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Preface 

The representation theory of the symmetric groups was first studied 

by Frobenius and Schur, and then developed in a lon~ series of papers 

by Young. Althou~h a detailed study of Younq's work would undoubtedly 

Day dividends, anyone who has attempted this will realize just how 

difficult it is to read his papers. The author, for one, has never 

undertaken this task, and so no reference will be found here to any of 

Youn~'s proofs, although it is probable that some of the techniques 

presented are identical to his. 

These notes are based on those ~iven for a Part III course at 

Cambridge in 1977, and include all the basic theorems in the subject, 

as well as some material previously unpublished. Many of the results 

are easier to explain with a blackboard and chalk than with the type- 

written word, since combinatorial arguments can often be best presented 

to a student bv indicatinq the correct line, and leaving him to write 

out a complete Drool if he wishes. In many rlaces of this book we have 

nreceded a proof by a worked example, on the ~rinciple that the reader 

will learn more easily by translating for himself from the particular 

to the general than by readinn the sometimes unpleasant notation required 

for a full proof. However, the complete argument is alwa~Is included, 

perhaps at the expense of supnlying details which the reader might find 

quicker to check for himself. This is especiallv important when dealing 

with one of the central theorems, known as the Littlewood-Richardson 

Rule, since many who read early proofs of this Rule find it difficult to 

fill in the details (see [16] for a description of the problems encount- 

ered). 

The approach adopted is characteristic-free, except in those 

places, such as the construction of the character tables of symmetric 

grouns, where the results themselves denend upon the ~round field. The 

reader who is not familiar with representation theory over arbitrary 

fields must not be deterred by this; we believe, in fact, that the 

ordinary renresentation theory is easier to understand by looking initi- 

ally at the more general situation. Nor should he be put off by the 

thought that technical knowledge is required for characteristic-free 

representation theory, since the symmetric groups enjoy special propert- 

ies which make it possible for this book to be largely self-contained. 

The most economical wav to learn the important results without using any 

general theorems from representation theory is to read sections 1-5, 

I0-Ii (notinq the remarks following Example 17.17), then 15-21. 

Many of the theorems rely on a certain bilinear form, and towards 
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the end we show that this bilinear form must have been known to Young, 

by using it in a new construction of Younq's Orthoqonal Form. It is 

remarkable that its siqnificance in the representation theory of the 

symmetric qrouDs was only recently recoqnized. 

I wish to express my thanks to Mrs. Robyn Brinqans for her careful 

and patient tvDin~ of my manuscript. 

G, D. James 
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i. BACKGROUND FROM REPRESENTATION THEORY 

We shall assume that the reader is familiar with the concept of 

the group algebra, FG, of a finite group G over a field F, and with 

the most elementary properties of (unital right-)FG-modules. It is 

possible to prove all the important theorems in the representation 

theory of the symmetric group using only the following: 

i.i THEOREM If M is an irreducible FG-module t then M is a composition 

factor of the group al~ebra r FG. 

Proof: Let m be a non-zero element of M. Then mFG is a non-zero sub- 

module of M, and since M is irreducible, M = mFG. The map 

0: r + mr (r c FG) 

is easily seen to be an FG-homomorpllism from FG onto M. By the first 

isomorphism theorem, 

FG/ker @ ~ M 

so FG has a top composition factor isomorphic to M. 

The first isomorphism theorem will appear on many occasions, 

because we shall work over an arbitrary field, when an FG-module can 

be reducible but not decomposable. 

We often use certain G-invariant bilinear forms, as in the proof 

of a special case of Maschke's Theorem: 

1.2 MASCHKE'S THEOREM If G is a finite group and F is a subfield of 

the field of real numbers r then every FG-module is completely reducible. 

Proof: Let el,...,e m be an F-basis for our FG-module M. Then there 

is a unique bilinear form ~ on M such that 

(ei,ej) # = 1 if i = j, and O if i ~ j. 

Now,a new bilinear form can be defined by 

<u,v> = [ (ug, v g) # for all u,v in M. 
geG 

This form is G-invariant, in the sense that 

<u g ,vg > = <u,v> for all g in G. 

Given a submodule U of M, v E U i means, by definition, that <u,v> 

= O for every u in U. But if u ~ U, then u g-lcu. Thus 

<u,v g> = <u g-l,v> = O, 

using the fact that our form is G-invariant. This shows that vg~ U l, 

which is the condition required for U i to be a submodule of M. 

If u ~ O, then <u,u> ~ O, since F is a subfield of the field of 

real numbers, so U n U ± = O. We shall prove below that dim U + dim U A 

= dim M, and therefore U ± is an FG-module complementing U in M as 

required. 

We now remind the reader of some elementary algebra involving 



bilinear forms. 

Let M be a finite-dimensional vector space over F. The dual of 

M is the vector space of linear maps from M into F, and will be denoted 

by M*. Let el,...,e k be a basis of a subspace V, and extend to a basis 

el,...,e m of M. For 1 ~ j ~m, define ej ~ M* by e i ej = 1 if i = j, and 

O if i ~ j. By considering the action on el,...,e m, we see that any 

element ~ of M* can be written uniquely as a linear combination of 

el, .... ,em, thus: ~ = (el~)E 1 + ...+(em~)e m. Therefore, el,...,E m 

is a basis of M* and 

dim M = dim M* 

Further, # belongs to V °, the annihilator of V, if and only if 

el~ = ...= ek~ = O. Therefore, ek+l,...,e m spans V ° and 

dim V + dim V ° = dim M. 

Suppose now that we have a symmetric bilinear form, < , >, on M 

which is non-singular (That is, for every non-zero m in M there is an 

m' in M with <m,m'> ~ O). Define 

9: M + M by m + ~m where 

~m: x + <m,x> (xE M). 

We see that ~m e M*, since < , > is linear in the second place, and 

0 is a linear transformation, since < , > is linear in the first place. 

Now, ker ® = {m £M I for all x ~ M, <m,x> = O}= O, since the~]Jnear form 

is non-singular. But dim M = dila M , so @ is an isomorphism between 

M and M*. Under this identification, V ± corresponds to V °. Thus, for 

every s ubspace V, 

1.3 dim V + dim V ± = dim M 

Since V ~ V ±±, this equation between dimensions gives 

V ±l = V. 

More generally, given subspaces O c U c V = M, we have V l c U ±, 

and we may define 

9: V + dual of U±/V l by v + %v, where 

~v: x + V ± ÷ <v,x> (xE U±). 

If x + V ± = x' + V ±, then x - x'e V±, and <v,x> - <v,x'> = <vtx-x'> = O. 

This shows that 9v is well-defined. In the same way as before, 9v 

and @ are linear, but now 

ker0 = {v ~ Vlfor all x ~ U ± U ±± , <v,x> = O} = V n 

Since U ±± = U ~ V, ker 0 = U. We therefore have a monomorphisra from 

V/ker 0= V/U into the dual of U±/V ±. Again, dimensions give: 

1.4 v~hen O g U ~ V c M~ V/U~ dual of UI/V ±. In particular~ V~ 

dual of M/V ±. 

If M is an FG-module for the group G, we can turn the dual space 



M* into an FG-module by letting 

m(~g) = (rag-~ (meM, ~ E M*, g~ G). 

Notice that the inverse of g appears to ensure that ~(g~ = (~g)h. 

This means that the module M (which we shall call the dual of M ) is 

not in general FG-isomorphic to :I. Indeed, if T(g) is the matrix 

representing g with respect to the basis el,...,e m of M, then T' (g -I) 

is the matrix representing g with respect to the dual basis el,...,em 

of M*. This means that the character of M* is the complex conjugate 

of the character of M when we are working over the complex numbers. 

~ow assume that the bilinear form < , > is G invariant. If U 

and V are FG-subraodules of M, then the isomorphisms in 1.4 are FG- 

isomorphisms. To verify this, we faust show that 0: v + ~ is a G- 

homomorphism. But (x + Vl)~vg = <x,vg> = <xg-l,v> = (xg -[ + V±)~v = 

(x + V~)g-l~v = (x + V ±) (~v g) ' and ~vg = ~v g, as required. 

For every pair of subspaces U and V of M, (U + V) ± U ± n V ± = , as 

can easily be deduced from the definitions. Replacing U and V by U ± 

and V ±, we also find that U ± + V ± = (U n V) ±. 

Throughout this book, the next picture will be useful: 

M 

I 
V+ V ± 

\ 

/ 
V ~ v n v ±  

I 
O 

The s e c o n d  i s o m o r p h i s m  t h e o r e m  g i v e s  V/(V nV ±) ~ (V+ V~)/V±.  But  

(V + V±)/V ± ~ d u a l  o f  V/(V + V±) ±,  by 1 .4  = d u a l  o f  V / ( V n  V±),  so 

1 .5  For  e v e r ~  F G - s u b m o d u l e  V o f  N r V/(V n V ±) i s  a s e l f - d u a l  FG- 

module. 

Every irreducible representation of the symmetric group will turn 

up in this fashion. 

It is very ~mportant to notice that V n V ± can be non-zero for a 

submodule V of M. How can we compute the dimension of V/(Vn V±), given 

a basis of V? The answer is simple in theory, but will require a lot 

of calculation if V has large dimension. The Gram matrix, A, is def- 

ined with respect to a basis el,...,e k of V by letting the (i,j)th 

entry of A be <ei,ej>. 

1.6 THEOREM The dimension of V/(V n V ±) equals to the rank of the 



Gram matrix with respect to a given basis of V. 

Proof: As usual, map V + dual of V by 

0: v ÷ ~v where U@v = <v,u> (u E V) 

Let el,...,e k be the given basis of V, and el,..., e k be the dual 

basis of V*. Since ej~e{ = <ei,ej> , we have 

~e i = <ei'el > el+'''+<ei'ek > gk " 

Thus the Gram matrix for the basis el,...,e k coincides with the 

matrix of @ taken with respect to the bases el,...,e k of V and el,... 

£k of V* But, visibly, ker 0 = V nV ± . , so dim V/(V n V ±) = dim Im @ = 

the rank of the Gram matrix. 

The only results from general representation theory which we shall 

use without proof are those telling us how many inequivalent ordinary 

and p-modular irreducible representations a finite group possesses, 

and the following well-known result about representations of a finite 

group over C, the field of complex numbers (cf. Curtis and Reiner ~ ] 

43.18 and Exercise 43.6). 

1.7 Let S be an irreducible CG-module t and M be any ~G-module. Then 

the number of composition factors of M isomorphic to S equals 

dim HOm~G(S,M). 

In fact, it turns out that these results are redundant in our 

approach, and Theorem i.i gives everything we want, but it would be 

foolish to postpone proofs until Theorem i.i can be applied. 

Readers interested in character values will be familiar with the 

Frobenius Reciprocity Theorem and the orthogonality relations for 

characters, so we assume these results when discussing characters. 



2. THE SYMMETRIC GROUP 

The proofs of the results stated in this section can be found in 

any elementary book on group theory. 

A function from {l,2,...,n} onto itself is called a permutation 

of n numbers, and the set of all permutations of n numbers, together 

with the usual composition of functions, is the symmetric group of 

degree n, whibh will be denoted by ~n" Note that ~n is defined for 

n ~ O, and ~n has n~ elements (where O~ = i). If X is a subset of 

{l,2,...,n}, we shall write ~X for the subqroup of ~n which fixes every 

number outside X. 

It is common practice to write a permutation ~ as follows: 

i~ 2~ 3~ n~ 

By considering the orbits of the group generated by n , it is 

simple to see that ~ can be written as a product of disjoint cycles, 

as in the example : 

( 1 2 3 4 5 6 7 8 9 )  

3 5 1 9 6 8 7 2 4 = (2568)(13) (49) (7) 

We usually suppress the 1-cycles when writing a permutation. For 

example, if ~ interchanges the different numbers a,b and leaves the other 

numbers fixed, then ~ is called a transposition and is written as ~ = 

(a b). 

All our maps will be written on the right; in this way, we have 

(i 2) (23) = (i 32). This point must be noted carefully, as some 

mathematicians would interpret the product as (i 23). 

Since (i I i2...i k) = (i I i2) (i I i3)... (i I ik), any cycle, and hence 

any permutation, can be written as a product of transpositions. Better 

still, 

2.1 The transpositions (x-l~x) with 1 < x sn generate ~n" 

This is because, when a < b, we can conjugate (b-l,b) by (b-2,b-l) 

(b-3,b-2)... (a,a+l) to obtain (a b). 

If n = ~i ~2"''aj = T1 Y2"''Tk are two ways of writing ~ as a 

product of transpositions, then it can be proved that j - k is even. 

Hence there is a well-defined function 

sgn: ~n ~ {±i} 

such that sgn ~ = (-i) ] if ~ is a product of j transpositions. 

2.2 DEFINITION I = (Ii,12,~3,...) is a partition of ~ if ~i,12,~3,... 

> ~ . and [ I i = n. are non-negative integers, with 11 _ 12 al 3 . . 
i=l 



The permutation ~ is said to have cycle-type I if the orbits of 

the group generated by ~ have lengths 11 ~ 12 ~... Thus, (2 5 6 8) (1 3) 

(4 9)(7) has cycle-type (4,2,2,1,0,O,...). Abbreviations such as the 

following will usually be adopted: 

(4,2,2,1,0,O,.~.) = (4,2,2,1) = (4,2a,i). 

That is, we often suppress the zeros at the end of l, and indicate 

repeated parts by an index. 

Since two permutations are conjugate in ~n if and only if the 

permutations have the same cycle type, 

2.3 The number of conjugacy classes of ~n equals the number of par- 

titions of n. 

Now, for any finite group G, the number of inequivalent irreducible 

~G-modules is equal to the number of conjugacy classes of G, so 

2.4 The number of inequi~alent ordinary irreducible representations 

of ~n equals the number of partitions of n. 

We should therefore aim to construct a representation of ~n for 

each partition of n. Let us look first at an easy example: 

2.5 EXAMPLE There is a natural representation which arises directly 

from the fact that ~n permutes the numbers 1,2,...,n ; take a vector 

space over F of dimension n, with basis elements called 1,2,...,n , 

and let ~n act on the space by [ z = i-~ (~ e ~n ). We shall denote 
(n-l,l) 

this representation by M 

We can easily spot a submodule of M(n-l'l) ; the space U spanned 

by ~ + ~ +...+ ~ is a submodule on which ~n acts trivially. It is 

not hard to find another submodule, but suppose we wish to eliminate 

guesswork. If F = ©, the field of rational numbers, the proof of 

Maschke's Theorem suggests we construct an ~ -invariant inner product 
n 

on M (n-l'l) and then U ± will be an invariant complement to U. 

<i,j> = 1 if i = j and O if i z j (*) 

defines an ~ -invariant inner product on M (n-l'l) Then 
n 

U ± = {[ a i [ I ai E ~ a I +...+ a n = O} 

Let S (n-l'l) = (~ - [)F~n. Then certainly S (n-l'l) is a sub- 

module of U ±, and it is easy to see that we have equality. Thus 

M (n-l'l) = S (n-l'l) @ U when F = ~. 

Notice though, that (,) gives an ~ -invariant bilinear form on 
n 

M (n-l'l) whatever the field. S (n-l'l) is alwaFs a submodule, too (It 

is a complement to U if and only if char F ~ n.) S (n-l'l) is a Specht 

module. 

Are there any other easy ways of constructing representation 



modules for ~n ? Consider the vector space M (n-2'2), over F spanned 

by unordered pairs iT (i ~ j). M (n-2'2) has dimension (3) , and becomes 

an F~n-module if we define ~ = i~,j~. This space should not be 

difficult to handle, but it is not irreducible, since [ { ~ Ii ~ i 

< j s n } is a trivial submodule. We do not go into details for the 

moment, but simply observe that M (n-2'2) supplies more scope for inves- 

tigation. 

More generally, we can work with the vector space M (n-m'm) spanned 

• ~ i k unless j = k). Since by unordered m-tuples i I. .i m (where i 3 

this space is isomorphic to that spanned by unordered (n-m)-tuples, 

there is no loss in assuming that n-m a m. This means that for every 

partition of n with two non-zero parts we have a corresponding (redu- 

cible) F~n-module at our disposal. 

Flushed with this success, we should go on and see what else we 

can do. Let M (n-2'12) be the space spanned by ordered pairs, which we 

[ action is [ ~ = ~_ . Let M (n-3'2'I) shall denote by ~ (i ~ j). The &n i j~ 

be the space spanned by vectors consisting of an unordered 2-tuple 

ij followed by a l-tuple k,__where no two of i,j and k are equal. These 

vectors may be denoted by ~ , but it seems that we should change our 

notation and have -- as a basis vector of M (n-3'2'1) in 

i I ....... in_ 3 

in- 2 in_ 1 

i 
n 

place of 

in- 2 in- 1 
i 
n 

By now, it should be clear how to construct an F G -module M 1 for 
n 

each partition I of n. The notation we need to do this formally is 

introduced in the next section• M 1 is reducible (unless I = (n)), but 

contains a Specht module S I, which it turns out, is irreducible if 

char F = O. 



3. DIAGRAMS, TABLEAUX AND TABLOIDS 

3.1 DEFINITIONS. If I is a partition of n, then the diagram [I] is 

{(i,j) I i,j • • 1 ~ i 1 ~ j ~ I i} (Here, Z is the set of integers). 

If (i,j) • [I], then (i,j) is called a node of [I]. The k th row (res- 

pectively, column) of a diagram consists of those nodes whose first 

(respectively, second) coordinate is k. 

We shall draw diagrams as in the following example: 

x x x x 
I = (4,22,1) Ill = x x 

x x 
x 

There is no universal convention about which way round diagrams 

should be shown. Some mathematicians work with their first coordinate 

axis to the right and the second one upwards: It is customary to drop 

the inner brackets when giving examples of diagrams, so we write 

[4,22,1], not [(4,22,1)]. 

The set of partitions of n is partially ordered by 

3.2 DEFINITION. If I and ~ are partitions of n, we say that I dom- 

inates ~, and write I ~ ~, provided that 

for all j, lli -> [ Zi 
l i=l 

If I ~- U and I z U, we write I ~ U. 

3.3 EXAMPLE. The dominance relation on the set of partitions of 6 

is shown by the tree: 
(6) 

(5111 

/(4!21\ 
(3,3) (4,12 ) 

\ (3,2,11 / / \ 
(3,13 ) (23 ) 

~(22,121'/ 
(2!14 ) 

i 
(16 ) 

The dominance order is certainly the "correct" order to use for 

partitions, but it is sometimes useful to have a total order, >, on 

the set of partitions. The one we use is given by 

3.4 DEFINITION If I and ~ are partitions of n, write I > ~ if and 

only if the least j for which lj ~ ~j satisfies lj > ~j. (Note that 



some authors write this relation as I < ~). This is called the dictio- 

nary order on partitions. 

It is simple to verify that the total order > contains the partial 

order ~, in the sense that I m ~ implies I > ~. But the reverse imp- 

lication is false since 

(6)>(5,1)>(4,2)>(4,12)>(32)>(3,2,1)>(3,1~)>(2~)>(22,12)>(2,1~)>(16). 

3.5 DEFINITION If Ill is a diagram, the conjugate diagram [I'3 is 

obtained by interchanging the rows and columns in Ill. l' is the par- 

tition of n conjugate to I. 

The only use of the total order > is to specify, say, the order in 

which to take the rows of the character table of ~n. Since there may 

be more than one self-conjugate partition of n (e.g. (4,2,12 ) and (32,2) 

are both self-conjugate partitions of 8), there is no "syn~letrical" 

way of totally ordering partitions, so that the order is reversed by 

~aking conjugates. It is interesting to see, though, that 

I ~ ~ if and only if ~' ~ l'. 

The next thing to define is a h-tableau. This can be defined as 

a bijection from [I] to {l,2,...,n}, but we prefer the less formal 

3.6 DEFINITION A h-tableau is one of the n~ arrays of integers 

obtained by replacing each node in Ill by one of the integers 1,2,...,n, 

allowing no repeats. 

For example, 1245 and 4573 are (4,3,1)-tableaux. 

367 218 

8 6 

~n acts on the set of l-tableaux in the natural way; thus the 

permutation (i 4786) (253) sends the first of the tableaux above 

to the second. (Of course, the definition of a tableau as a function 

wins here. Given a tableau t and a permutation ~, the compositions of 

the functions t and ~ gives the new tableau t~). 

Every approach to the representation theory of ~ depends upon a 
n 

form of the next result, which relates the dominance order on partitions 

to a property of tableaux. 

3.7 THE BASIC COMBINATORIAL LEMMA Let I and ~ be partitions of n, 

and suppose that t I is a l-tableau and t 2 is a ~-tableau. Su~ose that 

for every i the numbers from the ith row of t 2 belong to different 

columns of t I. Then I ~ ~. 

Proof: Imagine that we can place the ~I numbers from the first row of 

t 2 in If] such that no two numbers are in the same column. Then Ill 

must have at least ~i columns; that is l I a ~i" Next insert the ~2 
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numbers from the second row of t 2 in different columns. To have space 

to so this, we require ll+ 12 >- ~i + ~2" Continuing in this way, we 

have I ~- ~. 

3.8 DEFINITIONS If t is a tableau, its row-stabilizer, R t, is the 

subgroup of ~n keeping the rows of t fixed setwise. 

i.e. R t = {7 E ~n I for all i, i and iT belong to the same row of t} 

The column stabilizer Ct, of t is defined similarly. 

For example, when t = 1245 , Rt = ~{i 245} x ~{367} x ~{8} 

367 

8 

and [Rtl = 4' 3' i' 

Note that Rtw = ~-*Rt~ and Ctw = z-ICt ~ . 

3.9 DEFINITION Define an equivalence relation on the set of l- 

tableaux by t I ~ t 2 if and only if tl~ = t 2 for some zE Rtl The 

tabloid {t} containing t is the equivalence class of t under this 

equivalence relation. 

,! 

It is best to regard a tabloid as a tableau with unordered row 

entries". In examples, we shall denote {t} by drawing lines between 

the rows of t. Thus 

345 245 145 235 135 125 234 134 124 123 
12 13 23 14 24 34 15 25 35 45 

are the different (3,2)-tabloids, and 132 = 123 . 
54 45 

~n acts on the set of h-tabloids by {t}z = {tz}. This action 

is well-defined, since {tl} = {t2} implies t 2 = tlO for some o in Rtl. 

Then z-l~ ¢ ~-IRtl~ = Rtl~, so {tl~} = {tla~} = {t2~}. 
We totally order the h-tabloids by 

3.10 DEFINITION {t I} < {t 2} if and only if for some i 

(i) When j > i, j is in the same row of {t I} and {t 2} 

(ii) i is in a higher row of {t I} than {t2}. 

We have written the (3,2)-tabloids in this order, above. There 

are many other sensible orderings of h-tabloids, but the chosen method 

is sufficient for most of our purposes. As with the dominance order 

on partitions, the best tabloid ordering is a partial one: 

3.11 DEFINITION Given any tableau t, let mir(t) denote the number 

of entries less than or equal to i in the first r rows of t. Then 

write 

{t I} ~ {t 2} if and only if for all i and r mir(t I) ~ mir(t2). 
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This orders the tabloids of all shapes and sizes, but we shall 

compare only tabloids associated with the same partition. 

By considering the largest i, then the largest r, such that 

mir(t I) < mir(t 2) , it follows that 

3.12 For ~-tabloids {t l} and {t2} ~ {t 1} ~ {t 2} implies {tl~ < {t2L. 

3.13 EXAMPLES (i) If t I = 136 and t 2 = 124 

257 356 

4 7 

then the first 7 rows and 3 columns of the matrices (mir(tl)) and 

(mir(t2)) are 

1 1 1 1 1 1 

1 2 2 2 2 2 

2 3 3 2 3 3 

(mirtl)) = 2 3 4 (mir(t2)) = 3 4 4 

2 4 5 3 5 5 

3 5 6 3 6 6 

3 6 7 3 6 7 

Therefore, {t I} ~ {t2}. 

(ii) The tree below shows the ~ relation on the (3,2)-tabloids: 

345 
12 

i 

245 

1 4 5  2 3 5  
2 3 Y " T - -  

\234 
24 15 

/ \ / 
125 134 
34 25 

3 5  

t 
1 2 3  
4 5  

Suppose that w < x and w is in the ath row and x is in the bth 

row of t. Then the definition of m (t) gives 
ir 

3.14 mir(t(wx)) - mir(t) = /i if b -< r < a and w < i < x 

~-l if a < r <b and w ~i <x 
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O otherwise. 

Therefore 

3.15 {t} ~ {t(wx)} if w < x and w is lower than x in t. 

When we prove Young's Othogonal Form, we shall need to know that 

the tabloids {t} and {t(x-l,x)} are immediately adjacent in the 4 order 

(or are the same tabloid): 

3.16 LEMMA If x-i is lower than x in tf and t is a l-tableauf then 

there is no l-tableau t I with {t} ~ {t I} ~ {t(x-l,x)} . 

Proof: First note that for any tableau t* with i* in the r*th row, 

mi,r(t*) - mi,_l,r (t*) = the number of numbers equal to i* in the 

first r rows of t* = {0 if r < r* 

1 if r> r* 

Now suppose that x-i is lower than x in t, and {t} ~ {t I} 

{t(x-l,x) } . By 3.14, 

mir(t) = mir(t(x-l,x)) if i ~ x-l. 

Therefore 
mir(t I) = mir(t) if i z x-i 

and mir(t) - mi_l,r(t) = mir(t I) - mi_l,r(t I) if i ~ x-i or x. 

By the first paragraph of the proof, all the numbers except x-i 

and x appear in the same place in t and t I. But t and t I are both 

l-tableaux. Therefore, {t I} = {t} or {t(x-l,x)} as required. 
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4. SPECHT MODULES 

With each partition ~ of n, we associate a Young subgroup ~ of 

by taking 
n 

G~ = ~{1,2, .... ~i }x ~{~i+i, .... ~i+~2 }x ~{ ., ~i+~2+i,. ~i+~2+~3 }x 

The study of representations of ~n starts with the permutation 

module M ~ of ~n on ~ . The Specht module S ~ is a submodule of M ~, 

and when the base field is ~ (the field of rational numbers), the 

different Specht modules, as ~ varies over partitions of n, give all 

the ordinary irreducible representations of 
n 

4.1 DEFINITION Let F be an arbitrary field, and let M ~ be the vec- 

tor space over F whose basis elements are the various ~-tabloids. 

The action of ~ on tabloids has already been defined, by {t}~ 
n 

= {t~} (~ £~n ) . Extending this action to be linear on M ~ turns M ~ 

into an FGn-module, and because ~n is transitive on tabloids, with 

~ stabilizing one tabloid, 

4.2 M ~ is the permutation module of ~ on the subgroup ~ . M ~ is 
n 

a cyclic F Gn-module, generated by an[ one tabloidf and dim M ~ = n~ / 

(~i~_~2 ~ .... ) . 

4.3 DEFINITIONS Suppose that t is a tableau. Then the si~ned column 

sum, Kt' is the element of the group algebra F ~n obtained by suma~ing 

the elements in the column stabilizer of t, attaching the signature 

to each permutation. In short, 

<t = [ (sgn ~)~ . 
~C t 

The polytabloid, et, associated with the tableau t is given by 

e t = {t}K t 

The Specht module S ~ for the partition ~ is the submodule of M ~ 

spanned by polytabloids. 

A polytabloid, it must be noted, depends on the tableau t, not 

just the tabloid {t}. All the tabloids involved in e t have coefficient 

± 1 (If v eM ~, then v is a linear combination of tabloids; we say that 

the tabloid {t} is involved in v if its coefficient is non-zero.) 

4.4 EXAMPLE If t = 251 then K t = (1-(23)) (1-(45)). 

34 

(We always denote the identity permutation by i~. Also 

et = 251 - 351 - 241 + 341 
34 24 35 25 

The practical way of writing down et, given t, is to permute the 
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numbers in the columns of t in all possible ways, attaching the sig- 

nature of the relevant permutation to each tableau obtained that way, 

and then draw lines between the rows of each tableau. 

Since ~t ~ = ~<t~' we have et~ = eta, so 

4.5 S U is a c~clic modulef generated by any one polytabloid. 

It we wish to draw attention to the ground field F, we shall.write 

and S~ . Many results for Specht modules work over an integral 

domain, and it is only in Theorem 4.8 and Lemma 11.3 that we must have 

a field. When F is unspecified, then the ground field is arbitrary. 

Since M U is a permutation module, it is hardly surprising that most of 

its properties (for instance, its dimension) are independent of the 

base field. What is more remarkable is that many results for the 

Specht module are also independent of the field. Two special cases 

are immediate. When U = (n) , S U = M U = the trivial FGn-module. When 

U = (in), M U is isomorphic to the regular representation of ~n' and 

S U is the alternating representation (i.e. ~ + sgn~). 

We now use the basic combinatorial Lemma 3.7 to prove 

4.6 LEMMA Let I and p be partitions of n. Suppose that t is a ~ 

tableau and t* is a ~-tableau F and that {t*}< t ~ O. Then ~ £ ~, and 

if I = ~ then {t*}< t = ±{t}< t (= ± et) ~ 

Proof: Let a and b be two numbers in the same row of t*. Then 

{t*} (l-(a b)) = {t*} - {t*(a b)} = O. 

a and b cannot be in the same colunm of t, otherwise we could 

select signed coset representatives ~i,...,~< for the subgroup of the 

column stabilizer of t consisting on 1 and (a,b) and obtain 

<t = (l-(a b))(~i + "''+~<)" 

It would then follow that {t*}<t= O, contradicting our hypothesis. 

We have now proved that for every i, the numbers in the ith row 

of t* belong to different columns of t, and Lemma 3.7 gives I ~ U. 

Also, if I = U , then {t*} is one of the tabloids involved in {t}<t, 

by construction. Thus, in this case, {t*} = {t}~ for some permutation 

z in Ct, and {t*}< t = {t}z <t = ±{t}<t" 

4.7 COROLLARY It u is an element of M U and t is a ~-tableau r then 

u__~< t is a multiple of e t. 

Proof: u is a linear combination of u-tabloids {t*} and {t*}K t is a 

multiple of e t , by the Lemma. 

Now let < , > be the unique bilinear form on M ~ for which 

< {tl},{t 2} > = 1 if {t I} = {t2}, O if {t I} ~ {t 2} 
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Clearly, this is a symmetric, ~n-invariant, non-singular bilinear 

form on ~,i p, whatever the field. If the field is ~, then the form is an 

inner product (cf. Example 2.5). 

We shall often use the following trick: 

For u, v E M ~, <u<t,v> = ~ <(sgn ~)u~, v> 

~£C t 

= [ <u, (sgn ~)v~-l> 

~eC t 

(since tile form is ~ -invariant.) 
n 

= [ <U, (sgn ~)v~> 

~eC t 

= <UlV~t> 

The crucial result using our bilinear form is 

4.8 Tile SUBMODULE THEOREm4 (James [7]). If U is a sub[lodule of I,iPf 

then either U m S ~ or U c S p±. 

Proof: Suppose that ue U and t is a p-tableau. Then by Corollary 4.7, 

u< t = a multiple of e t. 

If we can choose n and t so that this multiple is non-zero, then 

e t ~ U. Since S p is generated by et, we ±lave U _~ S p. 

If, for every u and t, u< t = O, then for all u and t 

0 = <u<t, {t}> = <u, {t}<t> = <u, et> 

That is, U c S pl. 

4.9 T~EOREM SP/(S p n S p±) is zero or absolutely irreducible. Further 

if this is non-zero t then S p n S pi is the unique maximal submodule of 

SP~ ant/ SP/(S p n S pi) is self-dual. 

Proof: By the Submodule Theorem, any submodule of S p is either S ~ 

itself, or is contained in S p n S p±. Using 1.5, all parts of the 

Theorem follow at once, except tha~t we have still to prove that 

S~/(S p n S p±) remains irreducible when we extend the field. 

Choose a basis el,...,e k for S p wilere each e i is a polytabloid. 

(We shall see later how to do tllis in a special way.) By Theorem 1.6, 

dim(SP/S p n S p±) is the rank of the Gram matrix with respect to this 

basis. But the Gram matrix has entries from the prime subfield of F, 

since the coefficients of tabloids involved in a polytabloid are all 

-+ i. Therefore, the rank of the Grara matrix is the same over F as over 

the prime subfield, and so S p n S ~i does not increase in dimension if 

we extend F. Since SP/(S p n S pi ) is always irreducible, it follows 

that it is absolutely irreducible. 

Remark We shall show that all the irreducible representations of ~n 

turn up as SP/(S p n S p±) ; the Theorem means that we can work over ~ or 
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4.11 

Hom F~ (SltM~) i then I ~ ~. 
n 

constant. 

the field of p elements. We now concentrate on completing the case 

where char F = O, although the remainder of this section also follows 

from the more subtle approach in section Ii. The reader impatient for 

the more general result can go immediately to sections iO and ii. 

4.10 LE~ If 0 is an F ~n-homomor~hism fro~ M 1 into M ~ and S l 

Ker 0 t then I ~ ~. If I = Ft the restriction of 0 to S l is multipli- 

cation by a constant. 

Remark Ker 0 c S i± by the Submodule Theorem, since Ker @ $ S I. The 

Lemma will later be improved in several ways (cf. 11.3 and 13.17). 

Proof: Suppose that t is a i-tableau. Since e t % Ker 0, 

O ~ e t 0 = {t}< t 0 = {t}Q ~t 

= (a linear combination of ~-tabloids)K t. 

By Lemma 4.6, I ~ p, and if I = ~, then e t @ is a multiple of e t. 

COROLLARY If char F = O t and G is a non-zero element of 

If I = ~I then 0 is multiplication by a 

Proof: When F = Q, < , > is an inner product. The rank of the Gram 

matrix with respect to a basis of S l therefore equals dim S l for any 

field of characteristic O. Thus 

S l S II = S l S l± when char F = O r n = O and M 1 @ . 

Any homomorphism defined on S l can therefore be extended to be 

defined on M l by letting it be zero on S l±. Now apply the Lemma. 

4.12 THEOREM (THE ORDINARY IRREDUCIBLE REPRESENTATIONS OF ~n ) . The 

Specht modules over ~ are self-dual and absolutely irreducible I and 

~ive all the ordinary irreducible representations of ~n" 

Proof: If SQ ~ S , then I ~ ~ by Corollary 4.11. Similarly, p % l 

l l± _ O, so I = ~. Since SQ n S~ - the Theorem follows from Theorem 4.9 

and 2.4. 

Since M ~ is completely reducible when char F = O, Corollary 4.11 

also gives 

4.13 THEOREM If char F = O t the composition factors of M p are S ~ 

(once) and some of {S 1 II ~ ~} (possibly with repeats). 

Some authors prefer to work inside the group algebra of ~n' and 

so we explain how to find a right ideal of the group algebra of 
n 

corresponding to the Specht module. 

Given a ~-tableau t, let Pt = [ ~ , so that pt e F~n, and let 

oER t 

@: Pt ~ + {t}~ (n ~ ~n ) . 
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This is clearly a well-defined F ~n isomorphism from the right 

ideal Pt F ~n onto M ~ (It is well-defined, since Pt ~ = Pt <=> ~ Rt 

<=> {t}n = {t}.) Restricting @ to the right ideal Pt <t F ~n gives an 

isomorphism from Pt Kt F ~n onto S ~. Using this isomorphism, every 

result can be interpreted in terms of the group algebra. ~Je prefer 

the Specht module approach for two reasons. First, the Specht module 

S p depends only on the partition ~, whereas the right ideal Pt Kt F~n 

depends on the particular ~-tableau t. Perhaps more important is that 

in place of Pt' which is a long sum of group elements, we have a single 

object {t}; this greatly simplifies manipulations with particular 

examples, as will be seen in the next section, where we pause in the 

develop~l~nt to work through some examples illustrating many salient 

points. 
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5. EXAMPLES 

5.1 EXAMJ?LE Reverting to the notation of Example 2.5, where the first 

row of the tabloids in M (n-l'l) is omitted, we have 

S (n-l'l)= (5 - i)F~ n = {~a i ~ [ ai¢ F, a I + ...+ a n = O} 

S (n-l'l)±= Sp([ + ~ + ...+ n). 

Clearly, S (n-l'l)z c s(n-l'l)if and only if char F divides n. By 

the Submodule Theorem 

0 c S(12)±= S (12) = M (12) if char F = 2 and n = 2 

0 c s(n-l'l)'c S (n-l'l) c M (n-l'l) if char F divides n > 2 

are the unique composition series for M (n-l'l) if char F divides n. 

The same Theorem shows that when char F does not divide n, S (n-l'l) 

is irreducible and M (n-l'l) = S (n-l'l) @ S (n-l'l)± 

Note that in all cases S (n-l'l)± -- S (n) and dim S (n-l'l) = n-l. 

5.2 EXAg~?LE We examine M (3'2) in detail. A (3,2)-tabloid is 

determined by the unordered pair of numbers i T which make up its second 

row. To get a geometric picture of ~(3,2) , consider the set of graphs 

(without loops) on 5 points, where we allow an edge to be "weighted" 

by a field coefficient. By identifying i~ with the edge joining point 

i to point j, we have constructed an isomorphic copy of M (3'2). For 

example, ~. 

t 251 351 241 + 34 i corresponds to 5- -Z 
3 4  2 4  ~___~s 2 5  

Any "quadrilateral with alternate edges weighted ± l" is a gener- 

ator for the Specht module S (3'2) 
Let tl,t2,t3,t4,t5 = 1 3 5 1 2 5 1 3 4 12 4 12 3 

24 34 25 35 45 

respect ively .  Then e t l , . . . , e t 5  correspond to 

~. ~ _ i 1  5"e 

4 3 

4 1 t t 

g - s" 2.. ! 

4 1 . 3  4 " I  ' ,4," -~3 

respectively. 

The iO edges are ordered by 3.10: 

12 < 13 <23 <i 4 < 24 < 34 < 15 < 25 < 35 < 45 . 

The last edges involved in e t l , . . . , e  t5 are 2 4,3 4,2 5,3 5,4 5 
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(which correspond to {tl},...,{t5}.) Since these last edges are 

different, etl,...,et5 are linearly independent. Note that it is far 

from clear that they also span the Specht module, but we shall prove 

this later. Assuming that they do give a basis, the Gram matrix with 

respect to this basis is 

4 2 2 1 -i 

2 4 1 2 1 

A = 2 1 4 2 1 

1 2 2 4 2 

-i 1 1 2 4 

One checks that if char F = 0 or char F > 5, rank A = 5 

if char F = 3, rank A = 1 

if char F = 2, rank A = 4. 

Therefore, dim(S(3'2)/S(3'2)n S (3'2)±) = 5 unless char F = 2 or 3, 

when the dimension is 4 or i, respectively. 

Let us find S (3'2)± Certainly, 

I 

F = ~ and 5 graphs like F(-I) = 

4" -3 

are orthogonal to "quadrilaterals with alternate edges weighted + i". 

(An unlabelled edge is assumed to have weight i). That is, they belong 

to S (3'2)" (F(-i) is defined by F(-i) = F(-I)(i i) for 1 < i < 5.) 
m I 

NOW, F(-I)+ F(-2) +...+ F(-5) = 3F. It is easy to verify that 

F (-i),...,F (-5) are linearly independent if char F ~ 3, and that they 

span a space of dimension 4 when char F = 3. Hence 

S (3'2)I is spanned by F, F (-I) ,F (-2) ,. .. , F(-5) 

since S (3'2)I has dimension 5 (by 1.3). 

When char F = 2, et2 + et3 + et4 + et5 = F. Therefore, F E S (3'2) 

n S (3'2)± in this case, and by dimensions it spans S (3'2) n S (3'2)±. 

When char F = 3, etl + et2 = F(-5), and now F (-I) ,.. . ,F (-5) span 
S (3'2) n S (3'2)± . 

We do not yet have a convenient way of checking whether or not a 

graph belongs to S (3'2). However, every such graph certainly satisfies 

the two conditions: 

5.3 (i) The sum of the coefficients of the edges is zero. 

(ii) The valency of each point is zero. (Formally: the sum of the 

coefficients of the edges at each point is zero.) 
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These conditions hold because a generator for S (3'2) satisfies 

the conditions. In fact, the properties characterize S (3'2) and enable 

us rapidly to check that F ~ S (3'2) when char F = 2 (F has an even number 

of edges, and each point has even valency), and that F(-5)~ S (3'2) 

when char F = 3 (F(-5) has 6 edges and each point has valency O or 3). 

So far, we have highlighted two problems to be discussed later: 

(a) Find a basis for the general Specht module like that given 

above. (N.B. It is not obvious even that dim S U is independent of the 

field.) 

(b) Find conditions similar to 5.3 characterizing the Specht 

module as a submodule of M~(cf. the second expression for S (n-l'l) in 

Example 5.1). 

We have proved that etl,...,et5 are linearly independent; here, as 

in the general case, it is a lot harder to prove that they span S (3'2). 

This example is concluded by a simultaneous proof that e t ,...,e~ 

form a basis of S (3'2) and that conditions 5.3 characterize S (3'2/5. 

Define ~o ~ Hom F~5 (M(3'2)'M(5)) and ~i e HOmF~ 5 (M(3'2),M(4'I)) 

by 
~o: abc ~ abcde 

de 

91 : a b c + a b c e + a b c d (i.e. d-~ ÷ d + e) 
d e d e 

Now, conditions 5.3(i) or (ii) hold for an element v of M(3'2)if 

and only if v ~ Ker @o or v E Ker @i' repectively. Therefore 
S(3,2) 

Ker ~o n Ker @i (cf. Lemma 4.10), and we want to prove equality. 

Write S (3'I)' (3'2) for the space spanned by graphs of the form 

i 

+~~ = i j - i---~ 

j k 
NOW, S (3'I)'(3'2) ~ Ker ~o and 91 sends S (3'1)'(302) onto S (4'I) 

(since ~i : i-~ - ~---K + i+j-i -k = ~ - k). Therefore, we have the 

following series for M(3'2) : 
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M(3,2) 

Ker ~o 

I 
S(3,1) , (3,2) 

I = S(4' l) 

S(3,1) ,(3,2) n Ker ~i 

I 
S(3,2) 

I ~ S (3'2) 

Dimensions 

1 

-> 0 

4 (see Example 5.1) 

>_ O 

>- 5 

But dim M (3'2) = lO, so we have equality in all possible places. 

In particular, dim S (3'2) = 5 and S (3'2) = Ker ¢on Ker ~i' as we wished 

to prove. 

5.4 EXAMPLE S (2'2) is spanned by the graphs 

I 2, 1 1 2. 4 _ t 2. 

- f  

- I  - I  - I  -I 

4~ 3 4 .  ~ 4 t 3 

Clearly, the first two form a basis. 

When char F = 2, S (2'2) c S (2'2)± The reason underlying this is 

that any polytabloid contains none or both edges of the following pairs 

of edges: 

\ /  
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6. THE CHARACTER TABLE OF 
n 

There are many ways of evaluating the ordinary irreducible chara- 

cters of ~n" If the character table of On_ 1 is known, the Branching 

Theorem (section 9) is very useful, but to calculate the character 

table of ~n this way we have to work out all the earlier tables. On 

the other hand, if just a few entries are required, the Murnaghan- 

Nakayama Rule (section 21) is the most efficient method, but it is 

hard to use a computer on this formula. The method given here finds 

all the entries in the character table of ~ simultaneously. It is 
n 

due to R.F.Fox, with some simplifications by G.Mullineux. 
l 

Let X denote the ordinary irreducible character of ~n corres- 

ponding to the partition ~ - that is, the character of the ~G module 
n 

S@ Let 1 G denote the trivial character of a group G. Recall that 

+ ~ is the character of M 1 ~X is a Young subgroup, and that 1 ~X n ~ 

by 4.2 (The notation +G means"induced up to G" and %G means "restricted 

to G" .) 

All the matrices in this section will have rows and columns indexed 

by partitions of n, in dictionary order (3.4). Since M has S~ as 

a composition factor once, and the other factors correspond to parti- 

tions ~ with p > ~ (Theorem 4.13), 

6.1 %~he matrix m = Imx~) ~iven by ml~ = the character inner product 

X ~ ) is lower triangular with l's down the c._!.l ~ ~ +_ ~ n '  dia~onal. 

(see the example for ~5' below). It follows at once that the matrix 

B = (bxp) given by 

bx~ = l~I (xX,l~ +G n) 

is upper triangular. 

Let ~ denote the conjugacy class of ~n corresponding to the 

partition p, and let A = (alp) be t/~e matrix given by 

al~ = IS x n 6~1 

The matrix A is not hard to calculate, and we claim that once it 

is known, the character table C = (clp) of ~n can be calculated by 

straightforward matrix manipulations. First note that 

[ clp agp = I (×x, ~,l @V) = blv. 
P 

Therefore, B = CA', where A' is the transpose of A. 

But, 
[ bpl bp~ = I G x l I (1 ~X+ ~n' 1 ~ + G n) 

~) 

= l ;. ( x  evaluated on an element of type 
P 



23 

14). I S~ n ~141 

= [ (n'. / 1(~141) I ~ x  n ~1411~,~ ~ ~141 
14 

= X In:  / 1~'1411 axu a14 
14 

If A is known, we can solve these equations by starting at the 

top left hand corner of D, working down each column in turn, and pro- 

ceeding to the next column on the right. Since B is upper triangular, 

there is only one unknown to be calculated at each stage, and this can 

be found, since B has non-negative entries. Therefore 

6.2 THEOREM If the matrix A = (a~14), where a~ = I ~ n 6!4 I is 

known, then we can find the unique non-negative upper triangular matrix 

B = (b~14) satisf[ing the e~uations 

[ b141 b14~ = [(n' / I ~141)a114 a 14 

-i 
and the character table C of ~n is ~iven b~ C = BA' . 

6.3 

(5) 

(4,1) 

~/ (3,2) 

A = (3,12 ) 

(22,1) 

(2,13 ) 

(i s ) 

EXA~LE Suppose n = 5. Then 

(5) (4,1) (3,2) (3,12 ) 

24 30 20 20 

6 0 8 

2 2 

2 

(22,1) (2,13 ) (15 ) 

15 i0 1 

3 6 1 

3 4 1 

0 3 1 

1 2 1 

1 1 

1 

(5) 

(4,1) 

(3,2) 

B = (3,12 ) 

(22,1) 

(2,13 ) 

(15 ) 

(5) (4,1) (3,2) (3,12 ) 

120 24 12 6 

24 12 12 

12 6 

6 

(22,1) (2,13 ) (15 ) 

4 2 1 

8 6 4 

8 6 5 

4 6 6 

4 4 5 

2 4 

1 
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(5) 

(4,1) 

(3,2) 

C = (3,12 ) 

(22,1) 

(2,1 ~ ) 

(i s ) 

(5) (4,1) (3,2) (3,12 ) (22,1) (2,13) (1 s) 

1 1 1 1 1 1 1 

-i 0 -i 1 0 2 4 

0 -i 1 -i 1 1 5 

1 0 0 0 -2 0 6 

O 1 -i -i 1 -i 5 

-i 0 1 1 0 -2 4 

1 -i -I 1 1 -i 1 

The columns of the character table are in the reverse order to the 

usual one - in particular, the degrees of the irreducible characters 

appear down the last column - because we have chosen to take the dic- 

tionary order on both the rows and the columns. 

6.4 NOTATION Equations like [3][2] = [5] + [4,1] + [3,2] are to be 

interpreted~ Aas saying that --M~ 3'2) has composition factors isomorphic 

to S(~ ) , S(~'I) and S(3'2)~ • In general if I is a partition of n, 

[11][12][13]... = ~ mlp [~] 
P 

that __M~ has S~_ as a factor with multiplicity ml . (m = (mlp) means 

is the matrix defined in 6.1). 

By dividing each column of the matrix B by the number at the top 

of that column (which equals I ~pl), and transposing, the matrix m is 

obtained. In the above example, 

[5] 

1 

1 1 

1 1 

1 2 

1 2 

1 3 

1 4 

[5] 

[4][1] 

[3][2] 

m = [3][1] 2 

[21211] 

[2][1] 3 

[i] s 

[4,1] [3,2] [3,12 ] [22,1] [2,13 ] [i s ] 

1 

1 1 

2 1 1 

3 3 2 

5 6 5 

Notice that the results [4][1] = [5] + [4,1] and [3][2] = [5] + 

[4,1] + [3,2] are in agreement with Examples 5.1 and 5.2. Young's 

Rule in section 14 shows how to evaluate the matrix m directly. 

Theorem 6.2 has the interesting 

6.5 COROLLARY The determinant of the character table of ~n is the 

product of all the parts of all the partitions of n. 

Proof: all = ~ (I i - i) : and bll = I ~iI = ~ lit 
i i 

Since A and B are upper triangular and B = CA', we have 
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det C = ~ H A i , as claimed. 
A i 

Recall that the partition l' conjugate to I is obtained by "turning 

A on its side" (see definition 3.5). The character table of ~5 in 

Example 6.3 exhibits the property: 

l' l (i n) 
6.6 X = X ® X 

We prove this in general by showing 

6.7 THEOREM ~ ~ ~(in) is isomorphic to the dual of S~ ~ 

Remark Since S~ is self-dual, we may omit the words "the dual of" 

from the statement of the Theorem, but we shall later prove the ana- 

logous Theorem over an arbitrary field, where the distinction between 

S A' and its dual must be made. 

Proof: Let t be a ~iven A-tableau, and let t' be the corresponding i' 

tableau. 

e.g. if t = 1 2 3 then t'= 1 4 

45 25 

3 

Let Pt' = ~{~I~ E R t, } and <~, = [{(sgn ~)~I ~ E Ct,}, as usual. 
fln~ 

Let u be a generator for S~ ", so that u~ = (sgn z)u when 6 
@n" 

It is routine to verify that there is a well-defined ~ ~n-epi- 
A' A (~n) 

morphism @ from M~ onto S~ ~ S sending {t'} to ({t} @ u) Pt,; 

0 is given bM 

6.8 @: {t'w} + ({t} ® u)Pt,~ = ({t}K t ® u)~ = (sgn z){t~}Kt~ 8 u. 

0 sends {t'}Kt, to ({t'} 8 u) Pt,<t, = {t}<tp t 8 u. 

Now, <{t}<t~t, {t}> = <{t}< t ,{t}Pt> 

= <{t}K t ,IRtl{t}> = [Rtl. 

Since IRtl is a non-zero element of ~, {t'}Kt, @ ~ O. Thus 
l' I'± 

Ker @ ~ S~ , and, by the Submodule Theorem, Ker 8 ~ S~ Therefore, 

A t ,.At .-All, A t 
dim S~A = dim Im 8 = dim(M~/Ker 8) >- dim~n~ /~Q ) = dim S~ (*) . 

A' A" A l A t 
Similarly, dim S~ ~ dim S~ = dim S~. Therefore, dim S~ = dim S~ 

Xx 
and we have equality in (,). Thus, Ker @ = S~ . The theorem is now 

A' 
proved, since we have constructed an isomorphism between M~ /S~ '± (~ 

A' I ® _(i n) 
dual of S~ , by 1.4) and S~ ~ e 

Remark Corollary 8.5 will give dim S l = dim S A', trivially, but this 

shortens the proof by only one line. 

There is one non-trivial character of ~n which can always be 

evaluated quickly, namely x(n-l'l) : 
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LEMMA The value of X (n-l'l) on a permutation z is one less than 6.9 

the number of fixed points of z. 

Proof: The trace of 7, acting on the permutation module M (n-l'l) , 

is clearly the number of fixed points of 7. Since 

M(n-l,l) _(n) ~ s(n-l,l) 

(cf. Example 5.1), the result follows at once. 

We can thus write down four characters, X (n) ,X (n'l'l) 
(i n) 

, X and 

X (2'In-~) (= X (n-l'l) ® X (In)) of % at once. The best way of finding 

the character table of ~n for small n is to deduce the remaining 

characters from these, using the column orthogonality relations. 
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7. THE GARNIR RELATIONS 

For this section, let t be a 9iven w-tableau. We want to find 

elements of the group algebra of ~n which annihilate the qlven pol V- 

tabloid e t . 

Let X be a subset of the ith column of t, and Y be a subset of the 

(i + l) tn column of t. 

! 
W'i+ 1 

Let ~i''''' Ok be coset representatives for ~X x ~y in ~XuY' 
< 

and [5]). let GX, Y =j=l [ (sgn ~j)~j. GX, Y is called a Garnir element . (Garnir 

In all applications, X will be taken at the end of the ith column 

of t and Y will be at the beginning of the (i+l) th column. The permu- 

tations Ol,...,Ok are, of course, not unique, but for practical pur- 

poses note that we may take ~l,...,Ok so that tol,tO2,...,to k are all 

the tableaux which agree with t except in the positions occupied by 

X u Y, and whose entries increase vertically downwards in the positions 

occupied by X u Y. 

7.1 EXAMPLE if t = 1 2 , X = {4,5} and Y = {2,3} then t~l,...,to k 

4 3 

5 

may be taken as 

t = t I = 12 t 2 = 12 t 3 = 12 t 4 = 13 t 5 = 1 3 t 6 = 14 

43 34 35 24 25 25 

5 5 4 5 4 3 

when sgn ~i = 1 for i = 1,3,4,6, sgn a i = -i for i -- 2,5 and GX, Y 

1 - (34) + (3 5 4) + (2 3 4) - (2 3 5 4) + (2 4)(3 5). 

! 

7.2 THEOREM If IX u YI > ~i . then etGx,y = 0 (for an.~ I base field). 

Proof: (See Peel [19]) Write ~X ~Y for [{(sgn ~)~I~ ~ ~X × ~Y} 

and ~XuY for [{(sgn o)oI~E ~Xu y} 
! 

Since IXu YI > ~i' for every T in the column stabilizer of t, some 

pair of numbers in X u Y are in the same row of tT. Hence, in the usual 

way, {tT} ~XuY = O. Therefore, {t}<t ~ XuY = O. 

Now, ~X ~Y is a factor of ~t' and ~XuY = ~X~Y GX,y" 
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Therefore 
O = {t}K t ~XuY = IXl~IYl~{t}Kt GX,y 

Thus, {t}K t GX, Y = O when the base field is ~, and since all the 

tabloid coefficients here are integers, the same holds over any field. 

7.3 EXAMPLE Referring to Example 7.1, we have 

O = e t GX, Y = etl et2 + et3 + et4 et5 + - _ et6 

so e t et2 et3 et4 et 5 et 6 
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8. THE STanDARD BASIS OF THE SPECHT MODULE 

8.1 DEFINITIONS t is a standard tableau if the numbers increase along 

the rows and down the columns of t. {t} is a standard tabloid if there 

is a standard tableau in the equivalence class {t}. e t is a standard 

polytabloid if t is standard. 

In Example 5.2, the 5 standard (3,2)-tableaux and the corresponding 

standard polytabloids are listed. 

A standard tabloid contains a unique standard tableau, since the 

numbers have to increase along the rows of a standard tableau. It is 

annoying that a polytabloid may involve more than one standard tabloid 

(In Example 5.2, et5 involves 4 5 and 2 4). 

We prove that the standard polytabloids form a basis for the Specht 

module, defined over any field. 

The ~-tabloids have been totally ordered by definition 3.10. The 

linear independence of the standard polytabloids follows from the tri- 

vial 

8.2 LEMMA Suppose that Vl,V2,...,v m are elements of M ~ and that 

it i} is the last tabloid involved in v i. If the tabloids {ti} are all 

different r then Vl,V2,.t. tv m are linearly independent. 

Proof: We may assume that {t I} < {t2} <...< {tm}. If alv I +...+ amV m 

= O (a i ~ F) and aj+ 1 = ...= a m = O, then aj = O, since {tj} is invol- 

ved in vj and in no v k with k < j. Therefore, a I = ...= a m = O. 

It is clear that {t} is the last tabloid involved in e t when t 

is standard, and this is all we need to deduce that the standard poly- 

tabloids are linearly independent, but we go for a stronger result, 

using the partial order (3.11) on tabloids: 

8.3 LEMMA If t has numbers increasing down columns~ then all the 

tabloids {t'} involved in e t satisfy {t'} 9 {t}. 

Proof: If t' = t~ with ~ a non-iden~ty element of the column stabil- 

izer of t, then in some column of t' there are numbers w < x with w 

lower than x. Thus, by 3.15, {t'} ~ {t' (wx)}. Since {t' (w ~} is 

involved in et, induction shows that {t' (w ~} ~ {t}. Therefore, {t'} 

{t}. 

8.4 THEOREM !etlt is a standard p-tableau} is a basis for S ~. 

Proof: (See Peel [19]) We have already proved that the standard 

polytabloids are linearly independent, and we now use the Garnir rela- 

tions to prove that any polytabloid can be written as a linear combi- 

nation of standard polytabloids - a glance at Example 7.3 should show 

the reader now to do this. 
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First we write [t] for the colur]n equivalence class of t; that is 

It] ={tllt I = t~ for sor~e z E Ct}. The column equivalence classes are 

totally ordered in a way similar to the order 3.10 on the rov~ equiva- 

lence classes. 

Suppose that t is not standard. By induction, we may assume that 

et, can be written as a linear co~]ination of standard polytabloids 

when It'] < [t] and prove the salne result for e t. Since etz = (sgnz) e t 

when ~ ~ C t, we may suppose that the entries in t are in increasing order 

down coluF~s. Unless t is standard, some adjacent pair of columns, say 

the jth and (j+l)th columns, have entries a I < a 2 <... < a r, b I < b 2 <... < 

> b for some q b s with aq q 

al ~I 

A 
a > b 
^q q 

A s 
a 

r 

L e t  X = { a q , . . . , a  r }  a n d  Y = { b l , . . . , b  q} a n d  c o n s i d e r  t h e  c o r r e s p o n d i n g  

Garnir eler~ent GX, Y = ~(sgn ~)~, say. By Theorem 7.2 

0 = e t [(sgn ~)a = [(sgn ~)et~ . 

<a <.. < [ta] < It] for ~ ~ 1 Since Because b 1 < . . . <  b q  q . a r ,  • 

e t = - [  ( s g n  ~ ) e t ~  , t h e  r e s u l t  f o l l o w s  f r o m  o u r  i n d u c t i o n  h y p o t h e s i s .  

8.5 COROLLARY The dimension of the Specht module S ~ is independent 

ofJthe ~ r o u n d  f i e l d f  a n d  e q u a l s  t h e  n u m b e r  o f  s t a n d a r d  ~ - t a b l e a u x .  

Remark An independent proof of Theorem 8.4 is given in section 17. 

8.6 COROLLARY In S~ any polytabloid can be written as an integral 

linear combination of standard polytabloids. 

Proof: This result comes from the proof of Theorem 8.4; alternatively, 

see 8.9 below. 

8.7 COROLLARY The matrices representin~ gn over Q with respect to 

the standard basis of S~ all have integer coefficients. 

Proof: et~ = etz . Now apply Corollary 8.6. 

8.8 COROLLARY If v is a non-zero element of SU~ then every last 

tabloid (in the partial order ~ on tabloids) involved in v is standard. 

Proof: Since v is a linear combination of standard polytabloids, the 

result follows from Lemma 8.3. 
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8.9 COROLLARY If v e S~ and the coefficients of the tabloids 

involved in v are all inte~ers~ then v is an integral linear combina- 

tion of standard polytabloids. 

Proof: We may assume that v is non-zero. Let {t} be the last (in 

the < order) tabloid involved in v, with coefficient aE Z, say. By 

the last corollary, {t} is standard. Now Lemma 8.3 shows that the 

last tabloid in v - a e t is before {t}, so by induction v - a e t is 

an integral linear combination of standard polytabloids. Therefore, 

the same is true of v. 

8.10 COROLLARY If v E S~ and the coefficients of the tabloids invol- 

ved in v are all integers t then we may reduce all these integers modulo 

and obtain an element S~, where F is the field of p elements. P 

Proof: By the last Corollary, v is an integral linear combination of 

standard polytabloids, v = [a i ei, say (a i ~ Z). Reducing modulo p all 

the tabloid coefficients in v, we obtain ~, say. Let ~i b~ a i modulo 

p. The equation ~ = [~i ei shows that ~ S~ . 

Remark If we knew only that the standard polytabloids span S~, the 

proof of Corollary 8.10 shows that any polytabloid can be written as 

a linear combination of standard polytabloids over any field. There- 

fore, we can deduce that the standard polytabloids span S ~ over any 

field, knowing only the same information over Q. 

8.11 COROLLARY If F is the field of p elements t then S~ is the 

p-modular representa£ion of ~n obtained from S~ O 

Proof: Apply the last Corollary. 

8.12 COROLLARY There is a basis of S ~ all of whose elements inv- f 
olve a unique standard tabloid. 

Proof: Let {t I} < {t2} < ... be the standard ~-tabloids. {t I} is 

the only standard tabloid involved in etl by Lemma 8.3. et2 may 

involve {tl} , with coefficient a, say. Replace et2 by ft2 = et2 - a etl. 

Then {t2} is the only standard tabloid involved in ft2. Continuing 

in this fashion, we construct the desired basis. 

Corollary 8.12 is useful in numerical calculations. 

8.13 EXAMPLE Taking etl,...,et5 as in Example 5.2, each involves 

just one standard tabloid, except et5 which involves 2 4 as well as 

5 . Replace et5 by ft5 = etl + et5. Then etl,et2,et3,et4,ft5 involve 

respectively 2 4,3 4,2 5,3 5,4 5 with coefficient i, and no other 

standard tabloids. 
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Consider the following vector 

I 

3 

4 v -I 

v belongs to S (3'2) , since the sum of the edge coefficients is 

zero, and each point has valency zero (cf. 5.3). But v involves 

-2 4, -3---~, -2 5, -3 5, 3.4 5 Therefore 

v = -etl - et2 - et3 - et4 + 3ft 5 

= 2etl - et2 - et3 - et4 + 3et5. 

Next we want the rather technical 

8.14 LEMMA Suppose that @EHom~ ~n_~M©,_MQ) and~that all the tabloids 

involved in {t}0 have inteqer coefficients ((t} E M~). Then t reducing 

all these inteqers modulo p, we obtain an element 0 of Hom F G (~ 2--M~' 

l± then n where F is the field of p elements. If ker 0 = S~ 
l± 

Ker ~ ~ S F . 

l 
Proof: It is trivial that 0 c Horn F ~n (MF' ~)" 

I± and extend by the standard basis Take a basis fl,...,fk of SQ 
I 

of SQ to obtain a basis fl,...,fm of M~. Let {tl}, .... ,{t m} be the 

different l-tabloids. Define the matrix N = (nis) by 

nij = < fi,{tj} > 

We may assume that N has integer entries, and by row reducing the 

first ~ rows, we may assume that the first k rows of N (which corres- 
Ii 

pond to the basis of SQ ) are linearly independent modulo p. ~ Reducing 

all the entries in N modulo p, we obtain a set of vectors in M~, the 
% 

m - k of which are the standard basis of S~, and the first last k of 

which are linearly independent and orthogonal to the standard basis of 

1 Since S F • 

MFI - 1 Ii = dim dim S F , dim S F = k 

l± 
11 whose elements give a basis of S F we have constructed a basis of S~ 

when the tabloid coefficients are reduced modulo p. 

Now, any one of our basis elements of S~ ± is an integral linear 

combination of l-tabloids, and is sent to zero by 0. Therefore, when 
l± 

all integers are reduced modulo p, 0 certainly sends the basis of S F 

to zero, as required. 
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We can now complement Theorem 6.7 by proving 

8.15 THEOREM Over any field r S 1 ® S (In) is isomorphic to the dual 
I' 

of S 

Proof: It is sufficient to consider the case where the ground field 

is F, the field of p elements, since we have proved the result when 

F=~. 

In the proof of Theorem 6.7, we gave a ~G -homomorphism 8 from 
I' 1 ~in~ ~,,n 

M~ into M~ 8 S~ " and proved that Ker 0= S~ ~. Using the Lemma above, 

0, defined by 

~: {t'n} + (sgn 7) {t~}Ktn ® u 

is an F ~n-homomorphism onto S F 8 S~ In) whose kernel contains S~'±. 

By dimensions, Ker 0 _I'± = ~F , and the result follows. 
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g. THE BRANCHING THEOREM 

The Branching Theorem tells us how to restrict an ordinary irre- 

ducible representation from ~n to ~n-l" We have introduced the 

symbols ~ ~n-i for restriction to Gn_l and ~ Gn+l for inducing to %+1" 

Using notation like that in 6.4, we have 

9.1 EXAMPLE [4,2~,i]~ G 8 = [3,22,1] + [4,2,1 ~] + [4,22 ] 

[4,22,11% ~iO = [5,22,1] + [4,3,2,1] + [4,23 ] + [4,22,12] 

These are special cases of 

9.2 THE BRANCHING THEOREM 

(i) ~ + ~n+l ~ @ {SI~ I[I] is a diagram obtained by addin~ a 

node to [~] }. 

fiX] is a diagram obtained by takin~ a (ii) S~ +---~n-i ~ @ {S~ 

node away from [p]}. 

Proof: The two parts of the Theorem are equivalent, by the Frobenius 

Reciprocity Theorem. Part (ii) follows from the more general: 

9.3 THEOREM When S ~ is defined over an arbitrary field/ S~%~ 
n-i 

has a series with each factor isomorphic to a Specht module for ~ n-l" 

The factors occurring are those qiven by part (ii) of the Branchin~ 

Theorem I and S li occurs above S lj in the series if I i ~ xJ. 

Proof: (See Peel [19]) Let r I < r 2 <... < r m be the integers such 

that a node can be removed from the rith row of [~] to leave a diagram 

(e.g. when [~] = [4,22,1], rl,r2,r 3 = i, 3, 4). Suppose that [li] is 

the diagram obtained by removing a node from the end of the r.th row of 
l [~ ] .  

(M ~ , M li) by Define 0ic HOmF~n_l 

@i: {t} + I 0 if n % rith row of {t} 

L {~} if n c r th row of {t} 
l 

where {~} is {t}, with n removed. 

When t is standard, 

9.4 0i: e t +~e~ if n e rith row of t 

Lo if n e rlth,r2th,...,or ri_ith row of t. 

Let V i be the space spanned by those polytabloids e t where t is 

a standard ~-tableau and n is in the rlth,r2th,... , or rith row of t. 

Then Vi_ 1 ~ Ker 0 i and Vi8 i = S II, 

since the standard li-polytabloids span S li. 

In the series 

0 ~ V 1 n Ker 01 c V 1 ~ V 2 n Ker 02 ~ V 2 ~ ... 
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= V =S ~ ...c Vm_ 1 ~ V m n Ker 0 m m 

we have dim(Vi/(V i n Ker 0i)) = dim V i @i = dim S xl. 

But m 
[ dim S ~I = dim S ~, 

i=l 

since the dimension of a Specht module is the number of standard tab- 

leaux. Therefore, there is equality in all possible places in the ser~s 

above, and Vi/Vi_ 1 is F ~n-i - isomorphic to S II. This is our desired 

result. 

9.5 EXAMPLE As an F ~8-module, S (4'22'I) has a series with factors, 

reading from the top, isomorphic to S ( 4 ' 2 2 )  , S ( 4 ' 2 " 1 2 )  , S ( 3 ' 2 2 ' 1 )  

(cf. Example 17.16.) 
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i0. p-REGULAR PARTITIONS 

We have seen that S~/(S ~ n S ~±) is zero or irreducible,and that 

it can be zero only if the ground field has prime characteristic p. 

In order to distinguish between those partitions for which S ~ is or 

is not contained in S ~±, we make the following 

i0. i DEFINITION A partition ~ is p-singular if for some i 

~i+l = ~i+2 = "'" = ~i+p > O. 

Otherwise, ~ is p-regular. 

For example, (62,5~,i) is p-regular if and only if p a 5. 

A conjugacy class of a group is called a p-regular class if the 

order of an element in that class is coprime to p. 

10.2 LEMMA The number of p-regular classes of ~n equals the number 

of p-regular partitions of n. 

Proof: Writing a permutation ~ as a product of disjoint cycles, we 

see that w has order coprime to p if and only if no cycle has length 

divisible by p. Therefore, the number of p-regular classes of 
n 

equals the number of partitions ~ of n where no part ~i of ~ is divi- 

sible by p. 

Now simplify the following ratio in two ways: 

(i - xP) (i - x2P)... 

(i - x) (i - x2)... 

(i) Cancel equal factors (i - xmP) in the numerator and denomin- 

ator. This leaves 

(i - xi) -I = ~ (i + x i + (xi) 2 + (xi) 3 + ...) 

p~i p~i 

and the coefficient of x n is the number of partitions of n where no 

summand is divisible by p. (The partition (...3c,2b,i a) corresponds 

to taking x a from the first bracket (x2) b from the second bracket, 

and so on.) 

(ii) For each m divide (i - x m) in the denominator into (i - x mp) 

in the numerator, to give 

(i + x m + (xm) 2 + ... + (xm)p-l). 

m=l 

Here the coefficient of x n is the number of partitions of n where no 

part of the partition occurs p or more times. 

Comparing coefficients of x n, we obtain the desired equality (The 

reader who is worried about problems of convergence is referred to 

section 19.3 of Hardy and Wright [3]). 

Remark Like most combinatorial results involving p-regularity, Lemma 
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10.2 does not require p to be prime, and it is only when we come to 

representation theory that we must not allow p to be composite. 

We next want to investigate the integer g~ defined by 

10.3 ~ = g.c.d.{<et,et,>le t and et, are polytabloids in S~}. 

The importance of this number is that it is the greatest common 

divisor of the entries in the Gram matrix with respect to the standard 

basis of the Specht module. (Corollary 8.6 shows that any polytabloid 

can be written as an integral linear combination of standard polytab- 

loids). 

10.4 LEMMA (James [7]) Suppose that the partition ~ has z. parts 

equal to j. Then j~l= zj: divides ~ and ~ divides 3~l(Zj:)J~= _ 

Remarks Since O~ = i, there is no problem about taking infinite 

products. Some of the integers involved in the definition of g~ may 

be zero or negative, but we adopt the convention that, for example, 

g.c.d. {-3,0,6} = 3. 

Proof: Define an equivalence relation ~ on the set of ~-tabloids by 

{t I} ~ {t 2} if and only if for all i and j, i and j belong to the 

same row of {t 2} when i and j belong to the same row of {tl}. 

Informally, this is saying that we can go from ~t I} to {t 2} by 

shuffling rows. The equivalence classes have size ~ z I 
j=l 3 

Now, if {t I} is involved in e t and {t I} ~ {t2} , then the defini- 

tion of a polytabloid shows that {t 2} is involved in et, and whether 

the coefficients (which are ±i) are the same or have opposite signs 

depends only on {t I} and {t2}. Therefore, any two polytabloids have a 

multiple of j~izj: tabloids in common, and j~izJ: divides g~ (cf. 

Example 5.4). 

Next, let t be any ~-tableau, and obtain t* from t by reversing 

the order of the numbers in each row of t. For example, 

1 2 3 4 4 3 2 1 
if t = then t* = 

567 765 

8 9 iO iO 9 8 

ii ii 

Let ~ be an element of the column stabilizer of t having the pro- 

perty that for every i, the numbers i and iz belong to rows of t which 

have the same length. (In the example, w can be any element of the 

group __~{5,8} x ~{6,9} x ~{7,10}). Then {t~} is involved in e t and 

et, with the same coefficient in each. It is easy to see that all 

tabloids common to e t and et, have this form. (In the example, every 
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tabloid involved in et, has 1 in the first row. Looking at et, no 

common tabloid has 5 or 8 in the first row. Going back to et,, 2 must 

be in the first row of a common tabloid, and so on.) Therefore, < et, 

> = j~l (zj ~)j' and the lemma is proved. et. 

10.5 COROLLARY The prime p divides g~ if and only if ~ is p-singular. 

Proof: ~ is p-singular if and only if p divides z ~ for some j, and 
3 

this happens if and only if p divides g~. 

10.6 COROLLARY If t* is obtained the ~-tableau t by reversing the 

order of the numbers in each row of t r then et,~ t is a multiple of et, 

and this multiple is coprime to p if and only if ~ is p-regular. 

Proof: Corollary 4.7 shows that et,< t is a multiple of et, et.< t = h e t 

say. Now r 

h = h < et, {t} > = < het, {t} > = < et.<t,{t} > 

= < et*,{t}< t > = < et*,e t > . 

The last line of the proof of Lemma iO.4 shows that h = j~l(Zj:)J, 

which is coprime to p if and only if ~ is p-regular. 
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ll. THE IRREDUCIBLE REPRESENTATIONS OF ~n 

The ordinary irreducible representations of ~ were constructed 

at the end of section 4. We now assume that our ground field has 

characteristic p, and the characteristic O case can be subsumed in this 

one, by allowing p = ~. 

ii.i THEOREM Suppose tha£ S U is defined over a field of characteris- 

tic p. Then S~/(S ~ n S ~) is non-zero if and only if ~ is p-regular. 

Proof: S ~ _= S ~l if and only if < at,at, > = 0 for every pair of 

polytabloids e t and at, in S ~. But this is equivalent to p dividing 

the integer g~ defined in 10.3, and Corollary 10.5 gives the desired 

result. 

Shortly, we shall prove that all the irreducible F ~n-modules 

are given by the modules D~ where 

11.2 DEFINITION Suppose that the characteristic of F is p (prime or 

= ~) and that U is p-regular. Let D~ = SF/(S F ~  ~ n S~ ±) . 

As usual, we shall drop the suffix F when our results are indep- 

endent of the field. 

To prove that no two D~'s are isomorphic, we need a generaliza- 

tion of Lemma 4.10, which said that S 1 is sent to zero by every element 

(M l, M ~) unless k >- ~. of HomFG n 

11.3 LEMMA Suppose that I and p are partitions of n t and k is p-reg- 

ular. Let U be a submodule of M U and SUpRose that 8 is a non-zero 

F_~n-homomorphism from S 1 into MU/U. Then I ~ p and if I = ~q then 

Im 0 = (S ~ + U)/U. 

Remark The submodule U is insignificant in the proof of this result. 

The essential part of the Lemma says that, for I p-regular, S 1 is sent 

(SI,M ~) unless I ~ ~ . (cf. Coro- to zero by every element of HOmF ~ 

llary 13.17). n 

Proof: (See Peel [20]). Let t be a l-tableau and reverse the order of 

the row entries in t to obtain the tableau t*. By Corollary 10.6, 

at,< t = h e t where h ~ O. 

But het@ = et,Kte = at, e< t 

Since h ~ O and 8 is non-zero, at, e< t ~ U. By Lemma 4.6, I >- ~, 

and if I = ~, then 

at8 = h-let,%< t = a multiple of e t + U ~ (S ~ + U)/U. 

The result follows, because S l is generated by e t. 
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11.4 COROLLARY Suppose that I and ~ are partitions of n, add I is p- 

regular. Let U be a submodule of M ~ and supp__Qse_t_~t @ ~s a non-zerg_ 

F ~n nomomorphism from D 1 into MZ/U. Then 1% ~ and I ~ U if U ~ __S ~. 

(SI,M~/U) as fol- Proof: ~Je can lift @ to a non-zero element of Hom F ~n 

lows: 
S ~ ~ S~/(S ~ n S ~±) = D ~ ~ M~/U 

canon• 8 

Therefore, i ~ ~, by the Lemma. If I = ~ then Im 8 is a non-zero 

submodule of (S ~ + U)/U, so U does not contain S~ 

11•5 THEOREM (James [73) Suppose that our ground field F has charac- 

teristic p (prime or = ~). As Z varies over p-regular partitions of n, 

D ~ varies over a complete set of inequivalent irreducible F~n-raodules. 

Each D ~ is self-dual and absolutely irreducible. Every field is split- 

inq field for 
n 

Proof: Theorems 4.9 and ii.i show that D ~ is self-dual and absolutely 

irreducible. 

Suppose that D 1 ~ D ~. Then we have a non-zero F ~ -homomorphism 
n 

from D 1 into MI/(S Z n S~±), and by Corollary 11.4, I ~ ~. Similarly, 

~ I, so I = ~. 

Having shown that no two D~'s are isomorphic, we are left with the 

question: Why have we got all the irreducible representations over F? 

section 17 we shall prove that every composition factor of the regular 

representation over F is isomorphic to some D ~, and then Theorem i.i 

gives our result. Rather than follow this artificial approach, the 

reader will probably prefer to accept two results from representation 

theory which we quote from Curtis and Reiner [2]: 

Curtis and Reiner 83.7: If ~ is a splitting field for a group G, then 

every field is a splitting field for G. 

Curtis and Reiner 83.5: If F is a splitting field for G, then the num- 

ber of inequivalent irreducible FG-modules equals the nur~ber of p- 

regular classes of G• 

Since Theorem 4.12 shows ~ is a splitting field, Lemma 10.2 now 

sees us home. More subtle, (to make use of our knowledge that D ~ is 

absolutely irreducible), is to comJoine Curtis and Reiner 83.5 with 

Curtis and Reiner 82.6: The number of inequivalent absolutely irred- 

ucible FG-modules is less than or equal to the number of p-regular 

classes of G. 

Theorem 1.6 gives 

11.6 THEOREM The dimension of the irreducible representation D ~ of 

n over a field of characteristic p can be calculated by evaluating 

the p-rank of the Gram matrix with respect to the standard basis of S ~. 
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11.7 EXAMPLE We have already illustrated an application of Theorem 

11.6 in Example 5.2. Consider now the partition (2,2). The Gram matrix 

we obtain is (cf. Example 5.4): 

A = [42 214 
The p-rank of this is O,i or 2 if p = 2, 3 or >3, respectively. 

Therefore, S(2'2)/(S (2'2) n S t2'2)±)" = 0 if char F = 2, and dim D (2'2) = 

1 or 2 if char F = 3 or >3, respectively. 

11.8 THEOREM The dimension of every non-trivial 2-modular irreducible 

representation of ~n is even. 

Proof: If ~ ~ (n) and t is a ~-tableau, then < et,e t >, being the order 

of the column stabilizer of t, is even. Hence < , > is an alternating 

bilinear form when char F = 2, and it is well-known that an alternating 

bilinear form has even rank, so Theorem 11.6 gives the result. 

Remark Theorem 11.8 is a special case of a general result which states 

that every non-trivial, self-dual, absolutely irreducible 2-modular 

representation of a group has even dimension. 

The homomorphism ~ in the proof of Theorem 8.15 sends {t'}<t, to 

{t}<tp t @ u, and Ker ~ = S I'±. Thus, if I' is p-regular, the submod- 

S 1 I' ule of generated by {t}KtP t is isomorphic to D . In terms of the 

group algebra F ~n' this means that the right ideals generated by 

PtKtPt (choosing one t for each partition whose conjugate is p-regular) 

give all the irreducible representations of ~n over F when char F - p 

(p prime or = ~). 
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12 COMPOSITION FACTORS 

We next examine what can be said about the composition factors of 

M ~ and S ~ in general terms. When the ground field has characteristic 

zero, all the composition factors of M ~ are known (see section 14). 

The problem of finding the composition factors of S ~ when the field is 

of prime characteristic is still open. (All published algorithms for 

calculating the complete decomposition matrices for arbitrary symmetric 

groups give incorrect answers.) 

First, a general±sat±on of Theorem 4.13: 

12.1 THEOREM All the composition factors of M ~ have the form D 1 with 

X > ~f except if ~ is p-re~ularf when D ~ occurs precisely once. 

Proof: Consider the following picture: 

M u 

I 
S ~ + S ~± 

I 
0 

By Corollary 11.4, all the composition factors of M~/S ~ have the 

form D ~ with X ~ ~. But S ~l is isomorphic to the dual of M~/S ~, and 

so has the same composition factors, in the opposite order. (See 1.4, 

and recall that every irreducible F ~n-module is self-dual.) Now, 

S~/(S ~ n S ~±) is non-zero if and only if ~ is p-regular, when it equals 

D ~. Since 0 ~ S ~ n S ~± ~ S ~ ~ M ~ is a series for M ~, the Theorem is 

proved. 

12.2 COROLLARY If ~ is p-re~ular~ S ~ has a unique top composition 

factor D ~ = S~/(S ~ n S~±). If D is a composition factor of S ~ n S ~± 

then D ~ D 1 for some I m ~. If ~ is p-sin~ular~ all the composition 

factors of S ~ have the form D l with I m ~. 

Proof: This is an immediate corollary of Theorems 4.9 and 12.1. 

The decomposition matrix of a group records the multiplicities 

of the p-modular irreducible representations in the reductions modulo 

p of the ordinary irreducible representations. Corollaries 8.11 and 

12.2 give 
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12.3 COROLLARY 

the form: 

S~(~ p-regular) 

The decomposition matrix of ~n 

D ~ (~ p-regular) 

I 

1 

! 

for the prime p has 

when the p-regular partitions are placed in dictionary order before all 

the p-singular partitions. 

12.4 EXAMPLE Consider n = 3, S (3) = D (3) is the trivial p-modular 

representation. S (I~) is the alternating representation, and 

S (13) ~ S (3) if and only if p = 2. Using Example 5.1, the decomposi- 

tion matrices of 

S(3) 

S(2,1) 

S(I 3 ) 

are : 

D(3) D(2,1) D(3) D(2, l) 

1 1 

1 1 when p = 2, 

S (3) 

S(2,1) 

S(I 3 ) 

when p 
1 

= 3 
1 

S(3) 

S(2,1) 

S(I 3 ) 

D(3) D(2,1) D(I 3) 

1 

when p > 3 

(By convention, omitted matrix entries are always zero.) 
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13 SEMISTANDARD HOMOMORPHISMS 

Carter and Lusztig Ill observed that the ideas in the construction 

of the standard basis of the Specht module can be modified to give a 

basis for HOmF~ (SI,M ~) when char F ~ 2. A slightly simplified form 

of their argumen~ is given here, and some cases where the ground field 

has characteristic 2 are included. 

We keep our previous notation for the modules S l and M l, but it is 

convenient to introduce a new copy of M ~. This requires the introduc- 

tion of tableaux T having repeated entries, and we shall use capital 

letters to denote such tableaux. A tableau T has type ~ if for every 

i, the number i occurs ~i times in T. For example 

2 2 1 1 

1 

is a (4,1)-tableau of type (3,2). 

13.1 DEFINITION ~(l,~) = {TIT is a l-tableau of type ~}. 

Remark: We allow ~ to be any sequence of non-negative integers, whose 

sum is n. For example, if n = iO, ~ can be (4,5,O,1). The definition 

of M ~ as the permutation module of ~ on a Young subgroup does not 

require ~i ~ ~2 ~ .... and M (4'5'O'I)n=_ M (5'4'I) 

For the remainder of section 13f let t be a given l-tableau (of 

type (in)). 

If T E ~(I,~), let (i)T be the entry in T which occurs in the same 

position as i occurs in t. Let ~n act on ~(l,~) by 

(i) (Tz) = (iw'l)T (i ~ i ~ n, T ~ ~(l,~),n ~ ~n ) . 

The action of ~ is therefore that of a place permutation, and we are 
-I 

forced to take ~ in the definition to make the ~-action well- 

defined. 

13.2 EXAMPLE If t = 1 3 4 5 and T = 2 2 1 1 then 

2 1 

T(I 2) = 1 2 1 1 and T(I 2 3) = 2 1 1 1 . 

2 2 

Since ~n is transitive on ~(l,~), and the stabilizer of an ele- 

ment is a Young subgroup ~ , we may take M ~ to be the vector space 
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over F spanned by the tableaux in ~(l,~) . It will soon emerge why we 

have defined M ~ in a way which depends on both I and U. 

If T 1 and T 2 belong to ~(l,U), we say that T 1 and T 2 are row 

(respectively, column) equivalent if T 2 = TI~ for some permutation 

in the row (respectively,column) stabilizer of the given h-tableau t. 

13.3 DEFINITION If T E ~(l,U}, define the map 0 T by 

e T : {t}S + ~{TI[T 1 is row equivalent to T}S (S~ F ~n ). 

It is easy to v e r i f y  t h a t  e T b e l o n g s  t o  Hom F ~  (Mt,MU). 
n 

13.4 EXAMPLE If t = 1 3 4 5 and T = 2 2 1 1 then 

2 1 

{t}@T = 2 2 1 1 + 2 1 2 1 + 2 1 1 2 + 1 2 2 1 + 1 2 1 2 + 1 1 2 2 

1 1 1 1 1 1 
and 

{t}(123)@ T = 2 1 1 1 + 1 1 2 1 + 1 1 1 2 + 2 1 2 1 + 2 1 1 2 + 1 1 2 2 

2 2 2 1 i 1 

Notice that the way to write down {t}@ T is simply to sum all the 

different tableaux whose rows contain the same numbers as the corres- 

ponding row of T. 

It is clear that 

13.5 T <t = 0 if and only if some column of T contains two identical 

numbers. 

^ 

If we define @T by 
^ 

@T = the restriction of ~T to S , 

then 13.5 suggests that sometimes ~T is zero, since et~ T = {t}@T< t. 

To eliminate such trivial elements of Hom F ~n(SI,MU), we make the 

following 

~.6 DEFINITION A tableau T is semistandard if the numbers are non- 

decreasing along the rows of T and strictly increasing down the col- 

umns of T. Let ~o(l,~) be the set of semistandard tableaux in ~(i,~). 

13.7 EXAMPLE If I = (4,1) and ~ = (2,2,1), then ~'o(l,U) consists 

of the two tableaux 1 1 2 2 and 1 1 2 3 . 

3 2 

^ 

We aim to prove that the homomorphisms e T with T in ~o(I,~) 
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usually give a basis for Hom F ~n(SI,MP). These homomorphisms will be 

called semistandard homomorphisms, and, as with the standard basis of 

the Specht module, the difficult part is to decide whether the semi- 

standard ~somorph~ms span Hom F G (SI'M~)" The proof that they are 

linearly independent uses a partlal order on the column equivalence 

classes [T] of tableaux in ~(l,p) (cf. 3.11 and 3.15) : 

13.8 DEFINITION Let IT I] ~ [T 2] if IT 2] can be obtained from [T I] 

by interchanging w and x, where w belongs to a later column of T 1 than 

x and w < x. Then ~ generates a partial order 4 . 

13.9 EXAMPLE When I = (3,2) and ~ = (2,2,1), the following tree 

indicates the partial order on the column equivalence classes: 

0 1 1 

! 1 l / 

/ \ 

The crucial, but trivial, property of this partial order is: 

13.10 It T is semistandard, and T' is row equivalent to T, then 

[T'] ~ [T] unless T' = T. 

13.11 LEM~MA {~T[T ~ ~O(l~p)} is a linearly independent subset of 

Hom .F ~n (sl rMZ) " 

Proof: (cf. Lemmas 8.2 and 8.3). If Za T @T is a linear combination of 

homomorphisms with T in ~Yo(l,~) and not all the field coefficients 

equal zero, choose T 1 such that aTl ~ O, but a T = 0 if IT1] 4 IT]. 

Then from the definition of 8T and 13.10, 

{t} Za T QT = aT 1 T1 + a linear combination of tableaux 

T 2 satisfying [T I] @ IT2]. 
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Since the coluntn stabilizer of t preserves column equivalence 

classes, and T 1 K t ~ O, this shows that 

{t}<t 7aT @T = {t} 7a T e T <t ~ 0 

Therefore, Ea T ~T is a non-zero element of Hom F ~n(SI,M ~) , as required. 

We now have to be careful about the case where our ground field 

has characteristic 2: 

13.12 LEMMA Suppose that ® is a non-zero element of HOmF~n(SlrM~) 

and write {t}KtO = ~c T T (c T E F, T £ ~(l,~)) 

where t is the given l-tableau. Unless char F = 2 and I is 2-singular, 

then 

(i) CT. = 0 for every tableau T* havin~ a repeated entry in some 

column. 

and (ii)_CTl ~ 0 for some semistandard tableau TI~ 

Proof: Part (i) Suppose that i # j are in the same column of t, and 

(i)T* = (j)T*. We wish to prove that CT, = O. 

Since Kt(i,j ) =-Kt, 

7 c T T(i,j) = {t}K t 8(i,j) = --E C T T 

Because T*(i,j) = T*, it follows that CT, = 0 when char F ~ 2. 

If char F = 2 and I is 2-regular, let ~ be the permutation rever- 

sing the order of the numbers in each row of t. By Corollary 10.6 , 

{t}K t ~ K t = {t}K t • 

There fore 
Z CTT= {t}K t ®= {t}<tSn Kt = Z C T TZ K t . 

By 13.5, no tableau which has a coltura containing a repeated 

entry appears in 7~ c T T ~ <t' so CT, = O. 

Part (ii) If z is in the column stabilizer of t, then 1 -(sgn ~)~ 

annihilates {t}< t . Therefore 

7 c T T = Z CT(sgn ~)T~ , 

and so 

CTl = + CT2 when T 1 and T 2 are column equivalent. 

Since 8 ~ O, we may choose a tableau T 1 such that C rl ~ O, but 

c T = 0 if IT I] ~ IT]. The previous paragraph and part (i) of the 

Lemma show that we may assume that the numbers strictly increase down 

the columns of T 1 . 

We shall be home if we can derive a contradiction from assuming 
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that for some j, a I < a 2 <...< a r are the entries in the jth column of 

TI, b I < b 2 < ...< b s are the entries in (j+l) th column of T 1 and 

a > b for some q. 
q q 

a I b 1 
A 

A 

a • b q q 
A 

s ^ 
a 

r 

Let xij be the entry in the (i,j)th place of the tableau t, and 

let Z(sgn ~)~ be aGarnir element for the sets {Xqj,...,Xrj} and 

{Xl,j+ I, . . . ,Xq,j+l}. Then 

c T T ~(sgn ~)~ = {t}< t ~(sgn a)~@ = O. 

For every tableau T, T Z (sgn ~)~ is a linear combination of 

tableaux agreeing with T on all except the (l,j+l)th, (2,j+l)th,..., 

(q,j+l)th, (q,j)th,...,(r,j)th places. All the tableaux involved in 

T 1 Z(sgn ~)~ have coefficient +- CTl, and since Z c T T Z (sgn ~)~ is 

zero, there must be a tableau T ~ T 1 with c T ~ O such that T agrees 

with T 1 on all except the places described above. Since b I <...< bq 

<.. < we must have IT I] ~ IT], and this contradicts our < aq . a r , 
initial choice of T I. 

13.13 THEOREM Unless char F = 2 and i is 2-singular, 

{~TIT ~ ~;'o(l,~) } is a basis for HOmF~ (SI,M~). 
n 

Proof: Suppose @ is a non-zero element of Hom F ~n(Si,M ~) . By Lemma 

13.12, 

{t}K t @ = Zc T T, where CTl ~ O for some T 1 E ~o(l,~). 

We may assume that c T = O if T E ~o(l,~) and [TI3 ~ IT]. Then, by 

13.10, {t}<t(~ - CT] eTl) is a linear combination of tableaux T 2 with 

ETI3 @ IT2]. ;~y induction, ~ - CTI~TI is a linear combination of semi- 

standard homomorphisms, and so the same is true of e. The Theorem now 

follows from Len'~la 13. ii. 

13.14 COROLLARY Unless char F = 2 and I is 2-singular, 

Hom F ~n(Sl,M ~) equals the number of semistandard l-tableaux dim 

of type ~ . 

Remark If ~ is obtained from ~ by reordering the parts (e.g. ~ = 
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(4,5,O,1) and 9 = (5,4,1)), then visibly 

dim HOmF ~n(SI,MP) = dim Hom F ~n(SI,M ~) 

Equivalently, we may choose an unusual order of integers in definition 

13.6. Therefore, the number of semistandard tableaux of a given 

shape and size is independent of the order we choose on the entries. 

For example, we list below the elements in ~o((4,1), (2,2,1)) for 

different orderings of {1,2,3}: 

112 2 11 23 
when 1 < 2 < 3 3 2 

3211 3221 

2 1 when 3 < 2 < 1 

1132 1122 

2 3 when 1 < 3 < 2 

13.15 COROLLARY Unless char F = 2 and I is 2-singular r every element 

of Hom F ~n(S~rM p) can be extended to an element of Hom F~n(M~Mp). 

^ 

Proof: 0 T can be extended to ®T" 

Of course, Corollary 13.15 is trivial if char F = O, but we know 

of no direct proof for the general case. 

That Theorem 13.13 and Corollary 13.15 can be false if char F = 2 

and I is 2-singular is illustrated by the easy: 

i 
13.16 EXAMPLE If char F = 2, ~ + T + 12 defines an element of 

(S(12),M (2)) which cannot be ~xtended to an element of 
H°mF ~2(M(I 2),M(2 ) 
H°mF ~ 2 ) " 

13.17 COROLLARY Unless char F = 2 and I is 2-sin~ular~ I ~ p 

Hom F ~n(SltM ~) = O t and Hom F ~n(SlrM l) ~ F. implies 

Proof: There is just one semistandard h-tableau of type ~ if I = p, 

and none at all unless I ~ p . (cf. the proof of Lemma 3.7). Corollary 

13.14 gives the result. 

Corollary 13.17 has already been proved under the hypothesis that 

I is p-regular (Lemma 11.3), and we now provide an alternative proof 

for the case where char F ~ 2. 

Let 8 ~ Hom F ~n(SI,MP), and suppose that t is a h-tableau and t I is 

a p-tableau. If ~ ~ u , or if i = p and {tl} is not involved in et, 
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then some pair of numbers a,b belong to the same row of t I and the same 

column of t. Therefore 

< et@,{t I} > = -< et(a,b)0,{t I} > 

= -< et0,{tl}(a,b) > 

= -< et0,{t I} > . 

Since char F ~ 2, < et0,{t I} > = O. This proves that 0 = 0 if 

I # Z , and that et0 involves only tabloids involved in e t when I = ~. 

If I = ~ and z belongs to the column stabilizer of t, then 

< et0,{t}z > = < et@ ~-l,{t} > = sgn ~ < et@,{t} > and this shows that 

et0 = < et@i{t} > e t. Thus 0 is multiplication by a constant. 

13.18 COROLLARY Unless char F = 2 and I is 2-sin~ularl S 1 is inde- 

composable. 

Proof: If S 1 were decomposable, we could take the projection onto 

one component, and produce a non-trivial element of HomFGn(SX,MI), 

contradicting the last Corollary. 

Remark: There are decomposable Specht modules - see Example 23.10(iii). 

When we investigate the representation theory of the general linear 

group, we shall need the simple 

13.19 THEOREM {0TIT e [Y(lr~) and the numbers are non-decreasing 

alon~ each row of T} is a basis for Horn F ~ (MXrM ~) . 
n 

Proof: Our set of homomorphisms has been constructed by taking one 

representative TI,T2,...,T k from each row equivalence class of ~(l,~). 

The linear independence of the set follows from the definition of 8 T. 

Suppose that 0 is an element of HOmF~ (MX,M ~) • If T and T' are 
n 

row equivalent, then T' = Tz for some z in Rt, and so 

< {t}0,T' > = < {t}0,T~ > = < {t}0~-I,T > 

= < {t}@,T > 

Hence {t}@ = ~ < {t}@,T i > {t}0Ti 
i=l 

and since M 1 is a cyclic module, 0 is a linear combination of 0T. 's 
l 

as required : 
k 

@ = ~ < {t}@,T i > 
i=l @Ti 
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14 YOUNG'S RULE 

It is now possible to describe the composition factors of M~ 

explicity. 

l 
14.1 YO~L~G'S RULE The multiplicity of SQ as a composition factor of 

~ equals the number of semistandard l-tableaux of type ~. 

Proof: Since @ is a splitting field for ~ , the number we seek is 
n 

(Sl,M~), by 1.7. But this is equal to the number of semi- dim Hom~ n 

standard l-tableaux of type ~, by Corollary 13.14. 

Remark: An independent proof of Young's Rule appears in section 17. 

Young's Rule shows that the composition factors of M~ are obtained 

by writing down all the semistandard tableaux of type ~ which have the 

shape of a partition diagram. 

14.2 EXAF~LE We calculate the factors of M (3'2'2) The semistandard 

tableaux of type ~ are: 

ii12233 111223 11122 

3 33 

111233 11123 11123 

2 23 2 

3 

1112 ll 12 1113 3 

233 23 22 

3 

1113 ii13 lll 

223 22 223 

3 3 

ill 

22 

3 3 

Therefore in the notation of 6.4, 

[3][2][2] = [7] + 216,1] + 3[5,2] + 2[4,3] + [5,12] + 214,2,1] + [32,1] 

+ [3,22 ] 

Remark: Young's Rule gives the same answer whichever way we choose to 
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order the integers in the definition of "semistandard", and does not 

require ~ to be a proper partition: 

14.3 EXAMPLE The factors of M (3'2) are given by 

by 1112 2 1112 1 1 1 

2 2 2 

or by 2 2 1 1 1 2 2 1 1 2 2 1 

1 1 1 

Therefore, [3][2] = [5] + [4,1] + [3,2] (cf. Example 5.2). 

14.4 EXAMPLE If m s n/2 then 

[n-m][m] = In] + [n-l,l] + [n-2,2]+ ... +[n-m,m]. 

Since dim M (n-m'm) = (~), we deduce that 

s(n-m'm) = (~) _ (m~l) . dim 

Notice that Young's Rule gives S~ as a composition factor of M~ 

with multiplicity one, and the other Specht modules S~ we get satisfy 

m ~ in agreement with Theorem 4.13. ~emembering that this shows 

that the matrix m = (ml~) recording factors of M~ _ as ~ varies (see 6.1) 

is lower triangular with l's down the diagonal, we can use Young's 

Rule to write a given [~] as a linear combination of terms of the form 

[~i][~2]...[i i] (The method of doing this explicitlyis given by the 

Determinantal Form - see section 19). IIence we can calculate terms 

like [~][Ul]...[u k] (= S~ @ S~Ul)~...~ s~k)+ ~ n) for integers 

Ul,...,Uk. More generally, Young's Rule enables us to evaluate 

[~][u]( = S @ S~ ~ ~n ) for any pair of partitions ~ and ~ . The pro- 

duct [~][u] is the subject of the Littlewood-Richardson Rule (section 

16), and the argument we have just given shows that the Littlewood- 

Richardson Rule is a purely combinatorial generalisation of Young's 

Rule. 

14.5 EXAMPLE We calculate [3,2][2] = S (3'2)~ ® S~ 2)+ ~7 using only 

Young's Rule. By Example 14.4, 

[3,2] = [3][2] - [4][1] 

To find [4][1][2], we use Young's Rule: 

1111233 111123 11112 

3 33 
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ll 1 1 3 3 ll 1 1 3 

2 23 

1 1 1 1 3  

2 

3 

llll llll 

233 23 

3 

[3,2][2] = [3][2][2] - [4][1][2] , and using Exan~le 14.2, we have 

[3,2][2] = [7] + 216,1] + 3[5,2] + 2[4,3] + [5,12 ] + 214,2,1] 

+ [32,1] + [3,22 ] - [7] - 216,1] - 2[5,23 - [4,3] - [5,12 ] - [4,2,1] 

= [5,2] + [4,3] + [4,2,1] + [32,1] + [3,22]. (cf. ExamDle 16.6). 
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15 SEQUENCES 

In order to state the Littlewood-Richardson Rule in the next 

section, we must discuss properties of finite sequences of integers. 

A sequence is said to have type ~ if, for each i, i occurs ~ i times in 

the sequence. 

15.1 EXAMPLE The sequences of type (3,2) are 

2 2 11 1 2 12 11 2 112 1 2 1112 12 2 11 

x x J V J x J J J J x / J ,l J x ,; J J J J V x / J 

1212 1 12 112 112 2 1 112 12 1112 2 

VJJJJ JJVJJ VJJ/V VFVV/ JVJJJ 

15.2 DEFINITION Given a sequence, the quality of each term is deter- 

mined as follows (each term in a sequence is either good or bad). 

(i) All the l's are good. 

(ii) An i + 1 is good if and only if the number of previous 

good i's is strictly greater than the number of previous good (i+l)'s. 

15.3 EXAMPLES We have indicated the quality of the terms in the 

sequences of type (3,2) above. Here is another example: 

3 1 1 2 3 3 2 3 2 1 2  

× / J J Jx J V x V/ 

It follows immediately from the definition that an i+l is bad if 

and only if the number of previous good i's equals the number of prev- 

ious good (i+l)'s. Hence we have a result which will be needed later: 

15.4 If a sequence contains m good (c-l)'s in succession, then the 

next m c's in the sequence are all good. 

15.5 DEFINITION Let ~ = (~i,~2,...) be a sequence of non-negative 

integers whose sum is n, and let ~ = (~, ~,...) be a sequence of 

non-negative integers such that for all i, 

~i+l ~ ~i S ~i " 

Then ~, ~ is called a pair of partitions for n. 

Remark: As here, we shall frequently drop the condition ~i a ~2 a "'" 

on a partition ~, but will still refer to ~ as a partition of n. 

If the condition ~i ~ ~2 a "'" holds we shall call ~ a proper partition 

of n. So, for example , ~# is a proper partition of some n' s n in 

definition 15.5. Note that a Specht module S ~ is defined only for 
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a proper partition, but the moduleM ~ spanned by ~-tabloids may have 

improper. 

15.6 DEFINITION Given a pair of partitions ~, ~ for n, let s(~,~) 

be the set of sequences of type ~ in which for each i, the number of 

good i's is at least ~ . 

We write 0 for the partition of O, so that s(o,~) consists of all 

sequences of type ~. Since the number of good (i+l)'s in any sequence 

is at most the number of good i's there has been no loss in assumiDg 

< 
that ~i+l - ~i" 

15.7 If ~i # = ~i and l~a = ~i~ for i > i, then s(l~,~) = s(~,~), since 

every 1 in a sequence is good. 

Thus we can absorb the first part of ~ into ~#. 

15.8 EXAMPLE s(0,(3,2)) = s((3),(3,2)). The sequences in the second 

and third columns below give s((3,1),(3,2)) and the sequences in the 

last column give s((3,2),(3,2)). 

s((3),(3,2)) ~ s((3,1) ,(3,2)) 

22111 21211 

21121 

21112 

12211 

s((3,2) , (3,2)) 

12121 

12112 

11221 

11212 

11122 

Compare Example 5.2, where M (3'2) has a series of submodules with 

the factors of dimensions 1,4 and 5. This is no coincidence' 

Given a pair ~, ~ of partitions, we record them in a picture 

similar to a diagram. We shall draw a line between each ro%~ and enc- 

lose ~ by vertical lines. The picture for ~4~ ,~ will always be ident- 

ified with the picture obtained by enclosing all the nodes in the first 

row (cf. 15.7). 

15.9 EXAMPLE Referring to Example 15.8, we have 

" x x  x x  

This nesting suggests that we should have some notation which adds 

We need only consider absorbing a node which is a node from ~ to ~. 

not in the first row. 
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15.10 DEFINITION Suppose ~ ~ Z. Let c be an integer greater than 

1 such that ~ < ~c and ~ = ~c-i ~c-l" 

(i) If ~c-l~ > Z~, then ~ Ac, ~ is the pair~ of partitions 

to ~ + i. If = ~c then obtained from ~ ,Z by changing ~c ~c ~c-i ' 

~Ac, ~ is the pair 0,O. 

(ii) ~ ~ ,~R c is the pair of partitions obtained from Z # ,Z 

by changing Zc to Dc and ~c-i to ~c-i + ~c - Zc " 

The operator R c merely moves some nodes lying outside ~# to the end 

of the row above (R stands for "raise" and A stands for "add"). Both 

~ and ~ are involved in the definitions of A c and Rc, and note that 

equals we stipulate that ~c-i ~c-i " 

15. ll EXAMPLE R2 Ix x xlx x 

X X 

t a2  xx,x. 
t' A2 

= ~xxxxl 

= ~xx~ 

Other examples are given in 15.13, 17.15 and 17.16. 

Since R c raises some nodes, and we always enclose all the nodes in 

the first row, any sequence of operations Ac,R c on a pair of partitions 

leads eventually to a pair of partitions of the form I,i (when, per- 

force, i is a proper partition.) It is also clear that 

15.12 Given any pair of partitions, ~ ~ ,~, there is a partition 

and a sequence of operations Ac,R c leading from O,v to ~ ,~. 

15.13 EXAMPLE To obtain ((4,3,1),(4,5,22)), apply 

3 A3 R4 R3 R5 R6 R4 R5 to (O,(4,3,1,2,1,2)): A 2 

fxxxxl ~A3 xx~1~ R4R3 ~xxxl 
x x x IxJ x xlx x 
x 

X X X X 
m 

X X X 

X X X X X X 
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 xxx 
R5 R 6 R4 R 5 

÷ X X x X ÷ Ix X x l x  x 

X X X 

X X 

The critical theorem for sequences is 

15.14 THEOREM The following gives a i-i correspondence between 

s(~r~) \ s(~ ~ Ac,~) and s(~ ~ r~Rc). • 

Given a sequence in the first set r change all the bad c's to 

(c-l) 's. 

Proof: Recall that our definition of the operators A and R c required 
c 

~c-i = ~c-i " Therefore, a sequence s I in s(~,p)\ s(~Ac,~) contains 

(c-l) 's, all good. 
~c-i = ~c-i 

# bad c's. pc~good c's and P c - ~ c  

T h e  b a d  c ' s  a r e  c h a n g e d  t o  ( c - l )  ' s  t o  g i v e  a s e q u e n c e s  s 2 .  We c l a i m  

t h a t  

15.15 For all j, the number of good (c-l)'s before the jth term of 

s 2 ~ the number of good (c-l)'s before the jth term in s I. 

This is certainly true for j = i, so assume true for j = i. Then 

15.15 is obviously true for j = i + i, except when the ith term is a 

(c-l) which is good in s I but bad in s 2. But in this case, the inequ- 

ality in 15.15 (with j replaced by i) is strict, because the number of 

(c-2) 's before the ith term is the same in both s I and s 2. Therefore, 

15.15 is true for j = i + 1 in this case also. 

15.15 shows that s 2 has at least ~ good (c-l)'s Pc-i , and that all 

the c's in s 2 are good. Hence, for i # c-i or c, i is good in s 2 if 

and only if i is good in Sl, and so s 2 belongs to s(p ~ ,~R c)- 

It is more difficult to prove the given map i-i and onto. 

Given any sequence replace all the (c-l) 's by left-hand brackets, 

( , and all the c's by right-hand brackets, ). For example, if c = 3 

1 2 1 2 3 1 2 3 3 2 2 1 1 3 1 1 2 2 3  

goes to 
1 ( 1 ( ) 1 ( ) ) ( ( 11 ) 11 ( ( ) 

Now, in any sequence belonging to s(p # ,pR c), all the c's are good. 

Therefore, every right-hand bracket is preceded by more left-hand brac- 

kets than right-hand brackets, and the sequence looks like 

# 

Po(PI(P2(...(P r with r = Pc-i + Pc - 2Pc' 
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where each pj is a closed parenthesis system, containing some terms i 

with i ~ c-i or c. 

It is now clear that there is only one hope for an inverse map; 

- # "extra" brackets (precisely the namely, reverse the first ~c ~c 

brackets which are reversed must become unpaired right-hand brackets, 

to give us an inverse image.) 

Let s belong to s(~ ~ ,~Rc). We say that a c-i is black in s if it 

corresponds to an extra bracket; otherwise it is white. 

Let s* be the sequence obtained from s by changing the first ~c - 

~J black (c-l)'s to c's. We must prove 

15.16 Every c-i in s* is good. 

The Theorem will then follow, since every c appearing in both s and 

s will be good, ana s* will be the unique element of s(~ ~ ,~) 

s(~ Ac,~) mapping to s. 

We tackle ti%e proof of 15.16 in two steps. First 

15.17 For every term x in s, the nturd3er of white (c-l) 's before x 

-< the number of good (c-l) 's before x. 

Initially, let x be a black c-1. The number of white (c-l) 's before 

x = the nun~er of c's before x (by the definition of "black") • the 

number of good (c-l)'s before x, since every c in s is good. This 

proves 15.17 in the case where x is a black c-l. 

The same proof shows that the number of white (c-l) 's in s < the 

nu~er of good (c-l)'s in s. Thus, we may start at the end of s and 

work back, noting that 15.17 is trivially true for the (j-l)th term of 

s if it is true for the jth term, except when the (j-1)th term is a 

black c-l, which is the case we have already done. 

Next we have 

15.18 Either c = 2, or for every c-i in s , the number of previous 

good (c-2)'s > the number of previous (c-l) 's in s*. 

For the proof of 15.18, assume c > 2. Now, s contains at most 

- ~ bad (c-l)'s since s belongs to s(~ ~R c) , so for any c-i in 
• ~c ~c 

s, the number of previous good (c-2) 's > the number of previous (c-l) 's 
-- SF 

in s - (~c ~c )" Therefore, 15.18 holds for a c-i after the (~c 

~ )th black c-i in s. 
~c 

• - # )th black If the term x in s is a c-i appearing before the (~c ~c 

c-i in s, then x was white in s. Also, the number of (c-l)'s before x 

in s* = the number of white (c-l) 's before x in s < the number of good 
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(c-l) 's before x in s by 15.17 (the inequality being strict if x is a 

bad c-i in s, by applying 15.17 to the next term) < the number of good 

(c-2) 's before x (the inequality being strict if x is a good c-i in s), 

and 15.18 is proved in this case too. 

From 15.18, 15.16 follows at once, and this completes the proof of 

Theorem 15.14. 

15.19 EXAMPLE Referring to Example 15.8, the i-i correspondence 

between s((3),(3,2)) \ s((3,1),(3,2)) and s((5),(5)) is obtained by: 

22111 + 11111 

x x , / / /  

The 1-1 correspondence between s((3,1) , (3,2)) \ s((3,2) , (3,2)) and 

s((4,1),(4,1)) is given by 

21211 11211 

x / / / /  

2 1 1 2 1  1 1 1 2 1  

x//// 

21112 llll2 

x / J / /  

12211 12111 

/ / x / /  
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16 THE LITTLEWOOD-RICHARDSON RULE 

The Littlewood-Richardson Rule is an algorithm for calculating 

[I][~] where I is a proper partition of n-r and ~ is a proper partition 

of r. Remember that [i][~] is a linear combination of diagrams with n 

nodes, and the interpretation is that when a is the coefficient of 

~I ~ has [~], ~ ~ S~ + ~n S~ as a composition factor with multiplicity 

a It is a well-known result that every ordinary irreducible repre- 

sentation of G x H, for groups G and H is equivalent to S 1 × S 2, for 

some irreducible G-module S 1 and some irreducible H-module $2, so the 

Littlewood-Richardson Rule enables us to calculate the composition 

factors of any ordina~ l representation of a Young subgroup, induced up 

to ~ . 
n 

For the moment, forget any intended interpretation, and consider 

the additive group generated by {[I]II is a proper partition of some 

integer}. Given any pair of partitions ~# ,~ as in definition 15.5, 

we define a group endomorphism [~ ~,~]" of this additive group as foll~ 

ows : 

16.1 DEFINITION [I] [~ '~] = ~ a [~] where a = O unless I i ~ ~i 

• ~ ~i for every i, then a is the number of ways for every i, and if I l 

of replacing the nodes of [~]\[I] by integers such that 

(i) The numbers are non-decreasing along rows 

and (ii) The nur~bers are strictly increasing down columns 

and (iii)When reading from right to left in successive rows, we have a 

sequence in s(u ~ ,~). 

If ~ = ~, when ~ is a fortiori a proper partition, we write [~]" 

for [U, ~ 

The operators are illustrated by the next Lemma and by Examples 

16.6 a~d 16.7. 

16.2 LEMMA If N = (~I,~2,...,~{, then [O] [O'~] = [~l]_~[~2]...[~k!. 

If ~ is a proper partition, then [O] [~]" = IN]. 

Proof: When ~ = O, condition (iii) of definition 16.1 merely says 

that we have a sequence of type ~. But [~l][~2]...[~k ], by definition, 

describes the composition factors of M~ , and the first result follows 

from Young's Rule. 

Let [~ be a diagram appearing in [O] [u] Then the nodes in [~] 

can be replaced by ~i l's, ~2 2's, and so on, in such a way that 

conditions (i) to (iii) of 16.1 hold. Suppose that some i appears in 

the jth row with j < i, and let i be the least number for which this 

happens. There are no (i-l)'s higher than this i, by the minimality of 
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of i; nor can there be any (i-l) 's to the right of it in the same row, 

by condition (i). Thus, this i is preceded by no (i-l) 's when reading 

from right to left in successive rows, and the i is bad, contradicting 

condition (iii). But no i can appear in the @th row with ~, > i, b v condi- 

tion (ii). This proves that every i is in the ith row, and [9] = [~]. 

16.3 LEMPirA [~ ,~]" = [~Ac,~]" + [p~ r~Rc ]'_ 

Proof: Assume that ~ is a partition of r, and that I and 9 are .proper 

partitions of n-r and n, respectively, with I i < 9 i for each i. 

Replace each node in [9]\[I] by ~I l's, ~2 2's and so on, such that we 

have a sequence in s(~ # # ,~) \ s(~ Ac,~) when reading from right to left 

in successive rows. We must prove that changing all the bad c's to 

(c-l) 's gives a configuration of integers satisfying 16.1 (i) and (ii) 

if and only if we start with a configuration of integers satisfying 

16.1 (i) and (ii), since the Lenuna will then follow from Theorem 15.14. 

Suppose we have not yet changed the bad c~'s to (c-l) 's and condi- 

tions 16.1 (i) and (ii) hold for our configuration of integers. There 

are two probleras which might occur. A bad c might be to the zight of 

a good c in the same row. This cannot happen, because a c immediately 

after a bad c must itself be bad, ~1ore complicated is the possibility 

that there is a bad c in the (i,j)th place and a c-i in the (i-l,j) th 

place. To deal with this, let m be maximal such that there are c's in 

the (i,j)th,(i,j+l)th,..., (i,j+m-l)th places. Then by conditions 16.1 

(i) and (ii), there are (c-l) 's in the (i-l,j)th,(i-l,j+l)th,..., (i-l, 

j+m-l) th places. Since all the (c-l) 's are good in a sequence belonging 

to s(~ ~ ,~)\ s(~ # Ac,~) , our c in the (i,j)th place must be good,after 

all, by 15.4. This shows that all the bad c's can be changed to (c-l) 's 

without affecting conditions 16.1(i) and (ii). 

Conversely, suppose that after changing the Sad c's to (c-l) 's we 

have a configuration satisfying conditions 16.1 (i) and (ii). We dis- 

cuss the configuration of integers we started with. This must satisfy 

conditions 16.1 (i) and (ii) unless a bad c occurs immediately to the 

left of a (good) c-i in the same row, or a bad c lies immediately above 

a good c in the same column. The first problem cannot occur by 15.4. 

Therefore, we have only to worry about the possibility that a bad c is 

in the (i-l,j)th place and a good c is in the (i,j)th place. Reading 

from right to left in successive rows, we see that the number of (good) 

(c-l)'s in the (i-l) th row to the left of our bad c in the (i-l,j)th 

place is at least the number of good c's in the ith row. But every 

c-i in the (i-l)th row to the left of the (i-l,j)th place must have a 

good c immediately below it in the ith row (since there is a good c in 
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~e (i,j)th place, and we end up with a configuration satisfying condi- 

tions 16.1 (i) and (ii)). This contradicts the fact that there is a 

good c in the (i,j)th place, and completes the proof of the Lemma. 

16.4 THE LITTLEWOOD-RICHARDSON RULE 

IX] [~]. [X][~3 

Proof: (James [10]9 If ~ is a proper partition of n, then applying 

operators A c and R c repeatedly to O, ~ we reach a collection of pairs 

of partitions ~,~. By Lemma 16.3, we may write 

[O,v]" = ~ a [~" 

where each a m in an integer, a = 1 and a m = 0 unless [~] ~ Iv]. 

Hence there are integers b and c B such that 

If]" = ~ b [O,m]'and [~]" = Z cB[O,8]" 

By Lemma 16.2 

[ ~ ] [ ~ ] "  = [ 0 ] [ ~ ] ' [ ~ ]  " 

= [O]~ b~[O,~] ~ cB[O,8] 

= ~Z bm [el]...[aj] ~ C 8 [81]-..[B k] 

= [O] ~ b~[O'~]'[O]~ cB[O'8]" 

= [ 0 ]  [ ~ ]  [ 0 ]  [ ~ ]  

= [ l ] [ u ]  

16.5 COROLLARY [v]'[p]" = [~]'[~]'= ([p][~])" 

Proof: For all [l], [l][~] [~] = [l][~][~] = [l][~][~] 

= [ x ] E P ] ' [ ~ ] "  = [ x ] ( [ ~ ] [ ~ ] ) "  

The C o r o l l a r y  i s  e x t r e m e l y  h a r d  t o  p r o v e  d i r e c t l y .  More g e n e r a l l y ,  

it follows from the Littlewood-Richardson Rule that for every equation 

like [3][2] = [5] + [4,1] + [3,2] there is a corresponding operator 

equation [3] [2] - [5] + [4,1] + [3,2] 

Of course, the Branching Theorem (part (5)) is a special case of 

the Littlewood-Richardson Rule. 

When applying the Littlewood-Richardson Rule, it is best to draw 

the diagram El], then add ~i l's, then ~2 2's and so on, making sure 

that at each stage If], together with the numbers which have been added, 

form a proper diagram shape and no two identical numbers appear in the 

same column. Then reject the result unless reading from right to left 
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in successive rows each i is preceded by more (i-l)'s than i's. (This 

condition is necessary and sufficient for every term to be good.) 

[2] • 
16.6 EXAS~LE [3,2][2] = [3,2] 

= [5,2] + [4,3] + [4,2,1] + [32,1] + [3,22], by looking at the 

following configurations: (cf. Example 14.5). 

XX X 1 1 X XX 1 XXX 1 X XX XXX 

X X X X 1 X X X X 1 X X 

1 1 1 1 

16.7 EXAMPLE [3,2][2][2] = [3,2] [2] [2] = 

XXXI 1 XXXl i XXX 1 1 XXX 1 

XX22 XX2 XX XX 12 

2 22 2 

XXXI 

XXI 

22 

X X X 1 X X X 1 X X X X X X 

XX2 XX XXI XX 

1 12 12 ii 

2 2 2 22 

XXXI 12 XXX 112 XXX 12 

XX2 XX XXI2 

2 

X X X l 2  

XXI 

2 

XXX 12 XXX 12 XXX 12 X XX 1 X XX 1 

XX 2 XX X X XX 22 XX 2 

1 12 1 1 12 

2 

X X X 2 X X X 2 X X X X X X 2 X X X 

X X 1 X X 1 X X 1 X X X X 2 

12 1 122 11 ii 

2 2 2 

XXX 1122 XXXI 22 

XX XXI 

X X X 2 2  XXX2 

XX XX2 

ii ii 

X X X I 2 2  

XX 

1 

X X X 2 2  

XXI 

1 
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We have arranged the diagrams so that, reading from right to left 

in successive rows, the diagrams in the first batch (before the first 

line) give sequences in s((2,2),(2,2)), so 

[3,2][2,2] = [3,2] [2,2]. = [5,4] + [5,3,1] + [5,22 ] + [42,1] 

+ [4,3,23 + [4,3,12 ] + [4,22,13 + [32,2,13 + [3,23 ] 

The diagrams before the second line give [3,2] [(2'1)'(2'2)] 

The reader may care to check that changing a bad 2 to a 1 in the sec- 

ond batch gives the same answer as [3,2] [3'1]" , in agreement with Lemma 

16.3. 

[3,2][3,13 = [3,2] [3'13" = [6,3] + [6,2,1] + [5,4] + 215,3,1] 

+ [5,22 ] + [5,2,12] + [42,1] + 2[4,3,2] + [4,3,12 ] + [333 + [4,22,1] 

[32,2,1]. 

The last batch contains all the configurations where both 2's are 

bad, and by changing the 2's to l's, Lemma 16.3 gives 

[3,2][4] ~ [3,2] [4]. = [7,2] + [6,3] + [6,2,1] + [5,3,1] + [5,22 ] 

+ [4,3,2] , 

which is simple to verify directly. 
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17. A SPECHT SERIES FOR M ~ 

A better form of Youn~s Rule can be derived over an arbitrary field. 

What happens in this case is that M ~ has a series with each factor iso- 

morphic to a Specht module; such a series will be called a Specht 

series. Since M ~ is not completely reducible over some fields, we must 

take into account the order of the factors in a Specht series. The 

next example shows that the order of the factors does matter: 

17.1 EXAMPLE Let char F divide n > 2, and consider M (n-l'l). 

Example 5.1 shows that M (n-l'l) is uniserial, with factors D (n) ,D (n-l'l) 

D (n) and that S (n-l'l) is uniserial with factors D (n-l'l) ,D (n), reading 

from the top. Thus M (n-l'l) has no Specht series with factors S (n-l'l) , 

S (n) reading from the top. The Specht series in Example 5.1 has factors 
(n) (n-l,l) 

in the order S ,S 

In this important section, we shall use only Theorem 15.14 on seq- 

uences, and deduce both Young's Rule and the standard basis of the 

Specht module. At the same time, we characterize the Specht module S ~ 

as the intersection of certain F ~ -homomorphisms defined on M ~, in the 
n 

case where I is a proper partition. Throughout this section F is an 

arbitrary field. 

Let ~ ~ ,~ be a pair of partitions for n, as defined in 15.5. Recall 

that ~ ~ must be a proper partition, while we do not require ~ to be 

proper. We want to define a submodule S ~ '~ of M ~, and to do this we 

construct an object e t which is "between" a tabloid and a poly- 

tabloid. 

17.2 DEFINITION Suppose that t is a ~-tableau. Let 

e t '~ = Z {sgn n{t}zln ~ C t and n fixes the numbers outside [~ ~ ]} 

17.3 EXAMPLE If t = ~ and ~ = (3,2,0), ~ = (3,4,2) 

9 

86 

(part of t is boxed-in only to show which numbers will be moved), then 

e t '~ = 135 

2 74 9 

86 

17.4 DEFINITION '~ 's 

as t varies. 

Of course, S ~ '~ is an F ~n-submodule of M ~, since e t '~ 

235 175 275 

- 17 49 - 2 34 9 + 1349 

86 86 86 

S ~ '~ is the subspace of M ~ spanned by e~ ~ 

= et~ 
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If ~ ~ = O, then S ~ '~ = M ~ and if U ~ = ~ , then S ~ '~ = S ~. 

1 ~ ~ for i > i, then S I~ '~ = S ~ ~ '~ 17.5 If 11 = ~i and i = ~i 

we can absorb the first part of U into ~ ~ (cf. 15.7). 

, so 

Sequences now come into play by way of 

17.6 CONSTRUCTION Given a sequence of type ~, construct a corres- 

ponding ~-tableau t as follows. Work along the sequence. If the jth 

term is a good i, put j as far left in the ith row of t as possible. 

If the jth term is a bad i, put j as far right in the ith row as poss- 

ible. 

17.7 EXAMPLE 3 1 1 2 3 3 2 3 2 1 2 1 ¢ s((4,3,2),(4,4,4)) 

x /V/Vx //× /// 

and corresponds to 12 3 iO 121 

1 

Different sequences in s(O,~) correspond to tableaux which belong 

to different tabloids, so 

17.8 The construction gives a l-1 correspondence between s(O,~) and 

the set of ~ tabloids. 

Remark We have already encountered the concept of viewing a basis of 

M as a set of sequences, for in section 13, the tableau T of type 

corresponds to the sequence (1)T, (2)T, .... , (n)T. 

The construction ensures that a sequence in s(~ ~,~)correspOnds to 

a tableau which is standard inside [~ ~ ] (i.e. the numbers which lie in- 

side [~#] increase along rows and down colw~s- cf. Example 17.7). But, 

if t is standard inside [u~,then {t}is the last tabloid involved in 

e~ W'~ (cf. Example 17.3), and so Lemma 8.2 gives 

17.9 { e t '~ It corresponds to a sequence in s(~ ~ ,~) by 17.6} is 

a linearly independent subset of S ~# '~ 

We shall see soon that we actually have a basis of S ~ '~ here. 

Our main objective, though, is to prove that S ~ ~ '~/S ~ ~ Ac'~ ~ S ~ '~Rc, 

where the operators A c and R c are defined in 15.10. First, note that 

S ~ Ac'~ _c S ~ '~ . This is trivially true if ~ Ac, ~ = O,O (i.e. if 

~c-i ~ )' since we adopt the convention that So, o is the zero module. 

Otherwise, given t, we may take coset representatives Ol,...,Sk for 

the subgroup of C t fixing the numbers outside [~ ~ ] in the subgroup of 
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~ Ace ~ C t fixing the numbers outside [p ~ Ac], whereupon e t = 

-~ '~ ~ (sgn Oi)O i . 
~t i=l 

NOW we want an F ~n-homomorphism mapping S ~ ~ '~ onto S ~ '~Rc " 

17.10 DEFINITION Let ~ = (~i,~2,...) and 

u = (~l,~2,...,~i_l,~i + ~i+l - v'v'ui+2'''') . Then ~i,v belonging to 

Ho*~ ~n(M~,M~) is defined by {t}~i, v = Z {{tl}I{tl} agrees with {t} on 

all except the ith and (i+l) th rows, and th~ (i+l) th row of {t I} is a 

subset of size v in the (i+l) th row of {t}}. 

Remark It is slightly simpler to visualize the action of ~i,v on the 

basis of M ~ viewed as sequences. ~i,v sends a sequence to the sum of 

all sequences obtained by changing all but v (i+l)'s to i's. Whichever 

way you look at it, ~i,v is obviously an F ~n-homomorphism. Every 

tabloid involved in {t}~i,v has coefficient i, so ~i,v is "independent 

of the ground field." 

17.11 EXAMPLES 

(i) When ~ = (3,2), ~i,o and ~i,i 

~i appearing in Example 5.2. 

(ii) If ~ = (4,32,2), then 

are the homomorphisms ~o and 

~2,1 : 
1 2 5 iO 1 2 5 lO 

3 4 9 ÷ 3 4 9 7 8 

6 7 8 6 

ii 12 ii 12 

1 2 5 I0 

+ 3 4 9 6 

7 

Ii 12 

+ i2SlO 

34967 

8 

ii 12 

(iii) If n > 6 and ~ = (n-3,3) and 

v = 1 2 3 + 1 2 4 + 1 3 4 + 2 3 4 (replacing each tabloid by its 

second row only), we have 

v ~I,o = 4 ~ F 

--i+~ +~+i+~+~+i+~ +~+~+~+~ v ~i,i 
= 3(i + ~ + ~) 

v ~i,2 = 2(~-~ + ~'-~ + ~--~ + 2 3 + 2 4 + 3--4). 

Therefore, v(Ker~l,o n Ker ~i,2 if and only if char F = 2 

and v( Ker ~i,i if and only if char F = 3. 
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(iv) Taking n = 6 in exa~ple (iii), 

=~g+g-i-g-~=~-i (4 5 6 - 1 5 6)~1, 1 

(4 5 6 - 1 5 6 - 4 2 6 + 1 2 6)~i,i = O. 

That is, for t = ~ , p~ = (3,1) and p = (3,3), we ha~e 

e~t '~ @l,1 = e~R2'~R2 where tR 2 = 1 2 3 5 6 

4 

and e~ A?,~ ~l,l -- O. 

Compare the last Example with 

17.12 LE ~V~A S ~ '~ ~c_l~p c 
= S U~ ,PRc 

and S g AC'U O c - l , p ~  = O. 

Proof: Let t be a ~-tableau, and let 

<t ~ = E {sgn n)~l~ fixes the numbers in t outside [U ~ ]}. 

Choose a set B of Pc numbers from the cth row of t, and move the rest 

of the nun~ers in the cth row of t into the (c-l)th row. 

If B consists of the first Uc ~ numbers in the cth row of t, then 

we get a tableau, tR c say, and 

, uR c 
{tR c }<t ~ = etR c 

For any other set of ~c numbers from the cth row of t, we still get 

a ~R o -tabloid, {t I} say, but now one of the numbers, say x, which has 

been moved up lies inside [~ ] . Let y be the number above x in t. 

Then (l-(x y)) is a factor of <t ' and so 

{tl}<t~ = O. 

• # <t ~ and Now, e t '~ ~c_l,~c ~ = {t}<t~c_l,U ~ = {t} ~c_l,~c 

is the sum of all the tabloids obtained by moving all {t} ~c_l,~ c 

except ~c ~ numbers from the cth row of {t} into the (c-l) th row. 

Therefore, ~= = e~ ~ ,~Rc • 

et '~ ~c-l,p~ tR c 

Since p~ Ac, ~ has one more node enclosed in the cth row (or S ~Ac'~ = 

S 0'0 = 0 if Pc-i = ~c ) ' the proof we used to deduce that {tl}<t~ O 

shows that ~A ,U~ ~ = 0 . 
=t c c_l,Uc 
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17.13 THEOREM (James [i0]) 

(i) S ~'~ ~ = S ~'uRc and 
~c-l,~ c 

S ~'~ ~ ker ~c_l~ c 
= s~Ac ,~ 

(ii) S ~ '~/S ~ Ac'~ ~ S ~ '~Rc 

(iii) dim S ~#'~ = Is(~#,~) [; indeed, 

{et~ '~ i t corresponds to a sequence in s(~,~) by 17.6} is a basis of 

S~,P 

(iv) S ~'~ has a Specht series. The factors in this series are 

given by [0] [~'~]" 

Proof: Let O,v be a pair of partitions from which we can reach the pair 

,~ by a sequence of A c and R c operators (cf. 15.12) 

dim S 0'~ = dim M ~ = Is(O,~) I by 17.8. We may therefore 

assume that dim S ~'~ Is(~,~) I and prove that dim S ~Ac'~ = 

is(~*Ac,~) [ and dim S '~Rc = Is(~#,~Rc) I. 

Now, is(~,~) I = dim S ~'~ 

> dim s~Ac'~+ dim S ~'~Rc by Lemma 17.12 

> IS(~Ac,~)I + Is(~]#,]/Rc)I by 17.9 

= is(]/~,~) I by Theorem 15.14 

Everything falls out~ We must have equality everywhere, so results 

(i), (ii) and (iii) follow. 

When ~=~, S ~'~ = S ~, and so has a Specht series whose factors 

are given by [0][~]" (see Lemma 16.2). Therefore, we may assume induct- 

ively that S ~ Ac'~ and S ~#'~Rc have Specht series whose factors are 

given by [O] [~Ac'~]" and [O] [~'~Rc]" Since we have proved conclusion 

(i), and [~,~]" = [~Ac,~]" + [~,~Rc]" (see Lemma 16.3), S ~'~ has 

a Specht series whose factors are given by [O] [~'~]" 

All we have used in the above proof are the purely combinatorial 

results 15.14 and 16.3 (In fact, it is much easier to show that 
[03[~,~]" = [O][~*Ac,~]" + [~,~Rc]" than to prove Lemma 16.3 in its 

full form.) We have therefore given alternative proofs that the standard 

polytabloids form a basis for the Specht module (take ~ = ~ in Dart 

(Jii)), and of Young's Rule (take ~ # = O in ~art (iv)). 

17.14 COROLLARY M ~ has a Specht series. More generally, 

S 1 @ S(~I)@...@ s(~k)+ ~ n has a Specht series. The factors and their 

order of appearance are independent of the ground field, and can be 
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calculated by applvinq the operators A c and R c repeatedly to [0,~] and 

[l~ (l,~ir...,~k) ] J respectively. The factors of S l @ S(~I)@. .@ s(~k)+ 
are ~iven by [I] 'E'~l]" [~2]''''[~k]'. " n 

(By (I,~I,...,Z k) we mean the partition (ll,...,lj, ~l,...,~k) , 

where lj is the last non-zero part of I). 

Proof: It is simple to see that 

Sl' (l'~l'''''~k) ~ Sl @ s(~l)@'''@ s(~k)+ ~n 

and we just apply Theorem 17.13(ii) to obtain a Specht series., The last 

sentence is true because [O][l' (l'~l'''''~k)]" [l] [~l]''''[~k]" ~s can 

be easily verified. 

Remark James and Peel have recently constructed a Specht series for 

the module S ~ @ SI+ ~n " Here again, the factors and their order of 

appearance are independent of the ground field. The Specht factors are 

given by the Littlewood-Richardson Rule. 

17.15 EXAMPLE We construct a Specht series for M (3'2'I) In the tree 

below, we always absorb the first part of ~ into ~ (e.g. M (3'2'I) = 
S O , (3,2,1) = S(3), (3,2,1) 

; cf. 17.5). Above each picture we give the 

dimension of the corresponding module. 

iX x x x x I +R3 1.6 X X X X] ~ R2 l 1 X X X X X I 
xx 

A 2 0,0 

5 24 

x 

~ A 3 

10 A2 
x x x  l 

3O 14 

X 

- +A3 ~ ~2 

5 A2 

IX X XX X l 

W 
14 

R3 ~ X] XXX 

9 I A2 

i xx xl 
xl 

5 

r x~XXxxl 

9 ixxxxl 
xl 
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5 

Therefore, M (3'2'1) has a Specht series with factors S (6) 
S(5,1) S(4,2) (4,12 ) (4,2) ~(32) , , S , S , ~ , S (3,2,1) 

This holds regardless of the ~round field 

17.16 EXAMPLE Consider S(4'22'i)% ~iO 

, S (5'1) , 

, readinq from the top. 

= S(4,22,1),(4,22, 12) 

 xx] Ix xxxl Ix xxxl  xxx] 
R 5 X~ R4R 3 ~ R 2 

> > 

xx x 
Hence, S(4'22'I)% 2~, 

top, isomorphic to S (5'2 ~) 

Examples 9.1 and 9.5). 

has a series with factors, reading from the 
S(4,3,2,1) S(4,23) (4,2 ~ ' , , S '12) (ef. 

17.17 EXAMPLE Following our algorithm, we find that when m < n-m, 

M(n-m'm)has a Specht series with factors S (n) S (n-l'l) .... S (~-m'm) 

reading from the top (cf. Example 14.4). 

There is a point to beware of here. It seems plausible that 

M(n-m-l'm+l)/ S (n-m-l'm+l) is isomorphic to M~-m'm) ; after all, both 

modules have Specht series with factors as listed above. However, this 

is sometimes false. For instance, when char F = 2, S (6"2) has composi- 

tion factors D (6'2) and D (7'I) (see the decomposition matrices in the 

Appendix.) Since D (6'2) is at the top of S (6'2) 

D (7'I) ~ S (6'2) n S (6'2)± ~ M(6'2)/ (S (6'2) + S (6'2)±) . 

Therefore, M(6'2)/ S (6'2) has a top factor isomorphic to D (7'I), while 

M (7'I) does not (see Example 5.1). 

Theorem 17.13 provides an alternative method of showing that all 

the irreducible representations of ~n appear as a D v, thereby avoiding 
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the quotes from Curtis and Reiner in the proof of Theorem 11.5. Since 

S ~± has the same factors as M~/S ~, all the composition factors of M ~ 

come from D ~ (if ~ is p-regular), and from M~/S ~. But Theorem 17.13 

shows that M~/S ~ has a series with factors isomorphic to Sl's with 

I ~ ~ By induction, since S l c M 1 , every composition factor of M ~ 

is isomorphic to some D 9. Applying this fact to the case where ~ = (in), 

when M ~ is the regular representation of F ~n' Theorem I.i shows that 

every irreducible F ~n-module is isomorphic to some D 9. 

Theorem 17.13(i) has the useful 

17.18 COROLLARY If ~ is a proper partition of n, with k non-zero 

parts, then 
k  5-1 

S ~ = ~ ker ~i-l,v 
i=2 v=O 

The Corollary is perhaps the most important result of this section, 

since it characterizes S ~ as a subset of M ~ consisting of vectors having 

certain properties (cf. Example 5.2). It will be discussed at greater 

length in the section dealing with decomposition matrices of ~ . 
n 
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18 HOOKS AND SKEW-HOOKS 

Hooks play an important part in the representation theory of ~n' 

but it is not clear in terms of modules why they have a r$1e at all~ 

For example, it would be nice to have a direct proof of the Hook for- 

mula for dimensions (section 20), without doing all the work required 

for the standard basis of the Specht module. 

The (i,j)-hook may be regarded as the intersection of an infinite 

F shape (having the (i,j)-node at its corner) with the diagram. 

18.1 EXAMPLE X X X X The (2,2)-hook is 

X XX X 

XXX 

and the hook graph is 6 5 4 2 

5431 

321 

18.2 

XXXX 

X ~  

X~X 

DEFINITIONS 

(i) The (irj)-hook of [p] consists of the (i,j)-node along with 

the ~i- j nodes to the right of it (called the arm of the hook) and the 
! 

~j-i nodes below it (called the le~ of the hook). 
! 

(ii) The length of the (i,j)-hook is hij = Pi + ~j + 1 - i - j 

(iii) If we replace the (i,j)-node of [p] by the number hij for 

each node, we obtain the hook graph. 

(iv) A skew-hook is a connected part of the rim of [~] which can 

be removed to leave a proper diagram. 

18.3 EXAMPLE X X X X and X X X ~ 

X ~ X X 

X X X 

show the only two 

skew 4-hooks in [42,3]. The diagram also has one skew 6-hook, two 

skew 5-hooks, two skew 3-hooks, two skew 2-hooks, and two skew 1-hooks. 

Comparing this with the hook graph, we have illustrated: 

18.4 LEMMA There is a natural i-i correspondence between the hooks 

of [~] and the skew-hooks of [~]. 

Proof: The skew hook 

1 
F 

j th column 

corresponds to the (i,j)-hook. 

X ~ ith row 
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19 THE DETERMINANTAL FO~M 

We have seen that when 11 a 12a .... , 

[11][12][13].. = ~ ml~ [~] 

and the matrix m = (m1~) is lower triangular with l's down the diagonal 

(see 6.4 and 4.13). It follows that 

[i] = Z (m -1) [~i][~2][~3 ]. I~ "'" 

and m -I is lower triangular with l's down the diagonal. 

19 .i 

find 

EXAMPLE Inverting the matrix m for ~5 given in section 6, we 

-i m 

[5] 

[4,1] 

[3,2] 

= [3,12 ] 

[22,1] 

[2,1 ~ ] 

[15 ] 

[5] [4][1] [3][2] [3][1] 2 [21211] [2][1] ~ [i] s 

1 

-i 1 

0 -i 1 

1 -i -i 1 

O 1 -i -i 1 

-i 1 2 -i -2 1 

1 -2 -2 3 3 -4 1 

The coefficients in the matrix m are given by Young's Rule, and the 

entries in m -I can be found directly by 

19.2 THE DETERMINANTAL FORM If i is a proper partition of nf then 

[i] =I[i i - i+j]l 

where we define [m] = O if m < O. 

The way to write down the determinant for [I] is to put [11],[12].. 

in order down the diagonal, and then let the numbers increase by 1 as 

we go from one term to the next in each row. Beware of the distinction 

between [0] (which behaves as a multiplicative identity) and O (0 x any- 

thing = 0). 

19.3 EXAMPLES 

I [3] [0] 

J [3] [i] 

[4] I = [3][1] - [4] = [3,1] + [4] - [4] = 

I [i] 

[3,1] 

[4] I = [3][2] - [4][1] = [3,2] + [4,1] + [5] - [4,1] - [5] 

[2] I = [3,2] 

19.4 EXAMPLE Suppose we have proved the determlnantal form for 2- 
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part partitions. Then expanding the following determinant up the last 

column, we have 

I 
[3] [4] [5] 

[i] [2] [3] 

[O] [1] [2] 

: I[[ 3]I] [4] I [2] [2] - I[3][O] [4] I[1] [3] 

+ L [I] [2] I 
[ o ]  I l l  

[5] 

which, by induction, is [3,2][2] - [3,1][3] + [12][5] 

= [3,22 ] + [32,1] + [4,2,1] + [4,3] + [5,2] 

-([32,1] + [4,2,1] + [4,3] + [5,2]) - ([6,1] + [5,12]) 

+ [6,1] + [5,12 ] = [3,22 ] 

Diagrams Diagrams 

containing containing 

X X~ X X~ 

X~ X~ 

X~ 

Diagrams 

containing 

X X 

Proof of the Determinantal Form: It is sufficient to prove the result 

in the case where I = (ll,12,...,Ik) with I k > O, since zero parts at 

the end of i do not change the determinant. The result is true when 

has no non-zero part, so assume that we have proved the result for 

having fewer than k nQn-zero parts. 

The numbers in the last column of ([li - i+j]) are the "first 

column hook lengths of [I]", hll,h21,...,hkl, since 

• ' - i + k. nil = li + ii + 1 - i - 1 = li 

Let s be the skew hook of [I] corresponding to the (i,l)-hook (In 
l 

Example 19.4, s3,s 2 and s I are X X X X X X X ~ 

XX X~ X~ ). 

Omitting the last column and ith row of ([I i - i+j]) gives a matrix 

with diagonal terms 

[ll],[12],...,[li_l],[li+ 1 - i],...,[I k - i] 

and these are precisely the parts of [i \ s i] . Therefore, the result 

of expanding the determinant I[I i - i+j]I up the last col~an and using 

induction is 

[ikSk][hkl ] - [~Sk_l][hk_l,1]+...±[IkSl][hll] (*) 
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NOW consider [I\ si][hil]. This is evaluated by adding hil nodes 

to [i ks i] in all ways such that no two added nodes are in the s~ae 

column (by the Littlewood-Richardson Rule, or Corollary 17.14). 

[I \ s i] certainly contains the last node of the ist, 2nd,...,(i-l)th 

rows of [I], so we deduce that all the diagrams in [I\ si][hil] 

(i) contain the last nodes of the ist,2nd,..., (i-l)th rows of [I], 

and (ii) do not contain the last nodes of the (i+l)th, (i+2)th,...,kth 

rows of [I]. 

Split the diagrams in [i \ si][hil] into 2 set, according to whether 

or not the last node of the ith row of [I] is in the diagram. It is 

clear that [I] is the only diagram we get containing the last nodes of 

all the rows of [I], and a little thought shows that in (*) we get sets 

cancelling in pairs to leave [I]. This proves the Determinantal Form. 

19.5 COROLLARY dim S1 = n~ I ~ I 1 (I i i+j) ~ where ~ = 0 if r < O 

n~ 
Proof: [~i][~2]... [~k ] has dimension 

~l~...~k : 

(see 4.2), and the Corollary is now immediate. 
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20 THE HO0~ FORMULA FOR DIMENSIONS 

20.1 THEOREM (Frame, Robinson and Thrall [4]) 

The dimension of the Specht module S l is given by 

(hil - hkl) 
dim S l = n' i<k n~ 

i hil" 
H(hook lengths in Ill) 

20.2 EXAMPLE The hook graph for [4,3,1] 

6 4 3 1 

421 

1 

Therefore, dim S (4'3'I) 8' 
= 6.4.3.4.2 = 70. 

is 

The hook formula is an amazing result. It is hard to prove directly 

even that n~ is divisible by the product of the hook lengths, let alone 

show that the quotient is the number of standard l-tableaux. 

Proof of Theorem 20.1 We show that the result is true when I has 3 

non-zero parts. It is transparent that the proof works in general, but 

a full proof obscures the simplicity of the ideas required. 

By Corollary 19.5, 

l dim S 1 1 1 

(hll - 2) ' (hll - l) ' hll' 

1 1 1 

(h21 - 2)' (h21 - i)' 621' 

1 1 1 

(h31 - 2)' (h31 - i).' h31' 

1 1 1 

hll! h21 -w h31. 

hll(hll - i) hll 1 

h21(h21 - i) h21 1 

h31(h31 - i) h31 1 

(hll - h21) (hll - h31)(h21 

hll~ h21: h31~ 

- h31) 
giving the 

first result. 
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1 1 1 

(hll- i)(hll- 2) 

(h21- i)(h21- 2) 

(h31 - i)(h31- 2) 

hll - 1 

h21 - 1 

h31 - 1 

hll h21 h31 

1 1 1 

(hll - 3)' (hll - 2)' (hll - i) : 

1 1 1 
"Ch21 - 3) ~ . (h21- 2)' (h21 - i)' 

1 1 1 
(h31 - 3)' (h31 - 2)' (h31 - i)' 

1 1 , 
hll h2l h3l ~(hook lengths in [11-1,12-1,13 -i]) 

by induction 

1 
H(hook lengths in [~]) , as required. 
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21 THE IiURNAGiIAN-NAKAYAI~hk RULE 

The Murnaghan-Nakayama Rule is a very beautiful and efficient way 

of calculating a single entry in the character table of ~n" 

In the statement below, the leg-length of a skew-hook is defined to 

be the same as that of the corresponding hook. 

21.1 TiiE i4URNAGHAN-NAKAYA~ RULE 

Su__up.pose that zp E ~l where p is an r-cycle and w is a permutation 

of the remainin~ n-r numbers. Then 

X (nP) = E {(-i) i Xg(W) ] [I] \ [~] is a skew r-hook of le~ len@th i}. 

As usual, an empty sum is interpreted as zero. The case where p is 

a 1-cycle is the ~ranching Theorem. 

21.2 EXAMPLES 

(i) Suppose we want to find the value of X 

(5,4,3,1). 

(5,4,4) 
on the class 

x ;2 j 

There are two ways of removing a skew 5-hook from [5,4,4] and the 

Murnaghan-Nakayama Rule gives: 

X ( 5 ' 4 ' 4 )  o n  ( 5 , 4 , 3 , 1 )  = X ( 3 ' 3 ' 2 )  - X ( 5 ' 3 )  o n  ( 4 , 3 , 1 )  

X(2,12) X(3,1) + X (22) 
= - on (3,1), 

applying the rule again 

(22 ) 
= X on (3,1), because we cannot 

remove a skew 3-hook from either [2,12] or [3,1]. 

(1) 
= -× on (i) 

= --1. 

(ii) X (5'4'4) is zero on any class containing an 8,9,10,ii,12 or 

13-cycle, since we cannot renLove hooks of these lengths from [5,4,4]. 

(iii) 

(5,4,4) on (7,3,3) X (32) = on (3,3) 

= _X(2, I) + X (3) on (3) 
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(o) (o) 
= X + X on (O) 

= 2, 

The only character table required in the construction of the charac- 

ter table of Gn using the Murnaghan-Nakayama Rule is that of GO" 

Remember that ~O is a group of order i, and a computer is unnecessary in 

evaluating the character table of ~0 ~ 

Our proof of the Murnaghan-Nakayama Rule needs several preliminary 

lemmas. We first prove the special case where p is an n-cycle, then 

examine what the Littlewood-Richardson Rule gives for [u][x,lr-x], and 

finally we combine these pieces of information to prove the Rule in 

general. See the remarks following ~I.12 for an alternative approach. 

A hook diagram is one of the form [x,lY]. 

21.3 LEMMA Unless both [~] and [~] are hook diaprams ~ [~][8] contains 

~O hook diagrams. If Is] = [a,l n-r-a] and [8] = [brl r-b] then 

[~][8] = [a + b,l n-a-b] + [a + b - l,ln~a-b+l] + some non-hook diagrams. 

Proof: If one of [el and [8] contains the (2,2)-node, the so does 

[a][8] = [u][8]* = [83[u]'. This proves the first result. 

Suppose, therefore, that [~] = [a,l n-r-a] and [8] = [b,lr-b]. In 

order to obtain a hook diagram in [a] [83", we have to put b l's in 

the places shown, then 2,3,... in order down the first column: 

b 
E 

J~lx  . . . . .  X[ * * . . .  * 
I 

U 
The second result follows. 

21.4 THEOREM (A special case of the Murnaghan-Nakayama Rule). 

Suppose that p is an n-c~cle F and ~ is a partition of n. Then 

Xv(0) = { (-l) n-x if [v] = [x,l n-x] 

O otherwise 

Proof: Let Is] and [8] be diagrams for G r and ~n-r with O < r < n. 

Then the character inner product 

(X[U][8] x(n)-(n-l,l)+(n-2,12)- ... ± (in)) 

is zero, since [u][8] contains two adjacent hook diagrams, each with 

coefficient i, or no hooks at all by Lemma 21.3. 
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By the Frobenius Reciprocity Theorem, X (n)-(n-l'l)+ "'" ± (in) 

restricts to be zero on all Young subgroups of the form ~(r,n-r) with 

0 < r < n; in particular, it has value zero on all classes of ~n' 

except perhaps, that containing our n-cycle p. Therefore, the column 

vector which has (-i) n-x opposite X (x'In-x) and O opposite all other 

characters is orthogonal to all columns of the character table of O n, 

except that associated with P. Since the character table is non-s~gu- 

lar, this column vector must be a multiple of the p-column. But the 

entry opposite X (n) is i. Therefore, it is the p-column, as required. 

Remark: Theorem 21.4 can also be proved using the Determinantal Form, 

but the above proof is more elegant. 

21.5 LEMMA Suppose that I is a partition of n and ~ is a partition 

of n-r. Then 

(i) The multiplicity of [I] in [~][xfl r-x] is zero unless [13\ [~3 

is a union of skew-hooks. 

(ii) The multiplicity of [I] in [9][xtl r-x] is the binomial coeffi- 
m-i 

cient (c_x) if [I]\ [9] is a union of m disjoint skew hooks having (in 

total) c columns (and r nodesl. 

Proof: The Littlewood-Richardson Rule assures us that the diagram [I] 

appears in [9][x,l r-x] if and only if [9] is a subdiagram of [I] and we 

can replace the nodes in [I] \[9] by x l's, one 2, one 3,..., one (r-x) 

in such a way that 

(i) Any column containing a 1 has just one i, which is at the top 

of the column. 

(ii) For i > i, i+l is in a later row than i; in particularp no 

two numbers greater than 1 are in the same row. 

(iii) The first non-empty row contains no number greater than i. 

(iv) Any row containing a number greater than 1 has it at the end 

of the row. 

Suppose that the multiplicity of [i] ih [9][x,l r-x] is non-zero. 

Then [i] \ [9] does not contain four nodes in the shape 

X X 

X X 

since neither left hand node can be replaced by a number greater than 1 

(by (iv)); nor can they both be replaced by 1 (by (i)). Therefore, 

[I] \ [~] is a union of skew hooks. 

Suppose that [I] \ [~] is a union of m disjoint skew-hooks, having 
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c columns. When we try to replace the nodes in [I] \ Iv] by numbers, we 

notice that certain nodes must be replaced by l's and others by some 

numbers b > i, as in the following example 

1 1 X 

1 1 b 

b 

1 1 X 

b 

X 

b 

b 

1 1 

b 

c = ii, m = 4 

But au,(x,lr-x) = (X l, X [v][x'Ir-x] ) by the Frobenius Reciprocity 

Theorem 

= (m-l) by Lemma 21.5. 
c-x 

The definitions of m and c give r • c > m, so 

- (m-l) m-i = (-l) r-c{(%1) - (mll) + ... _+ } 
x=l (c-x) (-i) r-x m-i 

= {(-1)r-c if m = 1 

O if m ~ i. 

Proof of the Murna~han-Nakayama Rule: 

X [v][~]) where ~ is a partition of r 
av~ = (XI + ~(n-r,r) , 

Let 

and v is a partition of n-r. 

If p is an r-cycle and z is a permutation of the remaining n-r 

numbers, then 

v(#) XU(p) X (~P) = 7~ avp x 

r 
= VZ XV(#) x=£1 av' (x,lr_x)(-i) r-x, by 21.4. 

Each column contains at most one 1 (by (i)). Also, each column 

contains at least one i, except the last column of the 2nd, 3rd,..., 

mth components (by (ii),(iii) and (iv)). Therefore, (c-m+l) l's are 

forced. There remain (x-c + m-l) l's which can be put in any of the 

m-i spaces left at the top of the last columns in the 2nd, 3rd,...,mth 

components. The position of each number greater than 1 is determined 

by (ii) once the l's have been put in. The multiplicity of [I] in 
m-i ()m-i 

[v][x,l r-x] is therefore ~-c + m-1 > = "c-x" as we claimed. 
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However, when m = i, Ill \ Iv] is a single skew r-hook of leg length 

r-c. Therefore, 

X (~P) = Z {(-l)ixg(~) I Ill \ [9] is a skew r-hook of leg length i}, 

which is the Murnaghan-Nakayama Rule. 

21.6 COROLLARY Suppose p is a prime. If no entry in the hook graph 

for Ill is divisible b? Pr then X is zero on all permutations whose 

order is divisible by p. 

Proof: The hypothesis shows that no skew kp-hook can be removed from 

Ill, so the Murnaghan-Nakayama Rule shows that X is zero on all permu- 

tations containing a kp-cycle (k > 0). 

Remark The hypothesis of Corollary 21.6 is equivalent to the statement 

that I ~n I / deg X ~ is coprime to p, by the Hook Formula. The Coroll- 

ary therefore illustrates the general theorem that if X is an ordinary 

irreducible character of a group G and IGI / deg X is coprime to p, 

then X is zero on all p-singular elements of G. (In the language of 

modular theory, X is in a block of defect O.) 

The Murnaghan-Nakayama Rule can be rephrased in a way which is use- 

ful in numerical calculations, especially in the modular theory for ~n" 

21.7 THEOREM If 9 is a partition of n-rf then the ~eneralised charac- 

ter of ~n corresponding to 

{(-1} i[~] I [~] \ [~] is a skew r-hook of le~-len~th i} 

is zero on all classes except those contaimin~ an r-cycle. 

Proof: Suppose that [~] is a diagram appearing in 

[V]([r] - [r-l,l] + Jr-2,12] - ... ± [ir]). 

Then, by Lemma 21.5, Ill \ [9] is a union of m disjoint skew hooks and 

its coefficient is 

m-I r-x 
x=l (c-x) (-i) 

As before, this is (-i) r-c if m = i, and zero if m ~ i. Therefore 

[~]([r] - [r-l,l] + Jr-2,12] - ... ± [ir]) 

= Z {(-l)i[l] J Ill \ [~] is a skew r-hook of leg length i}. 

But, by definition, X ~ X (r)-(r-l'l)+ "''± (lr) ÷ ~n is zero on 

all of ~n except the subgroup ~(n-r,r)" However, it is zero even 

here, except on ~p (p an r-cycle), by Theorem 21.4. 
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Remark: The proof shows that"the operator [r]" - [r-l,l]'+ ...-+ [ir]" 

wraps skew r-hooks on to the rim of a diagram". 

21.8 EXAMPLES (i) '~{hen 9 = (3,2) and r = 3 

+ x x x  _ x x x  _ + x x x  

XX XX.. XX XX 

shows the ways of wrapping skew 3-hooks on to [3,2]. The generalised 

character X (6'2) - X (4~) - X (3'22'I) + X (3'2'I~) is zero on all classes 

of ~8 except those containing a 3-cycle. 

(ii) For n a 4, X (n) + X (n-2'2) - x(n-2'12)is zero on all classes 

of ~n except those containing a 2-cycle. 

These examples show that X (6'2) + X (3'2'13) = X (42) + X (3'22'I) as 

a 3-modular character, since this equation holds on 3-regular classes, 

and X (n-2'12) = X (n-2'2) + X (n) as a 2-modular character. At once, it 

follows that X (n-2'12) (n-2,2) x(n) X 3 and are in the same 2-block of 

~n" Also, X (6'2) , X ~3'2'I ), X (42) and X (3'22'I) are in the same 3- 

block of ~8' since 

A 
21.9 THEOREM Let Z a A X = 0 be a non-trivial relation between 

characters on p-regular classes. Then a A is non-zero for some p- 

singular A t and if aA is non-zero for just one p-singular A t then all 

the characters with non-zero coefficients are in the same p-block. 

Proof: If the only non-zero coefficients belong to p-regular partitions, 

consider the last partition p whose coefficient ap is non-zero. The 

character X p contains a modular irreducible character ~ corresponding 

tc the factor D ~ of S ~. By Corollary 12.2, ~ is not a constituent of any 

other ordinary character in our relation, and this contradicts the fact 

that the modular irreducible characters of a grouparelinearly~dependent. 

If the partitions with non-zero coefficients lie in more than one 

p-block, then there are two non-trivial subrelations of the given one, 

and each subrelation must involve a p-singular partition, by what we 

have just proved. The Theorem now follows. 

Although it is fairly easy to prove that all relations between the 

ordinary characters of ~n' regarded as p-modular characters, come from 

applying Theorem 21.7, there seems to be no way of completely determin- 

ing the p-block structure of ~n along these lines. 
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21.10 EXAMPLE It is an easy exercise to prove from the Murnaghan- 

Nakayama Rule that when n = 2m is even 

X (n) _ x(n-l, I) + X (n-2,2) _ ... ± X (m,m) 

is zero on all classes of ~n containing an odd cycle. Hence 

x(n) x(n-l,l) (m,m) 
, ,..., X are all in the same 2-block of ~2m' by 

Theorem 21.9. 

This is a convenient point at which to state 

21.11 THEOREM ("The Nakayama Conjecture"). S ~ and S 1 are in the 

same p-block of ~n if and only if there is a (finite) permutation 

of {ir2r...} such that for all i 

~i - i ~ ~ia - ic modulo p. 

We do not prove the Nakayama Conjecture here - the interested reader 

is referred to Meier and Tappe [17] where the latest proof and refer- 

ences to all earlier ones appear. It seems to the author that the 

value of this Theorem has been overrated; it is certainly useful (but 

not essential) when trying to find the decomposition matrix of ~n for 

a particular small n, but there are few general theorems in which it is 

helpful. In fact, there is just one case of the Nakayama Conjecture 

Beeded for a Theorem in this book, and we prove this now: 

21.12 LEMMA If n is odd¢ S (n) and S (n-l'l) are in different 2-blocks 

of ~n " 

Proof: Let ~ = (i 2)(3 4)... (n-2,n-l). Then I 6~I is odd, where 6 W 

(n) (~) = 1 and is the conjugacy class of ~n containing ~. But X 

X (n-l'l) (~) = O, by Lemma 6.9. Therefore, 

I ~I x(n)(w) ~ I ~I ~(n-l,l)(w) mod 2. 

X (n) (i) X (n-l'l) (i) 

General theory (see Curtis and Reiner [2], 85.12) now tells us that 

S (n) and S (n-l'l) are in different 2-blocks. 

The proof we have given for the Murnaghan-Nakayama Rule has been 

desiqned to demonstrate the way in which skew-hooks come into play. 

The Rule can also be deduced from the Determinantal Form, and we conclude 

this section with an outline of the method. 

21.12 LEMMA Suppose ~at ~p ~ ~n where ~ is an r-cvcle and ~ is a 

permutation of the remaining n-r numbers. Let (Dl,~2,...,~n) be a 

partition of n. Then 

= n x[Ul][~]...[~i_l][~i_r][Ui+l]...[~n](~) " x[Ul][~2]'''[Un](z0) ~ 
i=l 
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Proof: X[HI]'''[Hn](zD) = the number of H-tabloids fixed by ~p 
n 

= i~l (the number of u-tabloids fixed by z in which all the numbers 

moved by p lie in the ith row) t since a H-tabloid is fixed by p if and 

only if each orbit of O is contained in a single row of the tabloid. 
n 

= i~l (the number of (Hl,~,...,Ui_l,Hi-r,Ui+l,...,~n)-tabloids fixed 

n by ~) 

= i~l x[Ul][U2]'''[~i-l][~i'r][Hi+l]'''[Hn](z), as we wished to show. 

As usual, [k] is taken to be zero if k < O, and xO(z) = O. 

21.14 EXAMPLE (cf. Example 21.q(i)). Suppose that np ~ ~13 where 

p is a 5-cycle and ~ is a permutation of the remaining 8 numbers. Then 
[5 ]  [ 6 ]  [ 7 ] ]  

X(5'~'4) (~p) : the character of [3] [4] [5] 

[?] [3] [4] 

+ 

[0] [i] [2] 

= [3] [4] [5] 

[2] [3] [4] 

[3] [4] [5] 

= [2] [3] [4] 

[0 ]  [ I ]  [ 2 ]  

= (X (3,3p2) - X 

[5 ]  [6 ]  [7 ]  
[ - ~ ]  [ - i ]  [ 0 ]  

[2 ]  [ 3 ]  [ 4 ]  

[5 ]  [6 ]  [ 7 ]  
[2 ]  [3 ]  [4 ]  

[ - 2 ]  [ - i ]  [03 

[5] 

+ [3 ]  
[-3 ] 

at 

evaluated at zp, by the 

Determinantal Form 

[6] {7] 

[4] [5] at ~, by 

[-2] [-I] Lemma 21.13 

(5,3,0)) (~), by the Determinantal Form. 

By inspecting the above example, the reader will see what is required 

to prove the Murnaghan-Nakayama Rule from the Determinantal Form, and 

should have no difficulty w~th the details. 
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22 BINOMIAL COEFFICIENTS 

In the next couple of sections, we shall put our mind to the repre- 

sentations of ~n over a field of finite characteristic p. Many of the 

problems which arise depend upon deciding whether or not the prime p 

divides certain binomial coefficients, and the relevant Lemmas are 

collected in this section. 

22.1 DEFINITION Suppose n = n O +nlP + ... + nrpr where, for each i, 

0 -< n i < p and n r ~ O. Then let 

(i) 9p(n) = max {iln j = 0 for j < i} 

(ii) Op(n) = n o + n I + ... + n r 

(iii) £p(n) = r + i. 

For a positive rational number n/m, let ~p(n/m) = ~p(n) - 9p(m). We do 

not define 9p(O), but we let Op(O) = ip(O) = O. 

22.2 LE~,tMA ~_p(n') = (n- Op(n))/(p - 1). 

Proof: The result is true for n = O, so we may apply induction. If 
r pr_l pr, n = p , ti~en ~p{ ( ) '} = (pr-l-r~+r)/(n-l), b~f induction. But ~ ( ) 

= r+u {(Dr-l) '} = (pr-l)/(D-1) , and the result is true in this case. 
. Vp (pr+ 

Assume, therefore, that O < n-p r < r+l _ pr Since x) = 
r+l r 

(x) for O < x < p - p , 
P 

~p{n(n-1)... (pr+ i) } = Vp{ (n-p r) '} • 

qherefore ~p(n') = 9p(pr,) + ~p{(n - pr) :} 

= (pr _ 1 + n - pr _ Op(n) + l)/(p-l), 

by induction, and this is the required result. 

22.3 L~[,~4A Assume a -> b > O. Then ~p(b ) < ip(a) - ~p(m). 

Proof: We may apply induction on a, since the result is true for 

a = i. 

= < p and If P I b, let D' = b/p and a' (a-ao)/p , where 0 < a O 

a - a ° modulo p. Using the last Lemma, we have 

~p(b ) = {~p(b) + Op(a-b) - Op(a)}/(p - i) 

= {~p(b') + Op(a'-b') - ~p(a')}/(p - l) 

a' 

= Vp(b,) • 
a' 

' p But ~p(b,) < ~p(a') ~p(b') by induction, and ~ (a) = ~p(a') + l and 

Vp(b) = ~p(b') + l, so ~p(b ) < %p(a) - Vp(b), in this case. 
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a+b-i a 
Now suppose that Vp(b) = O. Since (b) - ~- (b_l) , 

a 
Vp(b ) = Vp(a-b+l) + Vp(b_l ) . 

Because the result is true for b = i, we may assume that b > i, and 

a (a-b+l) > O, p(b_l ) < £p(a) - Vp(b-l). ~lence, unless Vp 

Vp(b ) < £p(a). 

But if v (a-b+l) > O, then 
P 

a a 
Vp(b_l ) = Vp(a_b+l ) < Zp(a) - Vp(a-b+l), 

by the first paragraph of the proof. Therefore, Vp(b) < Zp(a) = 

- 9p(b) in this case also. 

22.4 LE~R4A Assume that 
r 

a = a ° + alo~ + ... + arP" 

r 
b~b ° + blP ' + ... + bz "p 

Then (b) - (a°) (al) . ar bo bl .. (br) modulo p. 

if and only if a i <___b i for some i. 

• <p) (0 -< a l 

• <p). (O -< b I 

Zp(a) 

In particular r p divides (~) 

Proof: As a polynomial over the field of p elements, we have 

(x+l) a = (x+l)ao(xP+l)al ... (xpr+l)ar 
b 

Comparing coefficients of x , we obtain the result. 

22.5 COROLLARY Assume a a b a 1. Then all the binomial coefficients 
(~) a-1 ,a-b+l 

'(b-i ) r'''q~ 1 ) are divisible by p if and only if 

a-b ~ -I mod pZp(b) 

Proof: By considering Pascal's Triangle, p divides all the given 

binomial coefficients if and only if p divides each of 

a-b+l, ,a-b+l, .a-b+l 
1 J' [ 2 ;'''''{ b )" 

Then the last sentence of the Lemma gives our result. 
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23 SOME IRREDUCIBLE SPECHT MODULES 

The Specht module S ~ is irreducible over fields of characteristic 

zero, and since every field is a splitting field for ~n' S~ is irre- 

ducible over field of prime characteristic p if and only if it is 

irreducible when the ground field has p elements. This then, is the 

case we shall investigate and, except where otherwise stated, F is the 

field of order p in this section. The complete classification of irre- 

ducible Specht modules is still an open problem, but we tackle special 

cases below. 

23.1 LEMMA Suppose that Horn F ~n(SUtS ~) -- F. Then S H is irreducible 

if and only if S H is self dual. 

Proof: If S H is irreducible, then it is certainly self-dual (since its 

raodular character is real.) 

Let U be an irreducible submodule of S ~. If S H is self-dual, then 

there is a submodule V of S H with S~/V -~ U. Since 

S ~ ~ S~/V ÷ U 
canon iso 

gives a non-zero element of Horn F ~n(S~,S ~) , we must have U = S ~, so S ~ 

is irreducible. 

The hypothesis Hom F ~n(S~,S ~) ~ F cannot be omitted from this Lemma 

(see Example 23.1c/ill) below), but Corollary 13.17 shows that the 

hypothesis holds for most Specht modules. 

Before applying the Lemma, we want a result about the integer g~' 

defined in 10.3 as the greatest common divisor of the integers 

< et,et, > where e t and et, are polytabloids in S~ (~' being the par- 

tition conjugate to ~, and < , >' being the bilinear form on M~'). 

Remember that <t ~ECt7 (sgn ~)~. Let D t w~Rt 

23.2 LE~VuV~ Let the ~round field be Qf and t be a B-tableau. Then 

(i) The ~reatest common divisor of the coefficients of the tabloia~ 

involved in {t}Ktp t is ~'. 

and (ii) {t}KtPt< t = H (hook lengths in [~]) {t}<t. - 

! 

Proof: (i) By definition, g~ = g.c.d. < et, ,et, ~ >' as the permuta- 

tion ~varies. But 
! 

sgn ~ < et,,et,w > = sgn W < {t'},{t'}Kt,~Kt, > 

= 7 {sgn~ sgn~ sgn~ J~, T ¢ Ct, , ~ ~ ~ ~ Rt, } 

= T {sgn w J T ( Ct,, ~ x -I 7 -1 ¢ Ct,, ~ ( Rt, } 



g0 

= 7 {sgn ~ I T E R t , w T-I -i E Rt, ~ ¢ C t } 

= < {t},{t}Ktp t -i > 

= < {t}~, {t}<tp t > 

and result (i) follows. 

(ii) Corollary 4.7 shows that {t}<tPtK t = c{t}< t for some c ¢ ~. 

To evaluate c, it is best to consider the group algebra Q ~n" (See the 

remarks at the end of section 4). We have Pt<tPt<t = cPt< t • 

The right ideal PtKt ~ ~n of Q ~n (which is isomorphic to S u) has 

a complementary right ideal U, by Maschke's Theorem. 

Multiplication on the left by Pt<t gives a linear transformation of 

~n" Taking a basis for PtKt Q ~n' followed by a basis of U, this 

linear transformation is represented by the matrix 

dim S ~ 0 

0 

On the other hand, taking the natural basis {wI~ E ~n } for ~n, 

the linear transformation is represented by a matrix with l's down the 

diagonal, since the identity permutation occurs with coefficient 1 in 

the product PtKt . 

A comparison of traces gives c dim S p = n~ By the Hook Formula for 

the dimension of S ~, c = H(hook lengths in [p]). 

Since {t}Ktp t ~ = {t~}Kt~ Pt~' the first part of the Lenuna and Coro- 

llary 8.10 show that we may give: 

23.3 DEFINITION Suppose that F is the field of p elements. 

the non-zero element of HomF~n(MP,S p) given by 

e : {t} ÷ (I, {t}<tPt) 
gP P 

Let 0 be 

where this means that the image of {t} is obtained from the vector 

1 {t}KtP t in S~ by reducing all the tabloid coefficients modulo p. gP' 

23.4 THEOREM 

(i) If Im 0 c S p e~uivalentl~ if Ker 0 ~ S ~I S p ~ then is reducible. 

(ii) If Im 8 = S ~ equivalently if Ker 8 =SPlr and if 

HomF~n(SPrSP) ~ F r then S ~ is irreducible. 
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Proof: If F = ~, the the homomorphism $ defined by 

{t}~ = ~p'{t}<tp t 

sends {t}< t to a non-zero multiple of itself, by Lemma 23.2(ii). There- 

fore dim Ker ~ = dim S~ I~ ~ , and by the Submodule Theorem, Ker ~ = S . 

By Lemma 8.14, Ker 8 ~ S p±, when we work over the field of p elements. 

Therefore, Ker 0 ~ S ~I if and only if Im @ c S ~. 

The first part of the Theorem is now trivial, since Im 8 is a proper 

submodule of S ~ in this case. 

If Ker 0 = S ~±, then 8 gives an isomorphism between M~/S ul and S ~, 

and result (ii) follows from Lemma 23.1. 

23.5 THEOREM Suppose that ~ is p-regula r . 

and only if p divides the integer 
! 

{H (hook lengths in [~])}/g~ 

Then S ~ is reducible if 

Proof: The last Theorem and Corollary 13.17 show that S ~ is reducible 

if and only if Ker 8 ~ S ~. But, since ~ is p-regular, MP/S ~± has a 

unique minimal submodule (S u + SP±)/S ~i (by Theorem 4.9). Therefore, 

S ~ is reducible if and only if Ker 0 = S ~ 

But {t}< t 8 = (!p, {t}<tPt<t) p g  

= (H(hook lengths in [~]) {t}<t) 
g~' p 

by Lemma 23.2 (ii). Since S ~ is a cyclic module, S ~ is reducible if 

and only if p divides the integer H(hook lengths in [~]). 

gP' 

23.6 EXAMPLES (i) If p does not divide ~(hook lengths in [p]), then 

(~ is p-regular and) S ~ is irreducible. This is just the case where 

is in a block of defect O (cf. The Hook Formula). 

(ii) If both p and ~' are p-regular, then from Corollary 10.5, p 

does not divide g~'. Thus S ~ is reducible if and only if p divides 

~(~ook lengths in [~]). For instance, S ~ is reducible of ~ = ((p-l) x) 

where 1 < x < p. 

(iii) 

that {t}Ktp t = 

If p = (3,2) and t = 1 2 3 , Wen direct computation shows 
45 

1~~4 
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The g.c.d, of the edge coefficients is 4, so g~' = 4. But the pro- 

duct of the hook lengths in [~J is 24, so S # is reducible if and only 

if char F = 2 or 3. When char F = 2, {t}0 is the vector called F in 

Example 5.2, and when char F = 3 , {t}8 = -F(-4) - F(-5). 

23.7 THEOREM Suppose that ~ is a hook partition! and let S ~ be define d 

over the field of p elements. Then S ~ is irreducible if and only if 

one of the followin~ holds: 

(i) ~ = (n) or (i n) 

(ii) p { n and p = (n-l,1) or (2,1 n-2) 

(iii) p { n and p # 2. 

Proof: Since S (n) and S (In) have dimension i, they are certainly irre- 

ducible. Thus, we may assume that ~ = (x,lY) with x > i, y > O and 

x + y =n. 

1 (y+2) . .. (y+x) 

2 
Let t = 

(y+l) 

and let Kt = Z {sgn o)s I ~ e ~{2,3 ..... y+l} }" Then 

K t = (i - (12) - (13) - ... - (l,y+l))< t . 

For the moment, work over ~. Then 

= = y:{t}<tp t {t}KtPtK t {t}Kt~tP t 

Therefore, 

y:{t}Ktgt(l - (12) - ... - (l,y+l)) = {t}KtPtK t 

= H(hook lengths in [~J){t}< t, by 23.2 

= (x - i) ~ y:(x+y){t}< t . 

But g~' = (x - i) ~ by Len~a 10.4, and so 

1 
-- ,{t}KtPt(l - (12) - ...- (i (y+l)) = (x+y){t}K t . 
g~ 

Let @ be the homomorphism of definition 23.3. Then 

{t}(1 - (12) - ...-(l,y+l))8 = (x+y){t}Kt, 

where we are now working over the field of p elements. This shows that 

if p ~ n, Im 8 = S ~ . Therefore, 

23.8 If p ~ n, S (x'ly) is self-dual. 
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But Hom F ~ (S~,S ~) ~ F if p ~ 2 or if ~ = (n-l,1), by Corollary 

13.17. Using ~emma 23.1, S ~ is irreducible in the cases where p ~ n 

and p ~ 2 or ~ = (n-l,l) (also when ~ = (2,1 n-2) , by Theorem 8.15) • 

Next suppose that p I n. Then 

{t)(l - (12) - ...-(l,y+l)) E Ker 0 

Let t* = 

(y+x) (y+x - i) ... (y+2) 1 

2 

(y+l) 

Since x > i, all the tabloids in et, have 1 in the first row. Hence 

{t} = {t*} is the unique tabloid involved in both et, and 

{t}(l - (12) - ...-(l,y+l)), and so 

< {t~l - (12)-...-(l,y+l)), et, > = i. 

Therefore, {t}(l - (12) - ...-(1,y+l))¢ Ker 8 \ S ~l, and Theorem 23.4 

proves S ~ ~s reducible in this case, where p I n. 

Finally, we prove that S ~ is reducible when ~ = (x,1 y) with x > i, 

y > 1 and p = 2. By Theorem 8.15, we may assume that x a y. Observe 

that 
[x][y3 = ix+y] + [x+y-l,l] +..+Ix,y3 

and [x][l y] = [x+l,l y-I] + [x,lYl 

(y) (i y) 
by the Littlewood-Richardson Rule. But when p = 2, X and X are 

the same 2-modular character, and thus 

x(X+l, Iy-I) + X (x,ly) = x(x+Y ) + x(x+Y -I,I) +... + X (x,y) 

as a 2-modular character. Whence, by induction, 

x(X, Iy) = x(x,Y ) + x(x+2,Y -2) + x(x+4,Y -4) + ... 

and so X (x'ly) is certainly a reducible 2- modular character. 

Remark: The last part of the proof shows that 

(n),(n-2,2),(n-4,4),... are in the same 2-block, 

and (n-l,l),(n-3,3),(n-5,5),... are in the same 2-block of 

~n (see Theorem 21.9). When n is even, all the 2-part partitions of 

n are in the same 2-block of ~n' since Example 5.1 proves that (n) 

and (n-l,l) are in the same 2-block (see also, Example 21.10). When 

n is odd, the 2-part partitions of n lie in two different 2-blocks, 

since Lemma 21.12 shows that (n) and (n-l,l) are in different 2-blocks. 

Theorem 23.7 will help us in our first result in the next chapter 

on the decomposition matrices of ~n" For hook partitions, g~' is easy 

to calculate; unfortunately, this is not the case for other types of 
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partition, for example: 

23.9 LEMMA If ~ = (x,y), then 

g~' = y! g.c.d. {x: ..... (x-1)~l:, (x-2):2! ..... (x-v):v:} 

Proof: Let t I and t 2 be p'-tableaux. Let 

Xij = {klk belongs to the ith column of t I and to the jth column of 

Xll u XI2 ~ Xll u X21 

X21 u X22 XI2 u X22 

t 2 } 

The polytabloids etl and at2 in S~ have the tabloid {t 3} in common 

if an only if no two numbers from any one of the sets Xll u XI2, 

X21 u X22 , Xll u X21 , XI2 u X22 are in the same row of {t3}. Any row 

of {t3} must contain a number from X12 and a number from X21 or no 

numbers from XI2 u X21. Therefore, < etl,et2 • = 0 unless IX12 I = 

Ix211. 
Suppose now that IX121 = IX211 . The tabloid {t 3} is common to etl 

and et2 if and only if each of the first y rows of {t3} is occupied 

by just one number from X21 u X22 and each row containing a number from 

X21 contains a number from XI2. Thus, etl and at2 have 

y~ IXl21: (x - Ix121) ~ common tabloids. 

Assume that the tabloid representative t 3 for the common tabloid 

{t 3} has been chosen such that t 3 = tl~ 1 for some ~i in the column sta- 

bilizer of t I. Let o be the permutation in the row stabilizerof t 3 

interchanging each number in XI2 with a number in X21, leaving the other 

numbers fixed. Then t o = t2~ 2 for some ~2 in the column stabilizer of 

t 2, and sgn o = (-i) IX~2 I. Therefore, t I ~i O ~i = t2 ' and (sgn 5) 

(sgn ~2 ) depends only on t I and t 2 and not on {t 3} But {t3} = {tl}~ 1 

= {t2}~ 2, and hence 

< et I, at2 • = ±y: IXI21~ (x - IXl21) ~ 

By definition, gU' is the greatest common divisor of such integers, 

and, since 0 s IX12 I ~ y, the Lemma ks proved. 

23. iO EXAMPLES 

(i) If ~ = (5,2), then g~' = 2~ g.c.d.(5~,4:l~,312~) = 2s.3. But 

K(hook lengths in [~3) = 23,32,5. Therefore, S (5'2) is reducible if and 

only if the grom%d field has characteristic 3 or 5. 
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(ii) Similarly, S (5'3) is reducible if and only if the ground field 

has characteristic 2 or 5. 

(iii) If p ~ 7, S (5'12) is self-dual, by 23.8. Now let the ground 

field have characteristic p = 2. Then the first example proves S (5'2) 
(5,1 z) 

is irreducible, and Example 21.8(ii) shows that S has compositlon 

factors isomorphic to S (5'2) and S (7) . Since S (5'12) is self-dual, these 

factors can occur in either order, and so S (5'12) is decomposable over a 

field of characteristic 2. 

The last Example pro%~s that the hypotheses cannot be omitted in 

13.17, 13.18, 23.1 or 23.4. 

23.11 DEFINITION The p-power 9ia~ram [~3 P for ~ is obtained by rep- 

lacing each integer hij in the hook graph for ~ by 9p(hij). 

23.12 EXAMPLE If ~ = (8,5,2) ,then the hook graph is 

1 0 9 7 6 5 3 2 1  

65321 

2 1 

0 2 0 1 0 1 0 0  

and [~j 3 = 1 0 1 00 

O0 

l O O l O O 1 0  

and [~J 2 = 1 0 0 1 0 

i0 

We now classify the irreducible Specht modules corresponding to 

2-part partition. 

23.13 THEO~M Suppose ~ = (x,y)is p-regular (i.e. if p = 2, we assume 

x ~ y). Then S ~ defined over the field of p elements~ is reducible if 

and only if some column of [~]P contains two different numbers, 

Proof: The hook lengths hij for [~3 are given by 

hlj = x - j + 2 for 1 ~ j < y 

hlj = x - j + 1 for y < j ~ x 

h2j = y - j + 1 for 1 ~ j -< y. 

If there is a j with 9p(hlj) ~ Vp(h2j), consider the largest j with this 

property and let ~p(h2j) = r. Then j + pr < Y + 1 and 

r 
~p(hli) = ~p(h2i) < r for j + 1 -< i < j + p 
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But {hlilJ ~ i < j + pr} is a set of pr consecutive integers, so 

Up(hlj) a r = Up(h2j). Since Up(hlj) ~ Up(h2j), we have Up(X - j+2) > 

Up(y - j+l). Writing b = x - j+2 and noting that Up(b) > Up(b - x+y - i) 

if and only if Up(b) > Up(X - y+l), this proves 

23.14 Some column of Ix,y3 p contains two different numbers if and o~ly 

if there is an integer b with x - y+2 ~ b ~ x+l and Up(b) • Up(X - y+l) . 

Now, H(hook lengths in ix,y3) = (y: (x+l) ~)/(x - y+l) and 

g~' = y: g.c.d.{x:, (x - i) :i~,..., (x - y) :y:} by Lemma 23.9, so Theorem 

23.5 proves that S ~ is reducible if and only if p divides 

x+l x (xXy) 
x - y+l l.c.m. {(~), (x_l) .... , _ } 

• ,x+l, 
Since (x+l) (bXl) = D~ b J _ # 

23.15 S (x'y) is reducible if and only if there is an integer b with 

x - y+l ~ b s x+l and Up {~ ~ .x+l. 
y+l ~ b ;} > 0 . 

Comparing 23.14 and 23.15, we see that s(X'Y) is reducible if some 

column of Ix,y] P contains two different numbers. 

On the other hand, suppose that no column of Ix,y] p contains diffe- 

rent numbers. Then, for every b with x - y+2 ~ b s x+l, 

Up(b) s Up(X - y+l). 

Let r 
x - y+l = arP 

Then 

r+l s 
+ ar+iP + ... + asP 

(O ~ a i < p, a r ~ 0 ~ as). 

x - y+l < (ar+ 1 + l)p r+l + ar+2 pr+2 + ... + asps 

ana Up((ar+ 1 + I)P r+l + ... + as ps ) > Up(X - y+l). Thus our supposi- 
l~_r+l tion gives x+l < (ar+ 1 + j~ + ... + aspS. Therefore 

crpr r+l s 
= + + + + ar+iP • . x+l c o clP ... + . + as p 

(O ~ c i < p) 
and if x - y + 1 ~ b ~ x+l, then 

bqpq q+l ar+ipr+ 1 b = + bq+iP + ... + brpr + + ... + asps 

(O ~ b i < p, bq ~ 0). 

Therefore, 
Cq_ipq-i dqp q drpr = + + + + + + x+l - b c o clP . . . . .  

(O ~ d i < p) 
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qpq r cqpq r bqpq r 
where d + -.. + drP = +...+ CrP - - ... - brP 

By Lemma 22.2, 

,x+l, (x+l) }/(p - i) Up[ b ; = {~p(b) + ~p(X+l - b) - Op 

(bq - ... - Cr)/(p - = + ...+ b r + dq + ... + d r - Cq i) 

= ~p fCqp q + ... + crpr I 

%bqp q + + brprj 

r - q, by Lemma 22.3 (since b ~ O) 
q 

= Up(X - y+l) - u (b). 
P 

by x+l, 
Therefore, for x - y+l ~ b ~ x+l, Up{~ _ +i ( b ;} ~ 0 

and S (x'y) is irreducible,as required. 

23.16 EXAMPLE S (2P-I'p) is irreducible over the field of p elements 

if and only if p ~ 2 (cf. Example 2310). This is interesting because 

an earlier author believed, apparently on the evidence of the case p = 2, 

that S (2p-I'P) always has two composition factors, one being the trivial 

module D (3p-l) Since dim S (2p-I'P) H 1 mod p~ for p odd - this follows 

from the Hook Formula - the mistake would have provided counterexamples 

to a conjecture of Brauer which states that Up(JGj/dim D) a O for each 

p-modular irreducible representation D of a group G. 

R.W. Carter has put forward 

23.17 CONJECTURE No column of [~3 p contains two different numbers if 

and only if p is p-regular and S ~ is irreducible over the field of p 

elements. 

It is trivial that [~]P has a column containing two different numbers 

if ~ is p-singular. The author [llj has proved that the given condition 

is necessary for a p-regular Specht module to be irreducible, and has 

proved it is sufficient in the case where p = 2. 

Over the field of 2 elements, it turns out that S (x'x) is irreducible 

if and only if x = 1 or 2 (This is the only 2 part partition not consi- 

dered in Theorem 23.13). We conjecture that (2,2) is the unique parti- 

tion U such that S ~ is irreducible over the field of 2 elements but 

neither ~ nor ~' is 2-regular. 



24 ON THE DECOMPOSITION MATRICES OF ~n 

There is no known way of determining the composition factors of the 

general Specht module when the ground field F has characteristic a prime 

p. Thus we cannot decide the entries in the decomposition matrix of 

~n' which records the multiplicity of each p modular irreducible repre- 

sentation D ~ (i p-regular) as a composition factor of S ~, except in 

some special cases. The theorems we expound give only partial results. 

24.1 THEOREM (Peel [18]) Suppose p is odd. 

(i) If p T nt all the hook representations of ~n remain irreducible 

modulo Pt and no two are isomorphic, 

(ii) If p I n, part of the decomposition matrix of ~n i_ss 

(n) 1 

(n-l, i) 1 1 I ~ 
q/ (n-l, 12 ) 1 1 

• © 
(2,1 n-2 ) 1 1 

(i n) 1 

Proof: The result is true for n = O, so we may assume that it is true 

for n - i. Note that 

x(x'lY) + %-1 = x(X-l'lY) + X (x'ly-l) if x > l, y > O, 

x+y = n. 

Case (i) p does not divide n. 

In view of Theorem 23.7, we need prove only that no two hook repre- 

sentations are isomorphic. But this follows at once, since they have 

non-isomorphic restrictions to ~n-l" 

Case (ii) p divides n. 
(x'lY) has at Suppose x > i, y > O. Then by restricting to %-1' X 

most two modular constituents, and therefore precisely two, by Theorem 
+ 

23.7. Let ~x be the modular constituent of X (x'ly) satisfying 

+ = x(x-1, ly) 
~X ~ ~n-i and ~x be that satisfying ~x ~ ~n-i = x(x'lY-1) 

(and let ~ = O and ~i = O). We must show that for every x, #x-i = #x ; 

no other equalities can hold because there are different restrictions 

to ~n-l" 

The following relation between characters holds on all classes 

except (n), in particular on all p-regular classes: 
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X (n) - X (n-l'l) + X (n-2'12) - ... ± X (ln) = O. 

(This comes from Theorem 21.7 or direct from Theorem 21. 4, by using the 

ordinary character orthogonality relations). 

In terms of modular characters; we have 

+ ) - + ~i = O. ~n + - (~n-i + ~-I ) + (~n-2 + #n-2 "''- 

If some ~x-l_ were not equal to #~,_ then ~x-i would appear just once in 

this relation, contradicting the fact that the modular irreducible 

characters of a group are linearly independent. 

From now on, we shall label the rows of our decomposition matrices 

by partitions, and the columns by p-regular partitions. Thus the entry 

in the Mth row and ith column is the multiplicity of D l as a composition 

factor of S M over a field of characteristic p. Omitted entries in 

decgmposition matrices are zero. We write X u for the p-modular character 

of S ~ and ~l for the p-modular character of D I. 

24.2 EXAMPLE When p = 3, the decomposition matrix of ~5 is 

(5) (4,1) (3,2) (3,12 ) (22,1) 

(5) 1 

(4,1) 1 

(3,2) 1 1 

(3,12 ) 1 

(22,1) 1 1 

(2,13 ) 1 

(15 ) 1 

Proof: The rows corresponding to (5), (4,1) and (3,12 ) come from 

Theorem 24.1. 

Taking [9] = [2] and r = 3 in Theorem 21.7, we find that 

X (5) - X (22'I) + X (2'I~) = 0 on 3-regular classes. 

But X (5) and X (2'13) are irreducible and inequivalent, by Theorem 24.1. 

Thus, X (22'I) has precisely two factors. Since one of these must be 

(22'I) , it follows that 

X(2z,I) = ~(5) + 9(22,1) 

and X (2'13) = 9 (22'1) 

The rest of the matrix is similarly deduced from the equation: 

X(I s) (3,2) (4 i) 
- X + X ' = O on 3-regular classes. 

24.3 EXAMPLE When p = 3, the decomposition matrix of ~6 is that 

given in the Appendix. 
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(4,2) (22,12 ) 
Proof: First note that X and X 

23.6(i). 

By Theorem 24.1, part of the matrix is 

(6) 

(5,1) 

(4,12 ) 

(3,13 ) 

(2,1 ~ ) 

(i 6 ) 

(6) (5,1) 

1 

1 1 

1 

(4,12 ) 

1 

1 1 

1 1 

1 

are irreducible by Example 

Applying Theorem 21.7, with r = 3 and [93 = [3] [2,1] and [13 ] in 

turn we get, 
X (6) + X (32) - X (3'2'1) + X (3'13) = O 

X (5'I) - X (32) - X (23) + X (2'I~) = O 

X(4 12) X(3,2,1) + X (23) (16) 
' - +X =O 

on 3-regular classes. These equations, together with 

X (6) - X (5'1) + X (4'12) - X (3'13) - X (2'I~) - X (16) = O 

enable us to deduce that the remaining two columns above should be 

labelled (3,2,1) and (32), respectively, and the equations let us write 

X (32), X (3'2'I) and X (23) in terms of ~(6) (5,1) , # , ..., in the way 

shown in the complete decomposition matrix in the Appendix. 

Note that Examples 24.2 and 24.3 have been computed without using 

the Nakayama Conjecture, and without resorting to induction (except 

where it is implicit in Theorem 24.1). We agree that it is quicker to 

deduce the decomposition matrix of ~6 from that of ~5 using the Bran- 

ching Theorem and block theory, but this traditional method of finding 

decomposition matrices fails to determine the factors of S (2P-I'P) , 

even for p = 2 (cf. Example 23.16), and very rapidly leads to further 

ambiguities. 

It seems to us that if a method is eventually devised for finding 

the decomposition matrices of %' it will include information concerning 

the order of the factors of each Specht module, as well as the multipli- 

cities of the composition factors. For this line of attack, the most 

useful Theorems we know are Theorem 13.13, giving a basis of Hom F ~n 

(SI,M ~) and Corollary 17.18, describing S ~ as a kernel intersection. 

It is unfortunate that these two results look rather ugly, and that the 

notation which has to be used obscures the simplicity of their applica- 

tion, but we embark upon the task of employing them. 

We return to the notation of section 13, where M ~ is described as the 
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space spanned by X-tableaux of type u. The remarks following 17.8 and 
17.10 show that the homomorphism Jliv acts on Mu by sending a tableau 
T to the sum of all the tableaux ob'tained by changing all but v (i+l)'s 
to i's. 

e.g. $l,l :11122 * 11111 + 11112 + 11121 
233 2 33 133 133 

The first result we prove could be subsumed in Theorem 24.6, but we 
present the special case to help the reader become familiar with the 
relevant ideas. 

24.4 THEOREM Over a field of prime characteristic 
module isomorphic to the trivial Gn-module S (n) if and only if for all 
Ir!Ji 3 -1 mod p% where z .4 i 2ApL”i+lL 

Proof: By Theorem 13.13 (or trivially) there is, to within a scalar 
multiple, a unique element OT in HomP G (S(n),Mu). T is the semi- 
standard (n)-tableau of type u, and OT s?nds {t) to the sum of the (n)- 
tableaux of type u . 
e.g. if u = (3,2), then 
wo, =11122+11212+11221+12112+12121+ 
12211+21112+21121+21211+22111. 

Now, the crucial step is that when Tl is an (n)-tableau of type 

(u1,u2,...,uiDl,ui + ui+l - v,v,~~+~,...) there are 

Pi + lJi+l - v 

ui+1 - v J 

tableaux row equivalent to T in which all but v (i+l)'s can be changed 
to i's to give Tl 

e.g. 1 1 1 1 1 comes from (z) tableaux above, by changing all the 2's 
to l's, and each of 1 1 1 1 2, 11121,11211,12111, 
2 1 1 1 1 comes from (:) tableaux by changing all except one 2 to 1. 

Therefore, {t)0, belongs to 
ui+i-' 

(7 ker Jli v if and only if each of 
v=o I 

(uiu~+~i+lj ' (uiu:+:itll‘ ') '**.' (uiy) 

is divisible by p. This is equivalent to ui Z -1 mod psi where 

=i = ap(ui+l), by Corollary 22.5. Thus, Corollary17.18 shows that 
WOT belongs to Su if and only if this congruence holds for all i 2 1. 

24.5 EXAMPLES (i) S(a82'2'1) contains a trivial submodule if and only 
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if the ground field F has characteristic 3. 

(ii) S (5'2) does not contain a trivial submodule if char F = 2. 

(iii) S (P-I'p-I'''''p-I'r) contains a trivial submodule if char F = p, 

and r < p. Write n = x(p - l)+r. Then ((x+l)r,x p-l-r) is the partition 

~' conjugate to ~ = ((p - l)X,r). Since Homv ~ (s(n),s ~) ~ O, and 
I n ~, - --n 

S ~ 0 S ( ) is isomorphic to the dual of S ÷t follows that 

Hom F ~ (S~',S (In)) ~ O. By construction, S ~ is p-regular, so U' is the 
n , , 

unique partition of n such that D ~ ~ S (In) (Remember that D~ is the 

unique top composition factor of S~'). Compare Example 24.2, where 
S (Is) ~ D(3, 2) 

(iv) Consulting the decomposition matrices in the Appendix, we see 

that S (4'2) has a trivial composition factor for p = 2, but S (4'2) does 

not have a trivial bottom composition factor, by Theorem 24.4. 

It is interesting to see that for any given I and ~, we can use 

Theorem 13.13 and Corollary 17.18 to determine whether or not 

Hom F ~n(SI,S ~) is zero (except in the rather uninteresting case where 

char F = 2 and I is 2-singular), for we may list the semistandard homo- 

morphisms from M l into M ~ and then test whether some linear combination 

of them sends {t}< t into the kernel intersection of Corollary 17.18. 

This is a tedious task, but not altogether impossible, even for fairly 

large partitions. For example, after a little practice on small parti- 

tions, the reader should have no difficulty using the technique of Theo- 

prove that Hom F~n(Sl,S (IO'5'3')) = O when char F = 3 rem 24.6 below to 

and I = (16,2), (13,5) or (10,8). Using the Nakayama Conjecture, this 

proves that S (IO'5'3) is irreducible over fields of characteristic 3 

(cf. Carter's Conjecture 23.17). 

When applying Theorem 13.13 and Corollary 17.18, we are usually 

interested in the case where S l is p-regular, since then Hom F ~n(SI,S ~) 

0 implies that D l is a composition factor of S ~ . Unfortunately, a 

cases where Hom F ~n(SI,S ~) is non-zero is completeclassi fication of the 

not sufficient to determine the decomposition matrix of ~ ; in 
n 

Example 24.5(iv) D (6) is a factor of S (4'2) over the field F of 2 elem- 

ents, but HOmF ~n(S(6),S(4'2) ) = O. Even so, sometimes a modification 

of the method is good enough to classify all the composition factors of 

S~; see Theorem 24.15 below, for example. 

In section 13 we saw that there is much choice in the way we define 

a semistandard h-tableau of type ~. It turns out that it is often most 

useful to consider tableaux where the numbers are non-increasing along 

the rows and strictly decreasing down the columns; we shall call such 

a tableau reverse semistandard. The second part of the next Theorem 
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probably classifies all cases where there is a reverse semistandard 

homomorphism in HomF~n(SI,S~). When considering linear combinations 

of more than one semistandard homomorphism, the situation becomes 

horribly complicated~ 

24.6 THEOREM Assume that I and ~ are (proper) partitions of n and 

that char F = p. Suppose that T is a reverse semistandard l-tableaux 

of type ~l t and let Nij be the number of i's in the jth row of T. 

(i) If for all i > 2 and j >- i, Ni_l,j - -i mod pa ij where 

aij = ~p~(Nij), then 8 T belongs to H0mF~n(MA,S~) and Ker 8 T c S l~. 

(ii) If for all i -> 2 and j ~ i, Ni_l, j -- -i rood p bij where 

--ib'3 = min{£p(Nij )' ~'p(ImZ= (lJ +m-I --sZ--j -- Nms) )}' then is a non-zero 

element of Horn F~n(sI,S ~) . 

Proof: Since T is reverse semistandard, Ker 8 T ~_ S l by Lemma 13.11 

and the Remark following Corollary 13.14. Therefore, Ker 8 T c__ S I± 

by the Submodule Theorem. 

Let t be the l-tableau used to define the ~n action on M ~. Then 

{t}8 T is, by definition, the sum of the l-tableaux of type ~ which are 

row equivalent to T. 

Let i -> 2, O < v -< ~i - i. Since Z N.. = ~i' we may choose 
j=l iJ 

• < N . for each j and Z v. = v. Choose a Vl,V2,... such that O < vj i3 3 

tableau T 1 row equivalent ~o T, and for each j change all except vj i's 

in the jth row of T 1 into (i-l) 's. Let T 2 be the resulting tableau. 

By definition, each tableau T 2 involved in {t}ST~i_l, v is constructed 

in this way, and T 2 appears in {t}0 T ~i-l,v from 

J-3 3 

different tableaux row equivalent to T. 

Since ~ N . = ~i > v = ~ v there is an integer k with 
j=l 13 j=l J' 

O ~ v k < Nik . 

If for all j Ni_l, j ~ -i mod p aij then 

Ni_l, k + Nik - Vk! 

Nik - v k 

is divisible by p, by Corollary 22.5. Thus if the hypothesis of part (i) 

of the Theorem holds, Corollary 17.18 proves that MIST ! S~ as required. 

Under the hypothesis of part (ii), it again follows that 
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{t}Kt ~i-l,v does not involve T2, except if 

i-i 
Nik - v k > Z (Ik+m_ 1 - ~ Nms ) 

m=l s=k 

But for m < i - i, T 2 has ~ N numbers equal to m in rows k,k+l,... 
s= k ms 

since T 2 has come from a tabIeau row equivalent to T. Similarly, T 2 has 

at least s=kZ Ni-l's + Nik - vk numbers equal to i - 1 in rows k,k+l,..., 

since Nik - v k i's have been changed to (i-l) 's in row k. Altogether, 

therefore, T 2 has at least 
i-i 

Nik - v k + E ~ Nms 
m=l s=k 

numbers less than or equal to i-i in rows k,k+l,... If we assume 

that this excedes i~l lk+m-l' it follows that some column of T 2 cont- 
m=l 

ains two identical numbers. Therefore, T 2 is annihilated by <t " This 

shows that in part (ii) of the Theorem, {t}@T~i-l,v <t = O when i ~ 2 

and 0 ~ v ~ ~i - i; thus, {t}<t@ T belongs to SP, as we wished to prove. 

Since MI/S ~± is isomorphic to the dual of S ~, and S 1 n S I± is the 

unique maximal submodule of S 1 when I is p-regular we have 

24.7 COROLLARY Under the hypothesis of part (i) of Theorem 24.6, every 

composition factor of S ~ is a composition factor of S ~. Under the 

second hypothesis, D 1 is a composition factor of S ~ if I is p-regular. 

There are very many applications of Corollary 24.7. We give just 

one, but we shall use the Corollary again later to find all the compo- 

sition factors of Specht modules corresponding to 2-part partitions. 

24.8 EXAMPLE (cf. Example 24.3). Let ~ = (3,2,1) and char F = 3. 

Then all the factors of S (5'I) are factors of S~; take T = 3 2 2 1 1 . 
1 

D (32) is a factor of S p; take T = 3 2 2 
1 1 1 

D (4'12) is a factor of SP; take T = 3 2 1 1 
2 
1 

Theorem 24.6 also gives 

24.9 COROLLARY If for all i >_ 2, lji_ 1 -__lj i - -i mod p zi where 

zj = bp(~i - Pi+l ) , then S~ is irreducible over a field of characteristic 

p. 

Proof: The unique reverse semistandard ~-tableau T of type p has 

Nij = ~i+j-i - ~i+j Our hypothesis and the first part of Theorem 

24.6 show that @T belongs to Hom F~n(MB,S ~) and Ker @T ~ S~l 
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By dimensions, MP/S ~± ~ S ~. The parts of ~ must be strictly decreasing, 

so ~ is certainly p-regular. The result now follows from Lemma 23.1. 

When p = 2, it is straightforward to verify that the hypothesis 

of the above Corollary is equivalent to the statement that no column 

of the 2-power diagram [~]2 contains two different numbers; cf. the 

comments following the Carter Conjecture 23.17• 

To describe another special case of Theorem 24.6, we write p ~ 1 

if we can obtain [I] from [p] by moving some number d > 0 of nodes from 

the end of the ith row of [~] to the end of the (i-l)th row of [~] and 

each node is moved through a multiple of plp(d) spaces• (See Example 

24.11). 

24.10 COROLLARY Let char F = p and ~(i),~(2) ,...,~(r) be (proper) 

partitions of n with 

p(1) k ~(2) ~-i (3) k~2 ... k-r~2 ~(r) 

If 1 < a < b < r and I = ~(b) (a) ~n(SI,S p) - - - , ~ = ~ then Hem F ~ O. 

Proof: We may suppose that a = 1 and b = r, since otherwise we may 

restrict our attention to the sequence ~(a) ÷...÷ ~(b) 

Let d. be the number of nodes moved in ~(k-j+l) ~ ~(k-j+2) 
3 

defining d = O if j > k or j < k - r + 2). By construction, for all 
3 

i, 
(r) (i) + - d 

Pi = ~i di+l i 

and piP (di) divides (i) (I) + d + 1 
~i-i - ~i - di+l i 

• (i) (r) and N (r) . _ p(r) 
Let Nil = ~i - Pi+l ij = ~i+j-± i+j for j ~ 2, 

and let T be the corresponding ~(r)-tableau of type p(1) in Theorem 

24.6 (It is simple to verify that T is reverse semistandard). 

Now, i-i 

m=l ~ (~j+m-l(r) _ s=j~ Nms) = di if j = i, and 0 if j ~ 2. 

. (i) (r) (i) (i) + d { -i rood p£p(di)' 
Also, Ni_l, 1 = ~i-i - ~i = ~i-i - Pi - di+l i 

so Theorem 24.6(ii) gives the result. 

24.11 EXAMPLE Suppose char F = 3 

..... 4 . . . . .  3 . . . . .  2 
-~ -~ ÷ 

• • × X 

X X 

Q • • • I Q • 

• Q 

Therefore, Hom F~II(S 1 ,S ~) ~ 0 for I ~ ~ and I,~ any pair from (7,3,1), 
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(52,1), (5,32 ) and (5,3,2,1). Compare the following 4 by 4 submatrix 

of the decomposition matrix of ~ii for the prime 3. 

D(7,3,1) D(52,1) D(5,32) D(5,3,2,1) 

S (7'3'I) 1 

S (52'I) 1 1 

S (5'32) 1 1 1 

S (5'3'2'I) 1 1 1 1 

Note that the nu~ber of nodes we raise to the ro'~ above need not be 

the same for each ~(k-j+l) ~ ~(k-j+2) in Corollary 24.10; in parti- 

cular, the Corollary includes the case 

Z(1) il ~(2) i2 (3) ir-i (r) 
+ + ~ +... + ~ with i I > i2>... >ir- 1 

since we are allowed to raise zero nodes at any stage. The hypothesis 

i I > i 2 >...> ~_icannot be omitted, since when char F = 2, 

X X 2 X X X 2 X X X X 

X X X 

and while HOmF ~4(S(4) ,S(3'I)) and HOmF ~4(S(3'I) ,S(22)) are non-zero 

(Dy the Corollary), Horn F ~4(S (4) ,S (22)) is zero (by Theorem 24.4). 

For our next Theorem we require 

24.12 DEFINITION Given two non-negative integers a and b, let 

r < p, a r ~ O) a = ao+ alp + ...+ arP (0 _< a i 

s ~ O). b = bo+ blP + ...+ bsP (0 -< b i < p, b s 

We say that a contains b to base p if s < r and for each i b i = 0 or 

b. = a. 
l 1 

24.13 E~LE 65 2 + 0.3 + 1.32 + 2.33 = , so 65 contains precisely 

0,2,9 = 1.32 and ii = 2 + 1.32 to base 3. 

24.14 DEFINITION The function fp(n,m) is defined by fp(n,m) = 1 if 

n + 1 contains m to base p, and = O, otherwise. 

Since the only composition factors of S (n-m'm) have the form 

D (n-j'j) with j _< m, by Corollary 12.2, a sensible first step towards 

evaluating the decomposition matrix for ~n is to prove 

24.15 THEOREM (James [6] and [8]) . The multiplicity of D (n-j'j) as a 

factor of s(n-m'm) is f (n-2j,m-j) . 
P 

Proof Since the result is true when n = 0 or i, we may assume it for 
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n' < n. Let t be the (n-j,j)-tableau used to define the ~ action on n 
M (n-m'm) Let T be the (n-j,j)-tableau of type (n-m,m) having 2's in 

the (l,l) th, (l,2)th,...,(l,m)th places. As in the proof of Theorem 

24.6 , the ~ maps defined on M (n-re'm) have the property that 

m-i 
if n-m-j - -i rood p~ (m-r) {t}0 T ~ I'~ ker ~l,i 

i=r 

Also 
ker 0 T c_ S (n-j'j)± 

Therefore, all the composition factors of S (n-j'j) occur in 

But, by the second isomorphism theorem, 

m-i m-i m-i 
{~ ker ~l,i / ~ ker s ( ~ ker 91,i 
i=r i=o ~i ,i i=r 

m-i 
ker 

i=r ~l,i 

r-i 
+ {] ker ~i, r ) / 

i=o 

r-I 

{~ ker ~l i 
i=o 

r-i 
M(n-m'm)/ ~ ker 

i=o ~l,i 

m-1 
Thus, every composition factor of ~ ker ~l,i is either a factor of 

m-i i=r r-i 
S (n-m'm) = ~ ker or of M(n-m'm)/ ~ ker By Theorem 

i=o ~l,i ~l,i i=o 

17.13 we have: 

24.16 If n-m-j H --I mod p~(m-r) , then every factor of S 

factor of S (n-m'm) or of one of {S (n-i'i) IO < i < r-l} 

(n-j,j) is a 

NOW suppose that fp(n-2j,m-j) = i. Then m -> j a O and n-2j + 1 

contains m-j to base p. If m > j, then there is a unique integer J l 

such that 
n-2j+ 1- (m-j) + (jl-j) rood p£p(m-j) 

and O ~ jl- j < m-j . 

But then n-2j + 1 contains jl- j to base p. Hence we may find integers 

such that 

m = Jo > Jl >''" Js > Js+l = j 

and n- Jk - Jk+l - -i rood p~(Jk-J) 

Then, by 24.16 every factor of S (n-j'j) is a factor of S (n-js'js) 

or one of {S (n-i'i) IO < i -< j-l}. But D (n-j'j) is not a factor of 

S (n-i'i) for 0 <- i < j-l, by Corollary 12.2, so D (n-j'j) is a factor of 

S (n-js'Js) 

Applying 24.16 again, every factor S (n-js'js) is a factor of 



108 

S (n-js-l'js-l) or of one of {S (n-i'i) IO < i -< j-l} Therefore, 

D (n-j'j) is a factor of s(n-js-l'Js-i ) . Continuing this argument to 

Jo = m, we have proved 

24.17 When fp(n-2j,m-j) = i, D (n-j'j) is a factor of S (n-m~m) 

Next, consider the case where n - m-i mod plp(m) Then let 

r-i 
= . < p, a ~ O) m-i ao+ alP + ...+ ar_IP (O -< a I r-i 

r-i r 
so n = ao+ alp + ...+ ar_iP + brP + ... 

where b = 0 if m = pr Thus, n contains m-i to base p, so 
r 

fp(n-l,m-l) = i. Similarly, fp(n-l,m) = O and fp(n,m) = i. 

Returning to the case of general n and m, we prove 

24.18 If m -> 1 and fp(n-l,m) + fp(n-l,m-l) > f (n,m), then there is 

some integer j with 1 -< j -< m such that D (n-jpj) is a factor of 

s(n-m'm) and D(n-j'J)% ~n-I contains the trivial factor D (n-l) with 

multiplicity fp(n-l,m) + fp(n-l,m-l). 

To prove 24.18, consider first the case where m is a power of p, 

say m = pr. The inequality fp(n-l,m) + fp(n-l,m-l) > fp(n,m) easily 

implies that pr divides n + i, and the argument above proves that 
r+l 

p does not divide n-m+l. Therefore, ~p(n-m+l) = r. Hence S (n-re'm) 

is irreducible in this case, by Theorem 23.1~3, and D (n-m'm') = S (n-m'm) . 

Since S (n-re'm) % ~n-i has the same factors as S (n-m-l'm) • S (n-re'm-l) 

by the Branching Theorem, D(n-m'm)+ ~n-I contains D (n-l) with multi- 

plicity fp(n-l,m) + fp(n-l,m-l), by the induction hypothesis. This shows 

that we may take j = m in 24.18 when m is a power of p. 

Suppose, therefore, that m is not a power of p. Since fp(n-l,m) + 

fp(n-l,m-l) -> i, n contains m or m-i to base p. The fact that m is not 

a power of p now shows there is a unique j with 

O -< j < ra n ~ m+j-i rood p~ (m) 

Further, j -> i, since we have shown that n -= m-1 rood p~(m) implies 

that fp(n-l,m) + fp(n-l,m-1) = fp(n,la) . Now the above congruence shows 

that n + 1 contains m to base p if and only if n+l contains j to base p, 

and n contains m to base p if and only if n contains j-I to base p, and 

n contains m-I to base p if and only if n contains j to base p. Therefore, 

% (n-l,j) + % (n-l,j-l) = % (n-l,m) + % (n-l,m-l) 

> % (n,m) = fp(n,j). 

By induction, there is an i with 1 _< i -< j < m such that D (n-i'i) is a 

factor of S (n-j'j) and D(n-i'i)% ~n-i has D (n-l) as a factor with 
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(n-l,m-l). But, since n -= re+j-1 mod plp(m! multiplicity fp(n-l,m) + fP (n-j,j) In 
24.16 shows that every factor of S is a factor of S (n-m'm) 

particular, D (n-i'i) is a factor of S (n-re'm) and so 24.18 is proved. 

The multiplicity of D (n) as a factor of S (n-m'm) is at most 

fp(n-l,m) + fp(n-l,m-l), since s(n-m'm)+ %-1 has D (n-l) as a factor 

with this multiplicity, by our induction hypothesis. Further, 24.18 

shows that D (n) is not a factor of S (n-m'm) when fp(n-l,m) + fp(n-l,m-l) 

> fp(n,m). This proves our next main result, namely 

24.19 The multiplicity of D (n) as a factor of S (n-m'm) is at most 

f (n,m) . 
P 

Finally we prove 

24.20 If j > i, D (n-j'j) is a factor of S (n-m'm) with multiplicity at 

most fp (n-2j,m-j) . 

The way we show this is to consider a subgroup }I of ~n' and find 

a modular representation D of H such that D (n-j'j)+ II has D. as a 
3 3 

factor, but s(n-m'm)% H has D as a factor with multiplicity f (n-2j, 

m-j). 24.20 then follows at once. We should like to choose n-2 or 

-1 as our subgroup H, so that we can apply induction. Since the 

prime 2 is exceptional e we consider first 

Case 1 p is odd. 

The ordinary irreducible representations of ~(n-2,2) are given 
~(2) i e~ = ~(12) 

by S~ ~ 8 ~ and(2~ ~ ~ ~]2 as ~ varies over partitions of n-2. 

Since p is odd, D' " and D '~ ) are inequivalent representations. IIence 

the p-modular irreducible representations of ~(n-2,2) are given by 

D ~ 8 D (2) , D ~ 8 D (12) as ~ varies over p-regular partitions of n-2, 

and the multiplicity of D (n-j-l'j-l) 8 D (I~) as a factor of 

S (n-m-l'm-l) ® S (12) is fp(n-2j,m-j) when j > i, by induction. 

Now, by the Littlewood-Richardson Rule, s(n-m'm)% ~(n-2,2) has the 

same composition factors as S (n-m-l'm-l) ~ S (12) , together with some 

modules of the form S ~ 8 S (2) . In particular, the multiplicity of 

D (n-j-l'j-l) 8 D (12) as a factor of s(n-m'm)+ ~(n-2,2) is fp(n-2j,m-j) ~ 

On the other hand, s(n-j'J)+ ~(n-2,2) has D (n-j-l'j-l) 8 D (I~) 

as a factor with multiplicity one (since f~(n-2j,O) - i), and for i < j 

s(n-i'i)+ ~(n 2,2) does not have D (n-j-l'j-~l) 8 D (12) as a factor 

(since fp(n-2j,i-j) = O). Now, every factor of S (n-j'j) , besides 

D (n-j'j), has the form D (n-i'i) with i < ~, so it follows that 

D(n-j'J)+ ~(n-2,2) has D (n-j-l'3-1) 8 D (I') as a factor with multip- 

licity one. 
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The results of the last two paragraphs prove 24.20 in this case. 

Case 2a p = 2 and n is even. 

s(n-m'm)+ %-1 has the same factors as S (n-m-l'm) • S (n-re'm-l) 

By induction, this contains the factor D (n-j-l'j) with multiplicity 

f2(n-l-2j,m-j) + f2(n-l-2j,m-j-l) . It is simple to verify that this 

equals f2(n-2j,m-j), since n is even. 

In particular, for 2j < n, s(n-j'J)+ ~n " has D (n-j-l'j) as a 

factor with multiplicity one, and for i < ' s~n-i'i)+ ~ does not 3, n-i 
nave D (n-j-l'j) as a factor. As before, D(n-j'J)+ %-1 therefore has 

D (n-j-l'j) as a factor with multiplicity one, and 24.20 is proved in 

this case too. 

Case 2b p = 2 and n is odd. 

s(n-m'm)+ ~n-2 has the same factors as S (n-m-2'm) @ 2 S (n-m-l'm-l) 

S (n-m'm-2) This contains D (n-j-l'j-l) with multiplicity 

f2(n-2j'm-j+l) + 2f 2 (n-2j,m-j) + f2 (n-2j,m-j-1) , which equals 2f 2(n-2j, 

m-j) when m-j is even, 

Thus, s(n-3'3)+ ~ ~ has D (n-3-I'3-I) as a factor with multipli- 
n - z  . . 

city 2, and for i < j-2, s(n-l'l)+ ~n ~ does not have D (n-j-l'j-l) as 

a factor. But every factor of S (n-3'3~, besides D (n-j'j), has the form 

D (n-i'i) with i < j-2, by the Remark following Theorem 23.7, so 

D(n-j'J)+ ~n-2 has D (n-j-l'j-l) as a factor with multiplicity 2. 

The results of the last two paragraphs prove 24.20 in this final 

case. 

Now 24.17, 24.19 and 24.20 together give Theorem 24.15. 

24.21 COROLLARY If j a l, the multiplicity of D (n-j'j) as a factor 

of S (n-m'm) is the same as the multiplicity of D (n-j-l'j-l) as a factor 

of S (n-m-l'm-l) . 

By the way, we conjecture that Corollary 24.21 is a special case 

of a general theorem involving the removal of the first column. 

24.22 EXAMPLE Suppose p = 3. The rows of the following table record, 

respectively, n, n+l written to base 3, and the numbers contained in 

n+l to base 3, for O ~ n ~ 13. 

0 1 2 3 4 5 6 7 8 9 i0 ll 12 13 

1 2 lO ll 12 20 21 22 100 iO1 102 llO iii ll2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 2 i 2 1 2 lO  i 2 
i0 i0 
ii 12 
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Under n = 13, for example, we have 0,2,10,12 which are integers 

to base 3. There are l's in the (O+l)th, (2+l)th, (3+l)th and (5+l)th 

places (counting from the diagonal) in the column labelled 13 in the 

following pair of matrices. Another example: i0+i contains 0 and 2 to 

base 3. There are l's in the (O+l) th and (2+l)th places of the column 

labelled i0. 

1 

1 1 

1 

1 

1 

4 2 

1 1 1 

1 1 

1 1 

1 1 

1 1 

1 1 1 

1 1 

12 lO 8 6 0 13 ii 9 7 5 3 

The part of the decomposition matrix of ~n corresponding to 

2-part partitions for p = 3 and n ~ 13 can be read off these matrices 

at once. Simply truncate the matrix at the column labelled n, and label 

the rows and columns by 2-part partitions in dictionary order. 

(8,1) (7,2) (6,3) (5,4) (9) 

(9) 1 

(8,1) 1 1 

e.g. n = 9 (7,2) 1 

(6,3) 1 

(5,4) 

For p an odd prime and n small, most of the decomposition matrix 

of % is given by Theorems 24.1 and 24.15. 

24.33 EXAMPLE Suppose p = 3 and n = 9. Applying Peel's Theorem 24.1, 

the column labels can be found as in Example 24.2 Alternatively, they 

are given explicitly in [9] page 52. Combined with the information 

above, this gives 

(9) (8,1) 
(9) 1 

(8,1) 1 1 

U,2) 

(6,3) 1 

(5,4) 

U,l 2 ) 1 

(6,1 ~ ) 

~,i ~ ) 

(7,2) (6,3) (5,4) (7,12 ) (6,2,1) (5,22 ) (4,3,2) (42,1) 
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(4,1 s ) ! 1 

(3,16 ) 1 1 

(2,17 ) 1 1 

(19 ) 1 

Applying Theorem 8.15 to the first five rows, another part of the 

decomposition matrix is 

(5,4) (42,1) 

(19 ) 1 

(2,17 ) 1 1 

(22,15 ) 1 

(23,13 ) 1 1 

(2~,i) 1 1 

(The rows corresponding to (19 ) and (2,1 ~) already occur above). 

Using Theorem 21.7 we find that the last three columns should be labelled 

(4,3,12),(32,2,1) and (9). Incidenta~y, we do not know how to sort out 

efficiently the column labels once we have taken conjugate partitions 

as above (although Theorem A in [9] gives some partial answers). 

We have now accounted for 12 of the 16 3-regular partitions 

labelling columns. S (5'3'I) and S (3'22'I) are irreducible, by Example 

23.6(i), so we have two more 3-modular irreducibles to find, namely 

those corresponding to (4,22,1) and (5,2,12). But 

X(7, 2) _ X(4,22, 1) + X (4,2,13) 

on 3-regular classes (using Theorem 21.7 with Iv] = [4,2]). Appealing 

to the theory of blocks of defect 1 (or to the Nakayama Conjecture) 

part of our decomposition matrix is 

(7,2) (4,22,1) 

(7,2) 1 

(4,22,1) 1 1 

(4,2,13 ) 1 

By taking conjugate partitions, we get 

(5,2,12 ) (4,3,12 ) 

(5,2,12 ) 1 

(4,3,12 ) 1 1 

(2~,i s ) 1 

Now Theorem 21.7 enables us to complete the decomposition matrix, 

since we can write every ordinary character which corresponds to a 3- 

singular partition in terms of ordinary characters corresponding to 3- 

regular partitions, on 3-regular classes. 
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When p = 2, Theorem 24.1 cannot be applied. However, all the 

rows of the decomposition matrix for partitions of the form (n-m-l,m,l) 

are known for p = 2 (see James [6]). 

Our sources for the decomposition matrices in the Appendix are 

Kerber [13] (p = 2,n _< 9), James [6](p = 2, n = iO), Mac Aog~in [153 

(p = 2,n = ii), Stockhofe [21] (p = 2,n = 12,13), Kerber and Peel [14] 

(p = 3, 8 -< n < iO) and Mac Aog~in [15] (p = 3,11 < n < 13 ,completed by 

James [123) . Mac Aog~in[15] gives the decomposition matrices for p= 5,n_<13. 

The most difficult cases are p = 2,n = 12 and 13, and for these 

Stockhofe used a computer to find dim D (5'4'2'I) and dim D (7'4'2) , 

employing Theorem 11.6. 
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25 YOUNG'S ORTHOGONAL FORM 

We turn now to the problem of finding the matrices which represent 

the action of permutations on the Specht module S U. This has been post- 

poned to a late stage in order to emphasize the fact that the represen- 

tation theory of ~n can (and we believe should) be presented without 

reference to the representing matrices. 

Since ~n is generated by the transpositions (x-l,x) for i < x ~ ~, 

is is sufficient to determine the action of these transposition on a 

basis of S U . Consider first the basis of standard polytabloids e t. 

Here we have 

25.1 (i) If x-1 and x are in the same column of t, then et(x-l,x) = -e t. 

(ii) If x-i and x are in the same row of t, then et(x-l,x) = e t 

+ a linear combination of standard polytabloids et, with {t*} ~ {t} 

(by combining 8.3 and the technique used to prove 8.9). 

(iii) If t(x-l,x) is standard, then et(x-l,x) = et(x_l,x) 

In case (ii), the relevant standard tableaux t* may be calculated 

by applying the Garnir relations. 

25.2 EXAMPLE If U = (3,2) and we take the standard u-tableau in the 

order tl,t2,t3,t4,t 5 = 1 3 5 1 2 5 1 3 4 1 2 4 1 2 3 then 

24 34 25 35 45 

o o 0 o 

-1 1 O O O 

(1 2) <--> 0 0 -i O 0 

O O -i 1 O 

10 -i O 1 

(3 4) <-> 

-i O O O O 
- 1 O O O 

- 0 1 O O 

oO O O O 1 

O 0 1 O 

(2 3) <--> 

(4 5) <--> 

O1OO l 
1 0 O O 

O O O 1 

O O 1 O 

1 -1 O O 

O O 1 O O 

0 O O 10 

1 O O O O 

O 1 O O 0 

1 0 -i O 1 

In many ways, Young's natural representation, as this is called, 

is the best way of describing the matrices which represent permutations; 

for example, it is independent of the field. Ilowever, we must take three 

cases into account, and the second one, where x-i and x are in the same 

row, involves an unpleasant calculation. It turns out that these prob- 

lems can be avoided when we work over the field ~of real numbers, and 

the rest of this section will be devoted to the case where the ~round 
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field is JR. 

Let t I < t 2 <...< t d be the standard ~-tableaux, in the order 

given by definition 3.10. Wherever possible, we shall use the abbre- 

viation e i for the standard polytabloid eti 

Since we are working over the reals, we may construct from e 1 , 

e2,...,e d an orthonormal basis fl,f2,...,fd of S~ using the Gram- 

Schmidt orthogonalization process. It is with respect to the new ortho- 

normal basis that we get "nice" matrices representing permutations. 

To fix notation, we remind the reader of the Gram-Schmidt orthogona- 

lization process. 

Suppose we have constructed a basis fl,...,fj of the space spanned 

by el,...,e j over I~ and that fl,...,fj are orthonormal relative to the 

bilinear form < , > Then there is a non-zero linear combination 

f > = O for 1 < i < j (see 1.3) Now, the f of el,...,ej+ 1 with < ei, _ _ . 

tabloid {tj+ I} is involved in f (othe~;ise f would be a linear combina- 

tion of el,...,e j by the proof of 8.9, contradicting the fact that 

< ei,f > = 0 for 1 ~ i ~ j.) Therefore, we may take 

fj+l = (±f)/(< f'f >)% " 

the sign being chosen so that {tj+ I} has a positive coefficient in fj+l" 

This determines fj+l uniquely. 

Of course, the new basis fl,f2,...,fd of S~ depends on the order 

of the original basis el,e2,...,e d . However, we prove 

25.3 THEOREM The orthonormal basis fl,f2,...,fd of S~ constructed 

from the standard basis is independent of the total order we choose on 

the standard tableaux, provided that the total order contains the partial 

order ~ , ~iven by definition 3.11 

At the same time, we prove 

25.4 YOUNG'S ORTHOGONAL FORM 

If (x-l,x) is a transposition in ~n, then for all r 

fr(x-l,x) = Plfr + P2fs 

where t s = tr(x-l,x) and pl (= Pl(X,r)) equals (i-k+ £_j)-i if x-i is in 

the (i,j)th position and x is in the (k,£)th position of t r, and 

~12 + P22 = 1 with P2 - > O. 

Remark: It does not matter that there is no t s equal to tr(X-l,x) when 

x-i and x are in the same row or column of t r, since P2 = 0 in these 

cases. Young's Orthogonal Form says that fr(x-l,x) = ±fr if x-I and 

x are in the same row or column of t r, respectively. 
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Before embarking on the proofs of 25.3 and 25.4, we require a 

preliminary Lemma. 

25.5 LEMMA Suppose that t and t* are any two p-tableaux, and that 

x-i is lower than x in t*. If {t} ~ {t*} then {t}(x-l,x) 4 {t*}(x-l,x). 

Proof: Recall from definition 3.11 that miu(t) is the number of entries 

less than or equal to i in the first u rows of t. Since {t} ~ {t*} , 

miu(t) < miu(t*) for all i and u. 

Let x-i be in the alth row and x be in the blth row of t. Let 

x-i be in the a2th row and x be in the b2th row of t*. We are given 

that b 2 < a 2 . 

Using 3.14, we deduce from miu(t) < miu(t*) that miu(t(x-l,x)) 

miu(t*(x-l,x)), except perhaps for i = x-i and either b I < u < min(al,b 2) 

or max (bl,a2) < u < a I. 

For b I < u < min(al,b 2) , 

mx_l,u(t(x-l,x)) = mx,u(t), since x-i is in the alth row and x is in the 

blth row of t and b I < u < a 1 

< mx,u(t*), since {t} ~ {t*} 

= mx_l,u(t*(x-l,x) , since u < b 2 < a 2 . 

For max (bl,a 2) -< u < a I, 

mx_l,u(t(x-l,x)) = mx_2,u(t) + i, slnce b I -< u < a 1 

(t*) + i, since {t} 4 {t*} -< mx_2, u 

= mx_l,u(t*(x-l,x)), since b 2 < a 2 < u . 

Therefore, miu(t(x-l,x)) _< miu(t*(x-l,x)) in all oases. Thus 

{t(x-l,x) } ~ {t*(x-l,x)}. We do not have equality, since {t} ~ {t*}. 

Proofs of Theorem 25.3 and Young's Orthogonal Form: 

Assume that both results are true for all ~ - i  Specht modules 

(Both are vacuously true when n = O). The proof now proceeds in 3 steps. 

Step 1 The matrices which we claim represent (x-l,x) are correct for 

X < n. 

We take our notation for the proof of Theorem 9.3, so that V i is 

the l~n_l-mOdule spanned by those et's where t is a standard ~-tableau, 

and n is in the rith, r2th,...,or rith row of t. Since V 1 c V 2 c ..., 

the proof we gave for Maschke's Theorem shows that 

V i = U 1 • U 2 • ... • U i, 

! 
where U i is the ~n_l-mOdule spanned by those ft s where n is in the 
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r th row of t. (Recall that oar total order on tabloids puts all those 
l 

with n in the rlth row before all those with n in the r2th row etc.) 

In the proof of Theorem 9.3 we constructed an ~n_l-hOraomorphisIL~ 

li Since = U 1 @ •. @ i mapping V i onto SIR WhOSe kernel is Vi_ I. Vi_ 1 • 

@ Ui_ 1 and Vi= U 1 ~...~ Ui'll we therefc e know that @l is an ~ ~n_l-iso- 

1~torpnism from U i onto SI~ 

Define a bilinear form < , > on U i by 

< u,v >* = < u0 i, v@ i > for u,v in U i, 

where the second bilinear form is that on SI~ . Since U i is an absolutely 

irreducible ~n_l-mOdule, our new bilinear form on U i must be a multiple 

of the original one, by Schur's Lemma. That is, there is a real constant 

c such that 

< u,v > = c< u,v > for all u,v in U i. 

Because both forms are inner products, c is positive. 

For each standard p-tableau t having n in the rith row, let 

denote t with n removed, and write e t for e~ and ft for f~ • Suppose 

that tp,tp+ I,.. .,tq are the standard ~-tableaux which have n in the r.thl 

row. If p -< r < q then 

fr = u + ap Pe + ap+lep+ 1 + ... + ar re 

for some u in Vi_ 1 and a r > O. Therefore, by 9.4, 

+ - + . + a e fr0i = apep ap+lep+ 1 .. r r 

Since the last tabloid here is {tr } with a positive coefficient, and 

since < fz@i,fr0i > = c< fz,fr > for p -< z < r, we deduce that 

fr 0i = /~ fr 

We are assuming that Young's Orthogonal Form is correct for the 

I~ ~n_l-mOdule S Iz, so for x < n, 

fr(x-l,x)@ i = /~ fr(x-l,x) 

= /c (Plfr + P2fs ) = (Plfr + P2fs)@i . 

Here, t s = tr(X-l,1) , and the real numbers Pl and P2 are those in the 

statement of Young's Orthogonal Form (the positions of x-i and x in t r 

are the same as their positions in tr). Since 0 i is an isomorphism, we 

have proved the desired result of Step i, namely that 

fr(x-l,x) = Plfr + P2fs , for x < n. 

Step 2 The proof of Theorem 25.3. 

We know that there are real numbers al,a2,...,a r with 
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= > O. fr alel + a2e2 + "'" + arer and a r 

Theorem 25.3 will follow if we can show that a. = O unless 
3 

{tj} ~ {tr}. By induction, we may assume that when {tj} ~ {t r} , fj 

is a linear combination of standard polytabloids e i with {t i} 9 {tj}, 

and prove the corresponding result for fr" 

Case 1 For some x < n, x is lower than x-1 in t 
r 

row or column as x-l. 

and not in the same 

Let tr(x-l,x) = t k. Then {t k} 4 {tr}. Therefore, 

fk = Clel + "'" + Ckek where c i = O unless {t i} ~ {tk}- 

Using 25.1, and applying Lemma 25.5, fk(X-l,x) is a linear combi- 

nation of polytabloids e i for which {t i} 9 {tr}. 

Since x < n, Step 1 shows that 

fr = a multiple of fk + a multiple of fk(X-l,x) . 

Therefore in this case, 

= , {t i {t r • fr alel + "'" + arer where a 3 = O unless } ~ } 

Case 2 For every x < n, x is higher than x-1 in t r or is in the same 

row or column as x-l. 

Since t r is standard, it is easy to see that the hypothesis of 

Case 2 implies that ~r (= tr' with n removed) has 1,2,...,n-i in order 

down successive columns. 

We may certainly write 

fr = blfl + "'" + br-lfr-i + brer where br ~ O. 

Let x be the smallest integer such that b. ~ 0 for some j and 
3 

mxu(t r) < mxu(t j) for some u, if such an integer x exists. We aim to 

produce a contradiction. 

First, 1 < x < n, since for all u, mlu(tr) = mlu(tj) = 1 (t r and 

tj being standard),and mnu(tr) = mnu(tj) = ~i + "'" + ~u for all ~- 

tableaux t r and tj 

By the minimality of x, mx_l,u(tr) z mx_l,u(tj) for all u. 

Let x be in the (y,z) place of t r. Then y > 1 (otherwise, for all 

u, mxu(tr) = mx_l,u,(t r) + 1 _> mx_l,u(tj) + 1 -> mxu(t j) , contradicting 

the definition of x). Since t has 1,2,...,n-i in order down successive 
r 

columns, x-i is in the (y-l,z) place of t r. Therefore, using Step i, 

er(x-l,x) = -e r and fr(x-l,x) = ~fr 

For u a y, mxu(tr) = mx_l,u(tr) + 1 a mx_l,u(tj) + 1 a mxu(tj). 
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The definition of x therefore shows that 

mxu(tr) < mxu(t j) for some u < y. 

But mx_l,u(t r) = uz for u < y (since tr has 1,2,...,n-i in order down 

successive columns), and the first row of t. contains at most z numbers 
3 

less than or equal to x-i (since mx_l,l(t j) ~ mx_l,l(t r) = z). Because 

t 5 is standard, this means that x must be in the (l,z+l) place of tj, 

and x-i is in a column of t. no later than the zth column. 
3 

t = 
r 

z 

Y 

t .  = 
3 

x - 1  

z z+l 

IxC 

I 
If t k = tj(x-l,x), then Step 1 gives 

fj(x-l,x) = olf j + o2f k where O < o I < i. 

Therefore, 

blf I + ... + bjf.3 + "'" + br_ifr_l + brer 

= f = -f (x-l,x) 
r r 

= -blfl(X-l,x) - ... - bj(Olf j + ~2fk ) - ... + bre r 

Since b 3, ~ 0 and ~i ~ -i, f3 must appear elsewhere in the last 

line. This means that b k is non-zero. But mx_l,l(t k) = z + 1 > z = 

mx_l,l(tr), and this contradicts our minimal choice of x. 

We have thus pro~L~dthat in the expression 

fr = blfl + "'" + br-lfr-i + brer 

bj = 0 unless {tj} 9 {tr}. Our induction hypothesis at the beginning 

of Step 2 shows now that fr is a linear combination of polytabloids e i 

with {t i} ~ {tr}. This concludes the proof of Step 2. 

Step 3 Calculation of the matrices representing (n-l,n). 

Take a new total order on tabloids, containing 4 , in which {t} 

and {t(n-l,n) } are adjacent if both are standard. (This is possible in 

view of Lemma 3.16.) We fix our notation by saying that {~} < {t 2} < 

...<{t d} are the different standard tabloids ordered by definition 3.10, 

and {tl~} << {t2 } << ..<< {td } is the new order. Thus, z is a 

permutation of {l,2,...,d} and if both tiw and ti~(n-l,n) are standard 

then ti~(n-l,n)= t(i±l)~" 
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We plan to evaluate fr~(n-l,n). Assuage, for the moment, that if 

tr~(n-l,n) is standard, then tr~(n-l,n) = t(r+l)z. 

Let G denote the group {i, (n-l,n) } 

Let X denote the space spanned by elz,e2~,...,e(r_l)~ 

Let Y = X + e ]RG (so that dim Y = dim X + 2 or i, depending 
r~ 

on whether or not both t and t (n-l,n) are standard.) 
r~ r~ 

Since our new total order contains ~ , for every standard t, 

neither or both e t and et(n_l,n) belong to X (using 25.1). Hence both 

X and Y are G-invariant. 

By Step 2, flz,...,f(r_l)z is an orthonormal bas±s for X and 

fl~ .... 'frz'f(r+l)~ is an orthonormal basis for Y (Omit f(r+l)~ if 

dim Y = dim X + i). The space spanned by fr~ and f(r+l)~ is the ortho- 

gonal complement to X in Y,and because our inner product is G-invariant, 

the space spanned by frn and f(r+l) z is G-invariant (Omit f(r+l)z if 

dim Y = X + i) . 

Now, f = an element of X + b e , where b > O(since the coeffi- 
r~ r 

cient of {try} in fr~ is chosen to be positive). Therefore, when n-I 

and n belong to the same row or column of trz, 

f (n-l,n) = an element of X + eb e 
rz r~ 

I +l if n-1 and n are in the same row of trz 

where £ = -1 if n-1 and n are in the same column of t 
r~ 

But we have just proved that fr~(n-l,n) is a multiple of frz in 

these cases, and comparing coefficients of erz, we see that 

fr~(n-l,n) = Ef ~ 

and this completes the case where t (n-l,n) is not standard. 
r~ 

On the other hand, when both tr~ and tr~(n-l,n) (= t(r+l)~) are 

standard, 
fr~(n-l,n) = an element of X + b e(r+l)~ (b > O) 

Since the space spanned by fr~ and f(r+l)~ is G-invariant, 

fr~(n-l,n) = Plfrw + P2f(r+l) n 

where Pl and P2 are real numbers, and the coefficient of {t(r+l)~} shows 

that P2 is strictly positive. Now 

< fr~(n-l,n),fr~(n-l,n) > = < fr~,fr~ > = 1 

+ 2 = 1 with P2 > O. Also so Pl P2 

fr~ = Plfr~ (n-l'n) + P2f(r+l)z (n-l'n) ' 

whence 

f(r+l)~(n-l,nJ = 0~fr~- Plf(r+l)~ 

It remains, therefore, to show that Pl may be calculated as in the 
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statement of Young's Orthogonal Form in the ~ase under discussion, where 

tr~(n-l,n) = t(r+l~.. This will be done using some properties of the 

group 5 3 

Since n-i and n are not in the same row or colu~n of trz, n > 3. 

Also, trz ~ tr~(n-l,n), so n-i is lower than n in trz There are 4 

cases to consider 

(i) n-2, n-i and n appear in trn thus: 

In-2 I n, 
n-i 

(ii) Some two numbers from {n-2,n-l,n} are in the same row, but 

no two are in the same column of trn 

(iii) Some two numbers from {n-2,n-l,n} are in the same column, 

but no two are in the same row of t 
rz 

(iv) No two numbers from {n-2,n-l,n} are in the same row or colu~nn 

of t 
r~ 

We tackle case (ii) first; case (iii) is similar and case (i) is 

comparatively trivial. Finally we deal with the hard case (iv). 

Case (ii) Let H be the group generated by gl = (n-2,n-l) and g2 = (n-l, 

n). Since n-i is lower than n in t , t has the form: 
rz r~ 

/or / 
n  n- ln-1 

/ 

In the first case, let t = try, and in the second let t = tr~(n-l, 

n). The space spanned by ft,ftgl and ftg 2 is H-invariant. In fact, our 

results so far show that, with respect to the basis ft,ftgl,ftg2 , the 

action of H on this space is given by 

o io0o ] 
gl = (n-2,n-l)<-~ a2-~i 0 g2 = (n-l,n) ~ 1 

O 0 1 [ T 2 0 T 1 J 

where ~i is known, from Step i. The axial distance from n-i to n in t 

= -(the axial distance from n-2 to n-I in t) + i. We shall therefore 
-i -i 

have finished if we can prove that ~i = 1 + T 1 . 

Now, trace glg 2 = -~ITI - ~i + TI" Therefore 
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Itrace glg21 s lOl~II + I~iI + I~iI ~ ½ + ½ + 1 : 2. 

The character table of ~3 is 

(i 3 ) (2,1) (3) 

X (3) i i i 

X (2'I) 2 0 -i 
(i 3 ) 

X 1 -i 1 

The only representation of dimension 3 having trace 1 on the 

transpositions and Itracel s 2 on elements of order 3 is X (3) + X (2'I) 

Therefore, trace glg 2 = O, giving ~i = ~i~i + ~i ' as required. 

Case (iv) Let H, gl and g2 be as in Case (ii). ~{e may assume that n-2 

is higher than n'l, and n-i is higher than n in t, and that t r = th for 

some h in H. Taking ft 'ftg] 'ftg2'ftq~g]'ftg2glg~'ft~2gl~2gl . . . . . .  as a 

basis for ftlRH, gl and g2 are represented by 

-v I v 2 

~2 Vl 
gl = (n-2,n-l) <-> -~i 

e 2 

I 

w 2 

71 72 

72 -nl 

g2 = (n-l,n) <-> 

-~i 

e2 

~2 

-$i B2 

-YI Y2 

Y2 Y1 

62 81 

(Omitted entries are zero) . 

Here we know that each of Vl,el,Zl,e2,62,Y2 is non-zero. The 

Values of 91,el and Wl are known and 911+ 711 = ell , 

from Step i. ~e want ~i = ~i' B1 = el and Y1 = 91" There seems to 

be no more efficient way of proving this than equating (glg2)2 with 

g2g I, using the fact that glg 2 has order 3 (cf. Thrall [23]). The 

(4,1), (5,2) and (3,1) entries in the relevant matrices give 

e2 e2 el 91-~i ~2 el ~2 - ~i e2 Y1 ~2 = O 

-"~2 82 ~i 61 + 72 ~i 62 Y1- 71 72 81 62 = O 
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2 ~.~ 
and - el ~)i (~i ~2 + e~ (~i ~2 - e2 %'1 ~2 -c~2 ~)i 

2 = 1- e~ and el I = ~iI + ~i I these rapidly Substituting e 2 , 

give the required result: a I = HI, 81 = e I and Y1 = ~i" 

This finishes Step 3 and completes the proof of Young's Orthogonal 

Form. 

25.6 

the graphs used in Example 5.2: 

4 

2 fl = &, _ ~ ~ .  Z 

4 ¥ J 3  
't 

2 ¢'3 f 2  = Z 

& 

EXAMPLE Here is the orthonormal basis of S (3'2) in terms of 

=e I ti=135 

24 

= -e I + 2e 2 t 2 = 1 2 5 

3 4 

2 /3 f3 = 

4 

4 -I 

4 

= -e I + 2e 3 t 3 = 1 3 4 

2 5 

~ f4 = 

I 

= e I - 2e 2 - 2e 3 + 4e 4 

t4 = 1 2 4 

3 5 

3 /2 f5 = = 2e I - e 2 - e 3 - e 4 + 3e 5 

t5 = 1 2 3 

4 5 
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For clarity, we have chosen the graphs (= GI,G2,..., G 5, say) 

so that the edges have integer coefficients. It is easy to check that 

the graphs are orthogonal, and that {t i} is the last tabloid involved 

in G i. The numbers multiplying each fi ensure that < fi,fi > = 1 

(For example, < G3,G 3 > = 1 2, so (2/3)-IG3 has norm i). 

Corollary 8.12 has been used to write the graphs in terms of poly 

tabloids. Since {t 2} @ {t3} , e 2 is not involved in f3' illustrating 

Theorem 25.3. 

Writing out in full the matrices representing (1 2~, (2 3),(3 4) 

and (4 5) with respect to the orthonormal basis, fl,f2,...,f5, we have: 

(i 2) ~-~ 

-i 

"-i 

1 

-i (2 3) <--> 

1/2 /3/2 

/3/2 -1/2 

(3 4) <--> 

1/2 /-3/2 
/3 /2  -1 /2  

1 

1 

1/3 2/2/3 

2/2/3 -1/3 

(4 5) <--> 

1/2 /3/2 

1/2 /3/2 

/-3/2 -1/2 

/3/2 -1/2 

It is interesting to see that the last element of the orthonormal 

basis is always a multiple of the vector {t}KtP t used in definition 

23.3 (cf. Example 23.6(iii) and f5 above). This is because both are 

fixed by the Young subgroup ~p and to within a scalar multiple ~p 

~xes a unique element of S~ , by Theorem 4.13 (Theorem 4.13 shows that 

dim Hom~ n (M~ S~) = i). 
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26 REPRESENTATIONS OF THE GENERAL LINEAR GROUP 

The representation theory of ~n is useful in the study of more 

general permutation groups. For example, Frobenius used part of the 

character table of G24 to find that of the Mathieu group M24 There is 

another, less obvious application of the theory, following from a study 

of the group G L d(F) of non-singular d x d matrices over a field F. 

Remember that any group which has a representation of dimension d over 

F has (by definition) a homomorphic image inside G Ld(F). Although the 

results of this section will be stated in terms of the general linear 

group, they apply equally well to any subgroup thereof. ~e plan to 

construct, for each n and each partition of n, a representation of 

G Ld(F) over F. Hence from any representation of any group, we can 

produce infinitely many new representations over the same field. 

G Ld(F) acts naturally on a d-dimensional vector space, W (I) say, 

over F. Let i, 2,...,~ be a basis for W (I) . If g = (gij) is a matrix 

in G Ld(F), then 

!g = Z gij ~ • 
3 

The general element of W (I) ® W(1)may be written as 

E a.. [ cF) 
i,j_<d 13 ~ (aij 

(The reason for this perverse notation will emerge later.) Let G Ld(F) 

act on W(1)® W (I) by 

E [_g = Z aijgikgj£ ~ (g E G Ld(F)) , 
i,j-<d aij j i,j,k,i 

as usual. 

For the moment, assume char F = O. There are two natural G Ld(F)- 

invariant subspaces of W(1)8 W (I) , namely those spanned by 

{ k+ ~ . . . .  I 1 < i < j < d } l i_ 

and by 

[ ~ [ 1 < i < j ~ d} {] 

These are called the symmetric part of W(1)8 W (I) and the second 

exterior power of W (I) (or the skew-symmetric part of W(1)® W (1)) 

respectively. Since char F = O 

W(1)@ W (I) = (symmetric part) S (2nd exterior power). 

Write this as 

W(1)® W(I) =- W(2)S W (12) 

Less wellknown is that 

W (I) ® W (I) ~ W (3) ~ 2W (2,1) @ W (I~) 
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for some subspaces W (3) (called the 3rd symmetric power), W (2'I) (of 

which there are two copies) and W (13) (called the 3rd exterior power) 

AIBo W(1) ~ W(1) 8 W(1) ® W(1) ~ W(4) ~ 3W(3,1)@ 2W(2,2)~ 3W(2,12 ) 

W (I~) 

"and so on". Further 

W(2)8 W(2)- ~ W (4) (9 W(3'I)~ W(2, 2) 

Most of the work needed to prove these results has already been 

done, since they are similar to those for the symmetric group (compare 

the last example with S(2)~ S(2)+ ~4 ~ S(4) ~ S(3'I)~ S (2'2) , when 

char F = O). 

Consider again W(1)® W (I) . How do we deal with the symmetric and 

skew-symmetric parts when F is arbitrary (allowing char F = 2)? We 

adjust our notation, by letting W (2) be the space of homogeneous poly- 

nomials of degree 2 in commuting variables i, 2,...,-_d . We write 

i ~ for the monomial ! 

so that 
i ~ = j i and W (2) is spanned by {~-~ I i -< i s j < d}. 

We keep our previous notation for W (I) ® W (I) and for W (12) , and 

now (W(1)~ W(1))/W (12) =~ W (2) as vector spaces, since 

i_- = ~ modulo W(12) 

Another way of looking at this is to define the linear transfor- 

mation ~i,0 : W(1)® W(1)+ W (2) by 

[ 

(12 ) 
Then ker 41,O = W If we let G Ld(F) act on W 

then ~i,O turns out to be a G Ld(F)-homomorphism: 

= -~ ~ gikgj£ k ~ = i g . 
g k,ZZ gikgjZ --[ 91 O k,Z 

It is the generalization of W (2) , described in the way above, to 

the kth symmetric power of W (I) which we take as our building block for 

the representation theory of G Ld(F). 

26.1 DEFINITION The kth s[mmetric power of W (I) is the vector space 

W (k) of homogeneous polynomials of degree k in commuting variables 

i, 2,...,d, with coefficients from F. We write 

i I i2...i k for the monomial ~i ~2 "'" ik 

(2 in the natural way, 
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and we let the G Ld(F) action on W (k) be defined by 

ili2...i k g = Z gilJlgi2J2 ... gikJ k JlJ2"''Jk 

where the sum is over all suffices jl,J2,...,jk between 1 and d, and 

g = (gij). 

The reader who is more familiar with the kth symmetric power as 

the subspace Symmk(W(1) ) of W(1)@ ...® W (I) (k times) spanned by certain 

symmetrized vectors0 may find it us4ful to know that the connection 

between this and w(k) is: 

w(k)* (i)*) = Symm k (W 

where * denotes the process of taking duals. 

Corresponding to M Z = S O'Z in the representation theory of ~n' 

we consider the space W(ZI)@ ...@ W (Zn) . There is still a little more 

preliminary work, though, before we come to this. It should, however, 

be clear that it is useful to discuss vector spaces spanned by tabloids 

with repeated entries (For the time being, it is best to forget any 

intended interpretation in terms of the action of G Ld(F)). 

Let X = x I x 2 ... x n be a sequence of non-decreasing positive 

integers. If Z is a partition of n and t is a ~-tableau (of type (in)) 

let t X denote the array of integers obtained by making the substitu- 

tions i ÷ x i in t (i s i ~ n). Let t I X - t2X if and only if for all 

m and r the mumber of m's in the rth row of tlX equals the number of m's 

in the rth row of t2X , and let {tX} denote the ~-class containing tX. 

Then 
{t} ÷ {t}~ = {t~} 

is clearly a well-defined map from the set of z-tabloids of type (i n) 

onto the set of z-tabloids of type ~, where the partition ~ is defined 

by 
~i = the number of terms of X equal to i. 

(As in some of our earlier work, we do not require U and ~ to be proper 

partitions of n.) Extend X to be a linear map on S 0'~, the space spanned 

by the z-tabloids. 

26.2 

(ii) 

EXAMPLES (i) If X = 1 1 2, then 

i 1 S ° , (2,1)~ is spanned by ~-- and 

S(2,1) , (2,1)~ is spanned by 

If X = 1 1 l, then 
1 1 S ° , (2,1)~ is spanned by 1 

S(2,1) , (2,1)~ = O. 

Y7 
1 

1 1 21 
2 1 
m m 



128 

Certain linear transformations ~i,v were defined on the vector 

spaces S O'~ in section 17. Define the corresponding linear transfor- 

mations on sO'~x by 

{t}X ~i,v = {t}~i,v ~ " 

(It is clear that this is welldefined.) 

26.3 THEOREM Suppose that X is a sequence of type ~, I is a proper 

partition, and ~,p are a pair of partitions as in 15.5. 

Then 
(i) dim SIX = the number of semi standard l-tableaux of type 

(ii) SP~'~X ~c-l,~ = SP''~Rc ~ 

(iii) S p~'~ X n ker ~c-l,~ = sP~Ac'P ~ " 

Proof. In 17.12, we proved that 

e~W, ~j 11 #~ ~A c , p 
t ~c-l,p~ = etI~cPRC and e~ ~c_l,~c = O . 

Applying X to these equations, we deduce that 

s~"~ x ~c-l,~ = s~'~1~c ~ 

and s~Ac 'p X ~ - ~ = O. 
c I,U c 

By considering last tabloids, as in the construction of the 

standard basis of the Specht module, obviously dim S ~ X >_l~o(l,~) I , 

where ~o(l,~) is the set of semistandard l-tableaux of type ~. If 

this inequality is strict for some l, or if S p4~'p X n ker 9c-i 
'Pc 

strictly contains sP~Ac'Px for some pair of partibions p#,~, then choose 

a pair of partitions O,v and a sequence of operations Ac,R c leading 

from O,v to l,l or p~,~, respectively (using 15.12). For each proper 

partitionn ~ of n, let a O be the multiplicity of S~ as a factor of 

S~ '~ . Then there is a series of subspaces of S O'v X with at least a 

factors isomorphic to S°X (cf. Corollary 17.14). 

Therefore, 

the number of M-tabloids of type ~ = dim S O'M 

>- Z a dim S ° 
o 

o= ao I 

G' n 

At least one of the inequalities is strict (the first is strict if 

our kernel is too big, and the second is strict if dim S l > I ~o(l,~)I) • 

~ = S O,M Recall that a O is the multiplicity of S C as a factor of M c ¢ 
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Therefore, 

a 
u dim Horn C ~n(S~,Mc) = dim Horn c ~n(MC'MC) 

= the number of ~-tabloids of type ~, by Theorem 13.19. 

This contradiction completes the proof. 

26.4 DEFINITIONS Let W ~ ~ be the vector space direct sum of S p~'~ 

where X runs over all non-decreasing sequences whose terms are 1,2,...,d. 

Let the ~ maps act on W p~'~ by acting on each component separately. When 

p is a proper partition of n, let W p = W p'p 

We now have 

26.5 THEOREM Let I be a proper partition of n. Then 

(i) dim W 1 equals the number of semistandard l-tableaux with 

entries frora {1,2,...,d} 

(ii) W 1 is an intersection of kernels of ~-maps defined on W O'I 

Proof: This follows immediately from Theorem 26.3, since W 1 is the 

direct sum of the spaces S 1 X . 

Next, identify W O'p with W(~I)~ W(P2)8 ... 8 W (pn) . We have 

defined the action of G Ld(F) on a symmetric power, and hence G Ld(F) 

acts on W O'~. An unpleasant use of suffix notation shows that the 

~-maps commute with the action of G Ld(F), and then Theorem 26.5 shows 

that W 1 is a G Ld(F) module, which we call a Weyl module. 

From Theorem 26.3, we have 

26.6 THEOREM W ~' p has a series, all of whose factors are Weyl modules. 

The number of times W 1 occurs in this series equals the number of times 

the Specht module S 1 occurs in a Specht series for S p~'p 

In particular, the number of times %jl occurs in a Weyl series for 

wO'~ = W(~I)8 W (~2)@ ...® W (pn) is given by Young's Rule. (Notice that 

no "inducing up" takes place here, as it did in the corresponding symme- 

tric group case). This justifies all the examples we gave at the beginn- 

ing of the section; indeed, we have proved their characteristic-free 

analogues. For example, W(1)8 W(1)8 W (I) has a G Ld(F) series with factors 
isomorphic to W (3) ,W (2'I),W (2'I) (13) 

,W ,in order from the top,and this 

holds for every field F. 

We now investigate character values. Let 

g = ~2 • G L d (F) 

ed 
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If F is algebraically closed, every elements of G Ld(F) is conjugate to 

one of the above form, and so it is sufficient to specify the character 

of g on a Weyl module. 

26.7 DEFINITION For an integer k, let {k} denote the kth homogeneous 

symmetric function of el,...,~d. That is, 

{k} = ~ 
ig il~ ...~ iks d ~il ~12"''~ik 

(By convention {O} = 1 and {k} = O if k < O) 

26.8 EXAMPLES {i} = ~i + ~2 + "''+ed 

{2} = el2 + ~22 +...+ e2d + ele2 + ~i~3 +''+ ed-lad 

2 + 2 + ~i~2~3 {3} + 3d + b2 +'" + d-l d  d-l d 

+ ...+ ~d_2~d_l~d 

26.9 THEOREM {k} is the character of ~ on W (k) . 

Proof [ g = ~i - [ + a combination of ~'s with j < i. Therefore, 

if 1 s i I s...~ i k s d, then the coefficient of il...i k in il...i k g 

is eil...ei k . Since W (k) has a basis consisting of elements of the 

form il...i k , the result follows. 

26.10 COROLLARY {_~l}...{In } is the character of ~ on W(II)® ... @ 
w(In ) = wO, 1 

Now, recall from 6.1 that m = (ml~) is the matrix whose entries 

are indexed by proper partitions, given by 

[ll][12]...[l n] = Z ml~[ ~] 

From Theorem 26.6, we have 

26.11 {ll}{12}...{l n} = E ml~{~}. 

Since the Determinantal Form gives the inverse of the matrix m, 

we have 

26.12 THEOREM If I is a proper partition of n, then the character of 

on the Wey1 module W l is l{li-i+~} I . 

We write {I} = l{li-i+j} I = the character of g on W I. Then 

immediately 

26.13 THEOREM {l}{~} is the character of ~ on W 1 ® W Z. 

The Littlewood-Richardson Rule tells us how to evaluate {I}{~} 

as a linear combination of {~}'s (where i is a partition of r, Z is a 
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is a partition of n-r and 9 is a partition of n), since we know that 

the Littlewood-Richardson Rule follows from Young's Rule. 

It is worth noting that were we to define 

{k} = Z ~il ~i2... ~ik 
isi I s...si k 

where {~i,~2,...} is countable set of indeterminatess then 

{ll}{12}...{l n} = Zl ml~{~} 

and {l} = l{li-i+j} I 

are equivalent definitions of {l}, for i a partition of n (since our 

results work for el,...,ed in an infinite field, the above must be 

identities in the indeterminates ~l,...,~d ) . 

{l} is called a Schur function, and the algebra of Schur functions 

is thus isomorphic to the algebra generated by the [l]'s, where I varies 

over partitions of various n. The Littlewood-Richardson Rule enables us 

to multiply Schur functions. 

Schur functions can be evaluated explicitly by 

26.14 THEOREM If ~ is a proper partition of n, then 

Vl ~2 ~n 
{~} = Z m Z' 

~ ~il~i2"''~i n 

Note; In all that follows, Z' denotes the sun over all unordered sets 

of n indices il,i2,...,i n (no two equal) chosen from {1,2 .... ,d} or 

from {1,2,...} depending on whether we wish to define {p}in terms of 

{~l,e2 ..... ~d } or of {~i,~2 .... }. 

Proof of Theorem 26.14 (m m')iv = ~ mlam 

= (~ mlo X ~, ~ m y X T) , this being an inner product of 

characters of %" 

= (x[ll][12]'''[In],x[Vl][~2]'''[Vn]) , by the definition 

of m. 
(MI,M ~ ) = dim Hom C ~n 

= the number of l-tabloids of type 9, by Theorem 13.19. 

~ ..~n in = the coefficient of ~ii~22. {ll}...{In}, by 

considering how this coefficient is evaluated, 

Therefore, {ll}...{l n} = Z (m m') Z' ~i ~2 ~n 
l~ ~i I ~i 2 "''~i n" 

But {~}= Z (m -I l ~l {ll}'''{in} by 26.11, 

, 91 ~2 9n = Z (m -1) Z ~. ~ .... ~. 
l,~,o ~I ml~ mvo i I 12 i n 
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m Z, 91 ~2 Vn = . , as required. 
~U ~il ei2" " ~in 

k 
26.15 DEFINITION Let s k = i ~ Gi if k -> 1 and s O = i. 

We can now prove the useful 

26.16 THEOREM Let p be a permutation of ~n with cycle lengths QI' 

p2,...,p n and let C(p) denote the centraliser of p in ~n" Let XU(p) 

be the value of the character of ~ corresponding to the partition 
n 

, evaluated on p. Then 

(i) s s ... s = ~ X ~ (p) {~} 
Pl P2 Pn 

(ii) {~} = 7. IC~)i XP(OlSoI Sp2 ...Spn p 

Proof x[9l][~2]'''[~n ] (P) = the number of tabloids in ~fixed by p. 

= the nunfoer of ~-tabloids of type (i n) where each cycle of p is cont- 

ained in a single row of the tabloid. 
~i ~2 ~n 

= the coefficient of el ~2 ... a n in spl Sp2... Spn, by considering 

how this coefficient is evaluated. 
, ~i v2 ~n 

Therefore spl Sp2 Spn ~ X[~I][~2]'''[~n](P) 7~ ~ ..... , • . . = ~il z 2 el n 

= E x[Vl][92 ]'''[~n ] (p) (mu~)-I{u}, by Theorem 26.14 
v,U 

= Z XU(P) {P}, from the definition of m. 
P 

This proves part (i) of the Theorem. 

By the orthogonality relations for the columns of the character 

table of ~n' 

1 1 1 ~ X p 
Z Ic- 71 × ¢p) = Z ~ X ¢P) ¢P){U} = {l}, P Spl Sp2 "Spn U,P 

and this is the second part of the Theorem. 

26.17 COROLLARY If G is any group, and 0 is an ordinary character of 

G, then for all n >- O and all proper partitions p of n, e U is a 

character of G, where 

@~(g) = 7. 1 X p 1 .0(gPu) (g~ G) P ~ (p) @(gP )@(gP2).. 

The centraliser order IC(p) I and the character X U refer to the symmetric 

group ~.n and the sum is over all proper partitions p of n; p is written 

as (pl,__pp2,...,pu) , where Pl >- P2 a'''.~.Pu > O. 

If e has degree d, then @P has degree equal to the number of semi- 

standard p-tableaux with entries from {1,2,...,d} . 



133 

Proof: There is a homomorphism # from G into G Ld(C). If g e G, let 
k k k 

#(g) have eigenvalues ~i' e2'''''~d " Then ~i' e2''''' ed are the 
k eigenvalues of g , and so @(gk) elk + ... + ~ . The result now 

follows from Theorem 26.16(ii) and Theorem 26.5(i). 

26.18 EXA~ZPLES Referring to the character tables of 50' ~i' ~2 and 

6 3 , the last of which is 

(13 ) (2,1) (3) 

Centralis er order: 6 2 3 

X(3) I i 1 1 X (2'I) 0 -I 

X (13) -i 1 

we have, for any ordinary character 0 of any group G, and any g in G, 

0 (0) = the trivial character of G 

0 (i) = 0 
1 )2 * 8 (2) g) = Y(O(g) + ~@(g2) 

8(12 i )2 _ (g) = ~(0 (g) x0 (g2) 

• )3 8 (3) (g) = ~(O(g) + ~0(g2)@(g) +~@(g3) 
I 3 O (2'I) (g) = q(O(g)) + O.@(g2)@(g) - ~O(g 3) 

0(13 ) 3 (g) = ~(@(g)) _ ~0(g2)0(g) + ~@(g3). 

Note that 0(1)8 @(i) = 0(2) + 0(12 ) 

0(2)8 0( 1 ) 8(2,1) + 0 (3) = , etc. (cf. Young's Rule) 

If @ has degree d, then 

des 0 (2) = (2 d) + d = d(d+l) 
2 

deg 0 (12) = (d) = d(d-l) 
2 

deg 0 (13) = (d) 

deg e (2'I) = (d+l) d(d-l) 
3 

deg 0(3) .d+2. 
= ( 3 ) 

(The last two degrees are most easily calculated by using the next 

Theorem. ) 

Similar to the Hook Formula for dim S 1 we have 

26.19 THEOREM dim W 1 = ~ (d+j-l) 
(i,~)c[13 
K(hook lengths in [I]) . 

Proof: We prove first that dim W (k) ,k+d-l. = L d-i ) if k is a non-negative 
integer. 

The natural basis of W (k) consists of (k)-tabloids with entries 
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from {1,2,... ,d}. There is a I-i correspondence between this basis and 

sequences of "bars" (i) and "stars" (*) ~ith d-i bars and k stars 

eg *l l**q*l I i**'I* 
~-~ 1 33 4 777 8 

.k+d-l. 
There are ( d-1 ) such sequences, so this is the dimension of W (k) 

Since {I} = 8{I i + j - i}l, we ]lave 

d - 1 

+ d - l + j - i  

3_ 

= Id(d+l)... (d + I i - 1 + j - i) I 

(I i + j - i)' 

= f(d) , say. 

Let I have h non-zero parts (so we are taking the determinant of 

an h × h matrix). It is clear that the polynomial f(d) has degree 

Ii + 12 + "''+lh and leading coefficient 

I 1 I 1 , by 19.5 and 20.i. 
(I i + j - i)' = ~(hook lengths in [13) 

Therefore, the result will follow if we can prove: 

When k -> -h+l r and i* is the largest integer i such that 

I. > k+i t then (d+k) i* divides f(d) for k >- 0 and (d+k) i*+k divides -l 
f(d) for k < O. 

(k measures "how far right of the diagonal we are", and the above will 

ensure that the numerator in the statement of the Theorem is correct.) 

Case 1 k -> O. 

For i -< i*, d -< d+k _< d+ li- i. Examining the third determinantal 

expression for f(d) above, we see that, for i < i*, (d+k) divides all 

the entries in the ith row of our matrix. Therefore, (d+k) i* divides 

f(d). 

Case 2 k < O. 

Here we claim that f(d) = det(Mk(d)) where ~(d) is a matrix whose 

(i,j)th entry for all i, and for all j _> -k, is 

( I i + d + d + k j - i + k ) 

This is certainly true for k = -i (by our first expression for 

f(d)), so assume, inductively, that it is true for k. For all j -> -k, 

subtract the jth column of Mk(d) from the (j+l)th column of Mk(d). In 

the new matrix, for j _> -k+l, the (i,j)th entry is 
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(li+d + j-i + k) _ (li + d + j-l-i + k) = 
d + k d + k 

li+d + j-i + k-l) 
d + k-i 

Thus, our new matrix may be taken as Mk_l(d), and the result claimed 

is correct. 

+ j-i = 0 if li 
-Since li 0 1 if I. + j-i >_ 0 

l 

and i i + j-i > 0 for i -< i* and j >_ -k, ~(-k) has the form I i 
I 
I 

i l's 

O's and l's 

-k-i h+k+l 

i* 

l h-i* 

Therefore, the rank of ~(-k) is at most (-k-l) + (h-i* + i), 

whence the nullity of Mk(-k) is at least i* + k. Thus (d+k) i*+k divides 

det(M k(d)) = f(d), as required. 

26.20 EXA~?LES 

(i) If I = (k) then dim W l = 

dim W (2)" " = d (d+l) 
2.' 

d (d+l) ... (d+k-l) 
k: 

In particular, 

(ii) If [I] = X X X , then the hook graph is 4 3 1 

X X 21 

Replacing the (i,j) node in [I] by j-i, we have O 1 2 

-i 0 

Then the Theorem gives dim W ~ = d(d+l) (d+2) (d-l)d 
4.3.2.1.1. 

As with the Hook Formula for the dimension of the Specht module 

S I, the formula of Theorem 26.19 is much more practical than the count 

of semistandard tableaux when calculating dimensions of Weyl modules 

W 1 . 



APPENDIX 

THE DECOMPOSITION MATRICES OF THE SYMMETRIC GROUPS ~n FOR THE PRIMES 

2 AND 3 WITH n < 13 

We have deliberately presented these decomposition matrices without 

sorting the characters into blocks. This makes it easier to spot 

patterns which might hold in general; for example, compare the part of 

the decomposition matrix of 013 corresponding to partitions having 3 

parts with the decomposition matrix of 510 , and see the remark follow- 

ing Corollary 24.21. 
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The decomp, osition matrices of ~ n f,or the prime 2 

,-4 ,-4 

n = 0 .~ n = I ,-" n = 2 

*I (0) I *I (i) i i 
i 

( 2 )  
(! ~ ) 

v 

n = 3 

1 ( 3 )  
'~2 (2 I) 

( ) 

n = 6 

i ( 6 )  
5 (5,1) 
9 (4,2) 

~'~16 (321) 
I0 ( 412 ) 

5 (32 ) 
i0 (31 ~ ) 

5 (2 3 ) 
9 (2212  ) 
5 ( 2 1  ~ ) 
i (16 ) 

H ~ H ~ 

m ~ n = 4 ~m n = 5 

I I (4) i i (5) 
i 3 (3 i) I i 4 (4,1) 

I "2 ~2 ( ) i 5 (3  2) 
3 (212 ) I I -6  ( ~2 3 ) 
I (i ~ ) i 5 (221) 

4 (213 ) 
i (i s ) 

1 I (7) 1 
I I 6 (6,1) i 
i i I 14 (5,2) I 

i 14 (4,3) i i 
2 1 1 35 (421) i i i 
i i 15 (512 ) i i 
2 1 1 21 (321) i i 
i I 21 (322 ) i i 
I i i ~20 (413 ) 2 I 
I i 35 (3212 ) I i I 
I 14 (231) i i 

15 (31 ~ ) i I 
14 (2213 ) i 
6 (21 s ) i 
! (I T ) i 

~O zt 09 

I 
I 

i i 
-2 i 
i I 

i 
i 
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The decomposition,,matrix, of ~,,fo F the prime, 2 

H (~) - .1" o o - 1 - 0  

oo ['--- ~o u9  L..O .-~ 

1 (8) (i e ) I 
7 (7,1) (21 ~ ) 1 1 

20 (6,2) (221 ~) 1 1 
28 (5,3) (2312 ) 1 1 1 
64 (521) (3213 ) i 
70 (431) (3221) 2 1 1 1 1 
14 (42 ) (2 ~ ) i i 
21 (612 ) (31 s) i i i 
56 (422 ) (3212 ) 2 i i 
42 *(322) 2 i 
35 (513 ) (41 ~) 1 2 1 1 
go *(4212 ) 2 2 2 1 i 

Block number: I ! i 1 2 1 

The decomposition matrix of ~9 for the prime 2 

I (9) (19 ) 
8 (8,1) (217 ) 

27 (7,2) (221 s ) 
48 (6,3) (2313 ) 
42 (5,4) (2~i) 

105 (621) (321 ~) 
162 (531) (32212 ) 
168 (432) (3221) 
28 (712 ) (316 ) 
84 (421) (323 ) 

120 (522 ) (3213 ) 
42 *(33 ) 
56 (613 ) (41 s ) 

189 (5212 ) (4213 ) 
216 (4312 ) (4221) 
70 *(51 ~ ) 

Block number: 

,.-t co  ,,..o co co  eo C 0 

r--I 

1 
1 

1 1 
1 

1 1 
1 1 1 
2 I i 1 1 

1 1 
2 ! 
2 1 1 1 
2 1 1  
2 1 

Z 1 
3 2 I i I 

1 1 1 
2 2 1 

1 2 1 2 1 1 1 2  
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The decomposit, ion ,matrix of ~i0 for the 2rime 2 

i 
9 

35 
75 
9O 

160 
315 
288 
450 
768 
42 
36 

225 
252 
210 
84 

35O 
567 
300 
525 
126 
448 

,--I eo ( o  oo ~:) O e o  co  O oo 
_,1- H ~ :DOb Cq C ;  (O 

r q r - - I  ~ ~ ¢"- 

(i0) (I I° ) i 
(9,1) (21 ° ) i i 
(8,2) (2216) i i i 
(7,3) (231 ~) i I i 
(6,4) (2~I 2) I i I 
(721) (321 s ) 
(631) (32213 ) ! 2 1 ! 
(541) (3231) 
(532) (32212) 2 1 ! I 

*(4321) 
(52 ) (2 s ) I i 

(812) (31 ~) 2 1 1 
(622 ) (321 ~ ) i I 
(422) (3222 ) 2 1 1 I 
(432 ) (331) ? I 
(713 ) (416 ) 2 1 1 1 

(6212 ) (421 ~) 2 1 3 1 1 
(5312 ) (42212 ) 3 1 3 1 2 
(4212 ) (423 ) 2 1 1 1 I. 
(5221) (4313 ) 3 1 2 1 1 
(61 ~) (515 ) 2 1 2 1 1 

*(5213 ) 

i 
i 

i I 
! I 

I 

I 
I 
i 

i 
I i 

i 
I i 

2 i 

Block number: i I i i 1 2 1 2 1 3 
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The decomposition matrix of ~ll__~for the prime 2 

i 
i0 
44 

ii0 
165 
132 
231 
550 
693 
990 
99O 

2310 
45 

33O 
385 
660 
462 
120 
594 

1232 
1155 
ii00 
1320 
1188 
825 
210 
924 

1540 
252 

H C )  _-I- G ..1~ C~,I (4D O0 ~ -  O0 ~D O0 
r-'t -'~ C '  ~D e o O o  m --~. . .~-  , - - I ( .0 

r.--i 

~ ~ f-q c o  . . ~  u p  r - t  r - t  ~ - t  ~.~ t - - , !c ,4  

(ii) (111 ) i 
(I0,i) (21 e ) i 
(9,2) (221 ~ ) i 
(813) (231 s ) i i 
(7,4) (2~i 3 ) i I 
(6,5) (2Sl) i i 
(821) (3216 ) I I i 
(731) (3221 ~) 2 i I i 
(641) (32312 ) I i i i i 
(632) (32213 ) i i i I 
(542) (32221) 2 i i ! i i 

(5321) (43212 ) 3 2 2 I 
(912 ) (318 ) i i 
(521) (32 ~ ) ! i 
(722 ) (321 s) I i I 
(532 ) (3312 ) 2 i i I 
(423) (332) 2 i i 
(813 ) (417 ) 2 i 

(721 z) (421 s) 2 i i i i 
(6312 ) (42213 ) 2 3 2 i 
(5412 ) (4231) 3 i i I i i i 
(6221) (431 ~) 2 2 I i 
(4221) (4322 ) 2 I i 

~(4321) 2 
(523 ) (4213 ) 3 I i I i 
(71" ) (516 ) 2 i i 

(6213 ) (521 ") 2 i i 2 1 1 
(5313 ) (52212 ) 4 i I 2 2 1 I 

*(61 s ) 2 2 i 

Block number: 1 2 1 2 1 2 1 1 1 2 1 2 
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T_he decomposition matrix of ~12 for the prime 2 

1 (12) (3. 12 ) 
ii (Ii,I) (21 *o ) 
54 (10,2) (2218 ) 

154 (9,3) (2316 ) 
275 (8,4) (2~I ~) 
297 (7,5) (2Sl 2) 
320 (921) (321 ~) 
891 (831) (3221 s) 

1408 (743.) (32213 ) 
1156 (651) (32~I) 
3.925 (732) ( 2s ]  2) 
2673 (642) (329212) 
211.2 (543) (3321) 
5632 (632 ! )  (4323_ 3 ) 
5775 (5421) (43221) 

132 (62 ) (26 ) 
55 (10] 2 ) (31 s ) 

616 (822 ) (3216 ) 
1320 (522) (3~23 ) 
1650 (632 ) (3313 ) 
462 (43 ) (3 ~ ) 
1SS (913 ) (41 s ) 
945 (8212 ) (4216 ) 

2376 (7312 ) (4221 ~) 
3080 (6432 ) (42312 ) 
1485 (52] 2 ) (42 ~ ) 
2079 (7221) (431 s ) 
4158 (5321) (43212 ) 
2970 (4231) (4322) 
1925 (693 ) (421 ~ ) 
4455 (5322 ) (42212 ) 
2640 2(4222) 

330 (81 ~ ) (517 ) 
3696 (6313 ) (52213 ) 
3520 (5413 ) (5231) 
3564 (62212 ) (531 ~) 
7700 ~(53212 ) 
462 (71 s ) (61 G ) 

2100 ~(621 ~ ) 
1728 (7213 ) (5215 ) 

,--I 0 _~- 0 _n~- ¢-4 C> 0 co  co  (.o ,,.o ¢~ o.~ c o  
,--I _n~ 0 ~o eo o.~ t - -  0 oo ..~- ,--I o-~ eo ~o 

rq ~ eOuO ~ ('40 ~t['- ~O CO 

0 09 CO ~ _~- CO 
,--I ,--I r--I o'~ oo t'-- o ~ o o  L'~ £0 r'-- ~D uO c.O uo 

i 
I I 

I i 
I i i 

i i i I 
1 1 i 1 

I 
31111 I 

I 
1 Iii i i 
31 Iii i ! 
311111 i iii 

I 

552312 i 112 
I I 

iii 
2 i i 
2 I i I i 
2111 i ii 
2 I I 
1211 
32211 I 
421322 I I 
421322 I Iii 
3 i i i i i 
321211 i I 
2512 i ii 
2411 I 
321211 ii 
351312 Ii 

4 2 i 
22111 
622322 

622221 
862423 
221211 
4 2 2 2 2 1  

2 i i i 
i I 

2 i i i 
2 122 

2 i 
i i 

I 
i 

Block number: I i I i i 1 2 1 2 1 1 1 2 3 1 



142 

The decomposition matrix of~13 for the prime 2 

1 
12 
65 

208 
k29 
672 
~29 
~29 

1385 
257~ 
2860 
3k32 
6006 
51~8 
8~35 

12012 
17160 
15015 

66 
1287 
938 

3575 
3~32 
257~ 

220 
1~30 
~212 
686~ 
5720 
38~0 
8580 

ii~0 
3q32 
4004 

12012 
12870 
11583 
8580 
~95 

3003 
7800 

10296 
5005 
7371 

20592 
21~50 
16016 

9009 
729 

~290 
9360 

92~ 

e-d {'4 t ' , l  , " - t e ' ~  e O ~  

(13) (1'3) 1 
(12 ,I) (21' I ) 1 
(11,2) (2219 ) 1 1 
(10,3) (2317 ) 1 
(9,4) (2~i s ) 1 1 1 
(8,5) (261 ~ ) 1 1 
(7,8) (261) 1 1 1 

(1021) (321 s ) 1 1 1 
(931) (32216 ) 3 1 1 1 1 
(841) (32~I ~) 4 1 1 1 1 
(751) (32"12) 2 1 1 1 1 1 
( 832 )  (3221 s ) 2 1 1 
(742) (322213 ) 4 i i i 2 1 1 i 
(652) (322~i) i I I I 
(643) (33212 ) 3 i i I I i i i I 

(7321) (4321~) 3 2 i i 
(6421) (432212 ) 4 1 2 I I 1 1 
(5431) (43221) 7 3 1 I i 1 1 1 i 1 
(1112) (31'°) 2 I 
(621) (325) 1 I 1 I 1 
(922) (3217) 2 1 1 
(73z) (3~i~) 3 i i I I I 
( 523 )  (3622 )  2 I i i i 
(5~") (3"1) 2 I i 

(i01~) (419) 1 1 
(9212) (~217) 4 2 I i I 
(8312) (42ZLS) 3 i 2 i 
(7412) (~2s13) 8 2 3 2 2 1 1 i 
¢651") (42~i) 2 2 I I 
(8221) (4316) ? 1 1 1 
(5221) (4323) 3 i i I i I 
(6321) (4321~) 2 1 i 1 
(~31) (~3~) 2 I i 
(72~) (4215) ~ 2 2 i I i 

(6322) (42213) 3 I i i i 
(5~22) (42221) 6 3 2 2 I I I i 
(5322) (~231z) 5 3 I i i i 

*(~,= 32) u, 2 i 
(91~) (51a) 3 2 I 

(8213) (52!s) 5 2 1 I I i 
(7313) (52~i~) 8 2 3 2 1 3 1 1 1 
(641~) (52~1z) 8 2 3 2 1 3 1 2 i i 
(5~i~) (52") 3 1 1 1 1 1 

(72212) (5316) 7 2 2 1 1 3 1 1 1 
(6321~) (5321~) 6 1 3 2 1 1 1 
(5~21~) (53221) 12 ~ 3 3 1 3 1 2 2 i i 

~(53212 ) 8 ~ 2 2 2 i 2 I 
(62~i) (5~i~) 7 2 2 I 1 2 1 1 i i 

(81~)  (617 )  2 i i 
(721~) (621~) 6 2 2 i 1 2 1 ! 
(631~) ( 62z1~ )  ~- I 3 2 i 

~(71~) ~ 2 2 i 

Block numbe.~: 1 2 1 2 1 2 1 1 1 I I 2 1 2 1 2 2 1 



143 

The decomposition matrices of ~ .  for the nrime 3 

,--{ ,-J ,-4,--{ 

-2 

n : 0 n : 1 

el (~) 1 *i 

n = 2 

(I) I i 
i 

1 
1 

n = 3 

1 (3) 
*2 (2,1) 
i (13 ) 

r-4 t-4 t-JeO ,-~ OO t'-{ ..'~ rH ~D .n ~ 

cO ¢w .:t CO Cw C'~ UD :teO COC'~ 

n = 4 

1 1 (4) 1 
1 1 3 (3,1) 1 

1 *2 (2 ~ ) I i 
3 (212 ) i 
i (! ~ ) i 

n -- 5 

I (5 )  i 
4 (4,1) I 
5 ( 3 , 2 )  1 1 

"6  (312 ) 1 
(2~ i) 1 1 

4 (213 ) i 
1 (15 ) 1 

n = 6 

1 (6) 
5 (5,1) 
9 (4,2) 
5 (3 z ) 

I0 (41 = ) 
"16 (321) 

9 (2212 ) 
5 ( 2  3 ) 

i0 (313 ) 
5 (21 ~ ) 
1 (16 ) 

r-~ =r O%, ~ [O =t OD 

1 
1 1 

1 
1 1 
1 1 

1 1 1 1 1 
1 

1 1 
1 1 

1 1 
1 

n = 7 

1 
8 

14 
14 
15 
35 
21 
?I 
35 

"90 
14 
15 
14 
6 
1 

(7) 
(6,1) 
(5,2) 
(4,3) 
(512 ) 
(421) 
(321) 
(322 ) 

(321 ~ ) 
(413 ) 
(231) 
(31 ~ ) 

(2213 ) 
(91 s ) 

(i ~ ) 

~'-UD u~, =~ ~O =t CO O9('O 

1 
! 

1 1 
1 1 

1 
1 1 1 1 

1 1 
1 1 

1 1 1 1 
1 

1 1 
1 

1 1 
1 

1 
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The decomnosition matrix o{ ~8 fgr the prime 3 

i (8) I 
7 (7~I) 1 

?n (6,2) i 1 
28 ( 5 , 3 )  ] 
1~ (42 ) l 1 
21 (612 ) l 
64 (591) I l I 
7n (431) 1 I ! 
58 (4? 2 ) I I 1 

~42 ( 3 2 2 )  I 
*90 (4212 ) 
5E (32] 2 ) i i i 
?n (3221) ! 
35 (513 ) ! 
14 (2 ~ ) I 
35 (41  ~ ) 
64 (3213 ) 1 
98 (2312 ) 
21 (31 s ) 
2~ (221 ~ ) 1 
7 (2] 6 ) I 
1 (18 ) I 

], 

I 
] 

i 

Block number: ! ? o ! ? 3 1 1 2 3 4 1 2 

1 i 
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The decomposition matrix of ~9 for the prime 3 

r-~ t-- t-- r-4 ,-4 ,-4 ub~ ~ t--- Lo r-~ o% ~- o~ r-4 C4 
('w .zt ¢~ co (.0 cO C-40~ (~4 CO _~- ~D 

~4 C'4 CO -I-~ ,-4 r-4 r-i~ ¢~,r-4 ,-4~ ¢w~ 

1 (9 )  
8 ( 8 , 1 )  

27 ( 7 , 9 )  
48 ( 6 , 3 )  
42 ( 5 , 4 )  
28 (712 ) 

le5 (691) 
162 (531) 
8U (421) 

120 (592 ) 
168 (432)  
189 (5912 ) 
916 (4312 ) 
916 (4921) 
168 (3291) 
169 (32212 ) 
*42 ( 3  3 ) 

56 (613 ) 
84 (323 ) 

"70 (51 ~ ) 
]89 (4913 ) 
]20 (3213 ) 
49 (9~I) 
56 (4! s ) 

l n5  (321 ~ ) 
48 (23! ~ ) 
98 (316 ) 
27 (2213 ) 
8 (217 ) 
1 (19 ) 

! 

I .] 

I 

I 
I I 

I ! 
i 

i ! 

] I 

] 

1 
1 
1 1 

! 

1 1 ]. 

! 

ii 1 1 
Ii ] 1 
Iiii iii 

! 

I I 
I 1 

1 1 1 1 1 1 

1 I 
i I 

1 ! 
1 1 

1 
! 1 1 ! 1 

1 
I I 

I i I ! ! 
I i 
i i 

] I 
i 

Block number: 1 1 2 1 ! 1 ! 3 1 1 ! 4 ~ 2 1 5 
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The d e c o m p o s i t i o n  m a t r i x  o f  (~10 f o #  t h e  pr ime,  3 

o~ 

I (I0) i 
9 (9,1) i 

35 (8,2) 1 1 
75 (7,3) 1 1 
90 (6,~) 1 
42 (52 ) i i 
36 (812 ) i 

160 (721) i i i i 
315 (631) i I 
288 (541) i I 
225 (622 ) I i 
450 (532) i i i 
252 (422) ! 
210 (432 ) i I i 
350 (8212 ) I i I 
567 (5312 ) 
300 (4212 ) I i 
525 (5221) i i i i 

*768 (4321) I i i i I 
252 (3222 ) i 
567 (42212 ) 
450 (32212 ) I 
84 (713 ) i 

210 (331) i i 
300 (423 ) I i 
126 (61 ~ ) 

*448 (5213 ) 
525 (4313 ) i i 
288 ( 3 2 3 1 )  i 
42 (2 s ) i 

126 (SI s ) 
350 (421 ~ ) i 
225 (321 ~ ) i 
315 (32213 ) 

9~ (2~i 2 ) 
84 (416 ) 

160 (321 s ) i 
75 (231 ~ ) 
36 (31 ~ ) 
35 (2216 ) I 
9 (218 ) i 
1 (I l° ) 1 

1 
1 

1 1 
1 

1 

i I 
i ! 

i i i i 1 

Block numbers: ! 2 1 1 2 1 3 1 3 3 2 3 2 1 1 4 1 1 1 3 5 2 

1 1 
1 

1 1 1 

1 1 
1 1 

1 
1 1 
1 1 1 1 

1 
1 

1 
1 1 1 

1 1 
1 1 

1 
1 
1 1 1 

1 1 
1 
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The decomposition matrix o~ii ,, ,for t h e  p r i m e  3 

,-~C . . ~  tn ¢-J co m~ tn ,,~ :t c~ m ,,, o9 ¢o ~'~ co ,,~ 

1 (ii) 1 
i0 (i0,i) 1 
qW (9,2) 1 1 

ii0 (8,3) 1 1 
165 (7,4) 1 
132 ( 6 , 5 )  
q5 (912 ) 

231 (821) 2 1 
550 (731) 1 1 
693 ( 6 4 1 )  
330 (521) 
385 (722 ) 1 1 
990 ( 6 3 2 )  
990 ( 5 4 2 )  
660 (532 ) 
462 ( 4 2 3 )  
594 (7212 ) 

1232 (6312 ) 1 
1155 (5412 ) 
ii00 (6221) 1 1 
2310 ( 5 3 2 1 )  2 1 
1320 (4221) 1 

"1188 (4321) 
1320 (4322 ) 2 1 
1540 (52212 ) 1 
2310 (43212 ) 1 1 

990 ( 3 z 2 2 1 )  
120 (813 ) 
825 (52  ~ ) 2 1 
~62 ( 3 s 2 )  1 
210 (71 ~ ) 
92~ (621  s ) 

1540 (5313 ) 1 
825 (4213 ) 
660 (3312 ) 1 

1155 (~231) ! 1 
330 (32 ~ ) 1 

*252 (61 s ) 
924 (521  ~ ) 

ii00 (431  ~ ) 1 
1232 (42213  ) 

990 (32213  ) 
693 (32312 ) 
132 ( 2 S l )  1 
210 (5i t ) 
594 (421 s ) 
385 (321 s ) 
550 (3221  W ) 
165 (2"13 ) 
120 (417 ) 
231 (3216 ) 
ii0 (231 s ) 

45 ( 3 1 ' )  
4~ ( 2 2 1 7  ) 
I0 (219 ) 
1 (l'l) 

1 
1 1 

1 
1 
1 1 

1 
1 1 

1 1 
1 1 1 

1 1 1 
1 1 1 1 

1 1 1 1 
1 

1 1 1 
1 1 1 1 

1 1 1 1 
1 1 ! 1 1 1 1 

1 2 1 1 1 1 
1 1 

1 1 1 1 1 
1 1 1 
2 1 1 1 1 1 1 

1 1 

1 I 
1 
1 1 

I I 1 
2 1 1 

1 1 1 
1 1 

1 

1 1 
1 1 1 1 1 

1 1 1 1 
1 1 1 

1 

i 
i 

1 1 1 1 
1 1 1 

1 1 
I 

2 1 1 
1 1 

1 
1 

1 

Block numbers: 1 2 2 1 2 2 3 1 1 3 1 2 3 3 1 2 4 1 1 2 1 2 4 1 2 2 3 
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0 ' )  

i i-i 

,r,,l 
, - I  

x 

4- 

-,4 

8 
,¢I 

,- I  

or)  

£ L 9 g  

EIOl 

lEhl 

T68 

9~61 ~ 

h 9 £ £  ~ 

L 6 g  

h9SE 

S h 6  ~ 

8 ~ L I  ~ 

8 ~ L I  ~ ~ 

9£61 ~ ~ ~ 

Ogl ~ ~ ~ ~ 

I 6 8  '-~ ,-4 
0 ~ I  ,-4 ,-4 ~ , - 4  ~ , - ~  ,-4 ~ , ~  ,-4 ,~ ,-I 

" [  r ' l  ' -~  , - I  , - I  e, l  e,J ~o e, ,  

L 6 g  ~ ~ 

p.  2.  2 .  r ~ e ~  r - ~ N  

.11 41 
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0 

.. V V V V V V V V V V V V V V ~ V V V V V ' V V  v v v ~ v  

I - J  I--J I "s  ~ '  I-m ~'~ ~ ~--' " ¢  F'~ I~0 l 

~" ~ 54 

~ ~ 143 

~ 131 

"~ 297 

~ ~ ~ ~' 1 2 0  

~' 891 

1 0 1 3  

~ ~ ~ ~ ~ ~ ~ 210 

~ ~ ~ ' ~  ~ '  ~ 2 5 2  

'~ 2 6 7 3  

~ ~ ~ ~ ' ~  4 5  

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 210 

~' ~ "  ~ ~ ~ " ~  ~ ~ ~" ~ ~ 1 2 0  
~- 945 

O3 

o 
~h  

r.n 

o 

0"1 

Co 

p,J 

O~ 

",,..1 

:--J ~.-.i ~ ,  F.J t-J l--J 

F~p - ,  

t-- ' t-- '  

F--' l--a p --j ~ I--I  ~--' , u J  

1 9 3 6  

5 4  

1 7 2 8  

1 4 2 8  
1 4 3  

1 7 2 8  ~ 

9 4 5  

3 5 6 4  

1 3 1  ~ 
297 

3 5 6 4  
1 9 3 6  

891 

1431 ~. 
1013 

2 6 7 3  
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¢o  
r ~  

& 8 0 S  ,'~ 

£ L & I  

9 6 & O I  ~ 

6 6 & I  ~ ,.-4 

Z L ~ L  ~ '~  

i L ~ L  

88~8 ,-~ ,-~ ,~ 

sgoI '~ '~ "~ '~ 

8~61 ,-~,~ ,~ ,~ ,-~ 

9 6 ~ U I  ~ ~ 

8 ~ h I  '-~ .-I ,.-I ,-I ,-I ~ 

8 ~ 6 I  ~ ~ ~ ~ 

L g ~  ~ ~ ,'~ ~ "~ 

$ 9 0 I  ~ ,~  , ~  ~ r ~  , ~  

4-~ 

0 

× 

4 ~ 
°~ 

~-~ 

0 

t~! 

~ 6 L  ~ 
h ~ 6  ,-~ ,-t ,-~ , - t , - i , .~  

9 9  ~ ~ 

~ 8 0 ~  "~ "~ ~ 

~ 6 L  ~ 

$ 6 h  ,-~ ,-I , - I  ,-t 

L S ~  ~ ~ r~ , ~  r~ ~ 

~ L ~ I  ,~ ,~ ,~ 

6 6 ~ I  ~ 

0 ~  ~ , ~  , ~  ~ ,-~ 

8 ~ h  ,-~ ,-~ ,.~ 

L i b  ,~  ~ ,~ 

r'l ,-"l 

,-'l ?~l 

• "l l~ 

r~ 

r~ 

r-.l 

,-t ,.-I 

v v v  v v v v v ~ , v v  v 
v ~  v v ~ v v ~  

v v 
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ug ,Q  ~-~ - - . , 1~  : 0  ~::" D ~'I ~O D OO :,O --4 .c ~.n .Don D Dz'O OO ~ ~" u~ D 4~- ~.) 

I . ~  o.~ 

F.. '  I - '  

} - ,  I . - '  

I - '  

12 

64 

143 
417 

~ ~28 

66 

220 
1299 
1275 

2287 
12 

495 
792 

5082 

66 

924 

792 

220 

495 
1065 

4212 
3 3 6 7  

64  
~ 1 9 3 8  

1428 

10296 

143 

1938 
1065 
8568 

417 

7371 
428 

7371 

8568 
1299 
3367 
4212 

10296 
1275 

2287 
5082 

r~ 

}-J 

~-~ H 

l-J 

l-J FJ 

i-" l-J~ -' 

l-J 

i.~ I-J 

l-J 

l-J I-~ 

l-J 

i-4 

l-J l-, 

l-J l-J 

l-J l-J 

I!. 
oJ 

o 

co 

o 
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r t  

o 
v 

c o  

° ~  

m 
0 

o 
o 
o 

~80S  
L 8 ~  ,4,-4,.-4 ,.4 

S L ~ I  
9 6 ~ 0 I  

L 9 8 8  ,-i ,-4 ,.4 
6 6 Z I  
8 9 £ 8  

T.L£L 

IL£L 

Lib  
89S8  
S 9 0 I  ,.~ ~ 
8£6I ~ ~ ~ 

£~I ~ ~ 

9 6 ~ 0 I  

8 ~ 6 I  

L 9 £ 8  

S90I 

S6h ,~ 

0 ~  , . ~  

~6L 

99 
~80S  
~6L 
S6h 

L S ~  
S L ~ I  

6 6 ~ I  
0 ~  

99 
I 

L I ~  

t19 

I 

r~,--I 

r-I r-I 

r-I 

r-I ,-'I 

,-I 

rl 

r~ 

rH r-I r-lrl 

~-4 r-~ ,-~ 

r'l 

,--I 

~-'I r-I 

r-I 

U~ 

t4 

¢'Q 

M 

,-I 

r-4 

,-4 

r~ 

¢,r3 

rd 

~r3 ̧ 

°.  

U 
0 
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- , r-power 95, 97 

dictionary order 9 

dominance order 8 

dual module 3 

- vector space 2 

Exterior power 126 

Garnir relations 27 

general linear group 125 

graph 18 

Gram matrix 3 

group algebra 16, 41 

Hook 73, 77, 89 

- diagram 80, 92, 98 

- formula 77, 135 

- graph 73 

- , skew- 73 

Involve 13 

irreducible representation 16 

39 S 40 e 71 

- Specht module 89, 104 

Littlewood-Richardson Rule 52 

62 r 130 

Maschke's Theorem 

Murnaghan-Nakayama Rule 

1 

79 

80p 85 

Nakayama Conjecture 85, 102 

Order, dictionary 9 

- , dominance 8 

- on tabloids i0 

ordinary irreducible 

representation 16 

Orthogonal Form 114 

orthonormal basis 115 

~-maps 67 

p-power diagram 95, 97 

p-regular partition 36 

- - class 36 

pair of partitions 54 

~artition 5 

- , 2-part 94 t 95 r 97, 106 

- s, pair of 54 

" w proper 54 

permutation 5 
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permutation module 13 

polytabloid 13 

- , standard ~9 

power, exterior 126 

- , symmetric 126 

Row stabilizer i0 

Schur function 131 

semistandard homomorphism 46 

- tableau 45 

- t reverse 102 

signature 5 

signed column sum 13 

skew-hook 73 

Specht module 13 

- - dimension 30, 76 

52 w 77 

- - , irreducible 89, 104 

Specht series 65, 69 

stabilizer i0 

standard 29 

Submodule Theorem 15 

symmetric group 5 

- power 126 

Tableau 9 

- , standard 29 

tabloid lO 

- , standard 29 

transposition 5 

type of tableau 44 

- of sequence 54 

Weyl module 129 

- - dimension 179, 133 

Young's natural representation 

114 

- Orthogonal Form 114 

- Rule 51, 69 

Youn~ subgroup 13 


	The Representation Theory of the Symmetric Groups
	Preface
	Contents
	1. Background from Representation Theory
	2. The Symmetric Group
	3. Diagrams, Tableaux and Tabloids
	4. Specht Modules
	5. Examples
	6. The Character Table of Sn
	7. The Garnir Relations
	8. The Standard Basis of the Specht Module
	9. The Branching Theorem
	10. p-Regular Partitions
	11. The Irreducible Representations of Sn
	12. Composition Factors
	13. Semistandard Homomorphisms
	14. Young's Rule
	15. Sequences
	16. The Littlewood-Richardson Rule
	17. A Specht Series for Mμ
	18. Hooks and Skew-Hooks
	19. The Determinantal Form
	20. The Hook Formula for Dimensions
	21. The Murnaghan-Nakayama Rule
	22. Binomial Coefficients
	23. Some Irreducible Specht Modules
	24. On the Decomposition Matrices of Sn
	25. Young's Orthogonal Form
	26. Representations of the General Linear Group
	Appendix. The Decomposition Matrices of the Symmetric Groups Sn for the Primes 2 and 3 with n ≤ 13
	References
	Index

