31%) 2 1
84 (421) (32%) 2 1 1 1
120 (52%) (321%) 2 11
42 %(33) 2 1
56 (61%) (415) 1 1
189 (5212) (4213%) 3 2 111
216  (4312) (4221) 1 1 1
70 %(51") 2 2 1

Block number: 12121112
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The decomposition matrix

of Giﬁ for the prime 2

N w N F o o o

N N s N N N N s

(5221)
(61")
*(521%)

Block number:

(103

(9,1)
(8,2)
(7,3)
(6,4)
(721)
(631)
(541)
(532)

O

N Wi WNIN NN N

]
o
H

=

=

e il il e

26
48

N

[

il

NN W wH

[ S ATy

16
160
198
128

PN

2

200
768

(4321)

1=
=

o

1213



1540
252

The decomposition matrix of Gll
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_for

the prime 2

(11) (1'1)
(10,1) (21%)
(9,2) (2%217)
(8,3) (231%)
(7,4) (2%1%)
(6,5) (2°1)
(821) (321°%)
(731) (3221")
(641) (323%12)
(632) (3%221%)
(542) (32221)
(5321) (43212)
(912%) (31%)
(521) (32*)
(722) (3218%)
(532) (3312)
(423) (3%2)
(81%) (417)
(7212%) (421%)
(6312) (4221%)
(5412) (423%1)
(6221) (431*)
(4221) (4322)
%(4321)
(523%) (4213)
(71%) (51°%)
(621%) (521"%)
(531%) (52212)
%(615)

Block number:

1
10
4

10

16y
32

186

(1)
(10,1)
(9,2)
(8,3)
(7,4)
(6,5)
(821)
(731)
(641)
(632)
(542)

P
= =
el

h]
(=]
(=]

N
w
N

N NN
N
[

FNN W
e

198
1uy
8usg
416

(5321) 1168



1

11
54
154
275
297
320
891
1408
1155
1825
2673
2112
5632
5775
132
55
616
1320
1650
462
165
s
2376
3080
1485
2079
4158
2970
1925
4us55
2640
330
3696
3520
3564
7700
462
2100
1728

The decomposition matrix of @
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for the prime 2

(12) (11%)
(11,1) (21'%)
(10,?) (221%)

(9,3) (231%)
(8,u) (2*1%)
(7,5) (2°12)
(921) (3217)
(831) (3221%)
(7u1) (3221%)
(651) (32%1)
(732) (2%12%)
(Bu2) (3272212)
(543) (3321)
(6321) (u321%)
(5421) (u43221)

(62) (28)

(1012%) (31%)
(82%) (321%)
(5%22) (322%)
(632) (3%1%)

(u?) (3%)

(91%) (418)

(8212) (4218%)

(731%2) (u221%)

(6u12) (y2312)

(5212) (32")

(72%21) (431%)

(5321) (u321%)

(4231) (4322)
(62%) (421%)

(5322) (4%2212)

®(y222)
(81*) (517)
(631%) (5221%)
(541%) (5231)
(62212%) (531%)

%(53212)
(71%) (61%)

%(621%)
(721%) (521%)

Block number:

1
10
oy

100

164

(12)

—

e

[8,] w w

WWN N WWEFWHNNDNN

DN

£ N oo,

(11,1

e

NN NN (=
I e ol = E e N N e e e

NN FEF RN FON

NNON

(10,2)
(9,3)
(8,4)

=

N

N =

N H NN

e
e

e

WHNWNHNN wwH - (o = w

NN EN

e

NN

N

NHNN

~N CO @
™M NI~ O
mwn T N
—
PRt epe
N W
~ Yoo o~ W
1
1
1
1
1 1 1
1 1
1 1 1
1
2 1 1
1
1
1 1
1
1
2 1
2 1 1
1 1
1 1
1
1
2
1
2 2 1
101
1 2 1
3 2 1
1
1 2 1
1 1
12121

(732) 1046

Xy

1

12

W N N W
—Ho M w
Tt~ 0 ™
— wn N
N NN
s pliec N 4 0 B o
@O W W w
1
1
1
2 1
1
1
1
1
1
1 1
1 1
1
1 1
1
1
1
1
2 1
1231
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The decomposition matrix ofGla for the prime 2

" HIEESIZSTEIgREEes
- N N M@
PR Seanielisiolofolololiofeloliaia
B 80SSs 88323283233
1 (13) (113 1
12 (12,1) (2111 1
65 (11,2) (221%) 1 1
208 (10,3) (2217) 1
429 (9,4) (2%1%) 1 1 1
572 (8,5) (251%) 1 1
429 (7,86) (2%1) 1 11
429 (1021) (321%) 1 1 1
1365 (831) (32218%) 3 1 1 11
2574 (8u1) (3221%) v 1 1 11
2860 (751) (32%12) 2 1 1 111
3432 (832) (3221%) 2 1 1
6006 (742) (322213) y 1 1 1 211 1
S1u48 (652) (32231) 1 1 1 1
6435 (643) (3221%) 3 1 1 1112 1 1 1
12012 (7321) (4321%) 3 2 1 1
17160 (6421) (u32212) 4y 1 2 1 1 11
15015 (5431) (43221) 7 3 1 111 1 1 1 1
66 (1112) (311°) 2 1
1287 (621) (32%) 1 1 1 1 1
936 (922) (3217) 2 11
357§ (732) (331%) 3 1 1 1 1 1
3432 (523) (3322) 2 11 1 1
2574 (542) (3*1) 2 1 1
220 (1012) (419) 1 1
1430 (9212) (4217) v 2 1 11
4212 (8312) (42215) 3 1 2 1
6864 (7412) (42319) 6 2 3 2 211 1
5720 (651%) (42%1) 2 2 1 2
3640 (8221) (4316) 2 1 1 1
8580 (5221) (4323%) 3 1 1 1 1 1
11440  (6321) (43213) 2 1 11
3432 (431) (43%) 2 1 1
400y (722) (421%) y 2 2 1 1 1
12012 (6322) (42213) 3 1 1 11
12870 (5622) (42221) 6 3 2 2 1 1 1
11583 (5322) (42312) 5 3 1 1 1 1
8580 *(4232) y 2 1
435 (91%) (51%) 3 2 1
3003 (821%) (521%) 3 2 1 111
7800 (731?) (5221%) 8 2 3 21311 1
10296 (6412) (52312) ] 2 3 21312 1 1
5005 (5212) (52%) 3 1111 1
7371 (72%212) (531%) 7 2 2 11311 1
20592 (63212) (5321%) 6 1 3 2 1 11
21450 (54212) (53221) 12 4 3 31312 2 1 1
16016 *(53212) 8 y 2 2 2 1 2 1
9009 (6221) (541%) 7 ? 2 11211 1 1
728 (81%) (617) 2 1 1
4290 (721%) (6213) 6 2 2 11211
9360 (631%) (62213) ¥ 1 3 2 1
92y *(71¢%) 4y 2 2 1

Block number: 121212111112121221
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The decomposition matrices of @ for the prime 3

(4,1) 4

— —
c -
n =0 n = l n = 2
%] ) 1 #] 1 1 1 (Z)
1 (1")
— M —~H M ~
A a~S
~ ~ ~ aN — ~
o o &4 NN w
n = Q n = 4 n =5
1 (3) 1 1 () 1 1 (5) 1
*2 (2,1) 11 3 (3,1 1 boo(u,1)
1 (1) 1 *9 (22) 1 1 5 (3,2)
3 (21%) 1 %5 (312)
1 (1% 1 5 (221) 1
v (21%)
1 (1%)
— W o~
N+ oHWwTo Ll
IR AR AR [
~ fN NN ~ o & "
O w M > MO M~ W v T
n =6 n = 7
1 (6) 1 1 (7) 1
5 (5,1) 11 5 (6,1) 1
9 (4,2) 1 s (5,2) 1
5 (3%) 101 14 (4,3) 11
10 (u41?) 1 1 15 (512)
*16 (321) 11 111 35 (421 1 11
3 (221%) 1 21 (321)
5 2% 1 1 21 (322) 1
10 (31 11 35 (321%2) 1 1
5 (21:) 11 x20  (41?)
1 (1" 1 1y (221) 1
15 (31%)
1 (2213 1
6 (21%)

1 (17 1

1

(2)
(12) 1

(221) u

(3,2) 1
(312) 6

[

20
6
15

15

(51%)
(u21)
(321)
(32%)
(321%) 13
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The decomposition matrix of €, for the prime 3

A~ M oA AW~ v HCOMHOe
— N (9N 9] MmO N
AN MAA N H AN N N
~ & e N M N [ RS I o)
QM W w3 O x> FM COM
1 (8) 1
7 (7,1) 1
20 (6,2) 11
28 (5,3) ]
14 (n?) 1 1
21 (812) 1
6L (521) 1 1 1
70 (431) 1 11
56 (422) 11 1 1
*y2 (322) 1 1
*0n  (4212) 1
56 (3212) 1 11 1
70 (3221) 1 1 1
35 (51%) 1
1y (2%) 1 1
35 (41*) 1
g4 (321%) 1 1 1
28 (23%1%) 1
21 (315%) 1
20 (221%) 1 1
7 (21%) 1
1 (1%) 1

Block number: 1221231123412
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The decomposition matrix of Gy _for the prime 3

1

(9)
(8,1)
(7,2)
(6,3)
(5,4)
(712)
(621)
(531)
(421)
(522)
(432)

(5212)
(u312)
(4221)
(3221)
(32212)
(33)
(613)
(323)
(51*)
(4213)
(3213%)
21y
(415)
(321")
(231 %)
(31%)
(221%)
(217)
(1%)

Block number:

7
27

(8,1)
(7,2
(6,3)
(5,4)
(712)
(621)
(531)
(421)
(522)

= b

]

41

(R

[Argrpe

=

1=

21

-

35
162

[

7
35

[

o]

¢

~ o~ O N
N NI W
— — —
P T W NP NI Y |
L I I B B |
S HN NN
oN MM NN N
T w T FTomm
1
1
11
1
1 1
1
1
1
1
1
1
1
1 1
1
1
1
Il %4215
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The decomposition matrix of GlO for the prime 3

1 (10)

9 (9,1)
35 (8,2)
75 (7,3)
90 (6,4)
42 (5%)
36 (812)
160 (721)
315 (631)
288 (541)
225 (622%)
450 (532)
252 (422)
210 (u32)
350 (6212%)
567 (5312)
300 (421%)
525 (52%1)
%768 (4321)
252 (3%22%)

567  (42212)
450  (32212%)

8y (713%)
210 (33%1)
300 (423)
126 (61"*)

*4u8 (521%)
525 (4313%)
288 (3231)

u2 (2%)
126 (51°%)
350 (421")
225 (321%)

315 (32213)
30 (2%12)

8y (41%)
160 (321°%)
75 (231%)
36 (317)
35 (22158)
g (218%)
1 (11%)

Rlock numbers:

—

— (10)

=

3

O 1 CH W FTOOW OW T >~ HOC O
Mt o ™ oo~ NN o N OMm NSO WS
o~ —~ o~ W o~ W o
A~ N~ o~ AN AN A A AN A A AN N ~ o~ ~ —
H N A Y NN Ay NNy N
e & & AN H NN ON ONMyg NNy No
O N W WO MWW WWIFOWW I WO T
1
1
11
1
1 1
1
11 1
1 1
11
1 1 1
1 11 1
1 1 1
1 1 1 1
1 1 1
1
1 1 1 1
11 1 1 1
11 1 1 11 111
1 1 1
1
1 1 1 1
1
1 1 1
1 11
1
1 1
1 1 111
1 1
1
1
1 1 11
1 1 1
1 1
1
1
1 1 1 1
1 1
1
1 1
1
1

211213133232114%1113%52



1
10
by

110
165
122
45
231
550
693
330
385
990
990
660
46?2
594
1232
1155
1100
2310
1320
%1188
1320
1540
2310
990
120
825
462
210
924
1540
825
660
1155
330
%252
924
1100
1232
990
693
132
210
59y
385
550
165
120
231

110
45
By
10

1

The decomposition matrix of G
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for the prime 3

=)

(11)
(10,1)
(9,2)
(8,3)
(7,4)
(6,5)
(912)
(821)
(731)
(6u41)
(521)
(72%)
(632)
(542)
(532)
(423)
(7212)
(6312)
(5412)
(6221)
(5321)
(4221)
(4321)
(4322)
(52212)
(43212)
(32221)
(813%)
(523)
(332)
(71%)
(6213)
(5313%)
(4213)
(3212)
(4231)
(32%)
(61%)
(521%)
(431%)
(42213)
(3221%)
(32212)
(251)
(51¢)
(4215)
(3215)
(3221%)
(2%13%)
(417)
(321%)
(2315)
(319)
(2217)
(21%)
(11t1)

Block numbers:

—

109
131
120
320
693
10
210
252
45 =
210
120
594
791
34
714
714
109
59y
131

]
(8,3)
(7,4)
(6,5)
(912 )
(g21)
(731)
(6ul)
(521)
(722)
(632)
(542)
(532)

(423)
(32221) 693

(7212)
(6312)
(5412)
(6221)
(5321)
(4221)
(4321)
(4322)
(52212) 791
{y3212) 320

—
-
1
[
—

[N
[
[
[

SN
[
-
[

1
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The decomposition matrix of Qu.u for the prime 3 (continued)

AN O~ 0 O O NN WMNNW I NOWVMW NS 0 0OWMOWoI~ O A O~
N O N O N~ 0 ODODWWNDDNOODOHO OO NDTOOOW SN~ OO
— = =+ NN NN =+~ 0 D~ N O NM D NH ODODOW o MM wnNm
A N %3 —~ 2+ ™ —A A O —~ — o o~ ~ oM
"20 (1n1?) 1 1
3432 (431) 11 1 1
4O0Y (72%) 2 11 11 11
2571 (u3?%) 1 1 1
495 (91") 1
30n3 (821%) 1 1
7800 (731 2 1 1 11
10296 (6u1?) 1
50N05 (521%) 1 2 11 1 1
3n0g (6231) 2 1 1
2574 (3*1) 1 1 1
5NN5 (52*) 2 11 1 1 1
858N (432 2 11 2 1 1 11 1
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£92y (71%) 1
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10296
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5082
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