
Math 8211 Solutions 1 Fall 2021

1. Let r be prime and suppose that xy ∈ (r) = {rs
∣∣ s ∈ R}. Then xy = rs for some

s ∈ R, so either r divides x or r divides y, so that one of x and y lies in (r). This means

that (r) is a prime ideal.

Conversely, suppose that (r) is a prime ideal, and that r divides xy. This means xy ∈ (r),

so one of x, y lies in r, and is thus divisible by r.

2. We will suppose that R is an integral domain for this question. Let r be prime and

suppose that r = xy. Then r divides xy, so r divides one of x or y because r is prime. If

r divides x then x = rs for some s, and r = xy = rsy. It follows that sy = 1 (because

r(1 − sy) = 0 so 1 − sy = 0 in an integral domain). Thus y is a unit. It is similar if r

divides y. Thus r is irreducible.

3. Let R be a UFD and suppose that r is irreducible. Suppose that r divides xy, so

xy = rs for some s. Writing both sides in their unique irreducible factorizations, we see

that the irreducible r must appear in the factorization of one of x or y, which means that

r divides one of them, so r is prime.

4. Assuming that R satisfies (a) and (b), the missing condition we must show to see that

R satisfies Eisenbud’s definition of a UFD is that the expression in (b) is unique. For this,

we will show by induction on n that if any element has a factorization r = x1 · · ·xn as

a product of irreducibles, then in any factorization r = y1 · · · yq into irrducibles we have

r = q and the irreducibles are equivalent after suitable permutation.

We start the induction with n = 0, which case r is a unit, and any factorization r = y1 · · · yq
must be as a product of units, so the irreducibles in the factorization are the same (there

aren’t any). Assume n > 0 and the result is true for smaller values of n. Now x1 divides

y1 · · · yq and is prime, so x1 divides some yi. Thus yi = x1s for some s, which must be

a unit because both x1 and yi are irreducible. It follows that x2 · · ·xn = sy1 · · · ŷi · · · yq,

which are shorter products, so n−1 = q−1 and the factors are the same after permutation.

5. (i) Suupose that r is irreducible and (r) ⊆ (s) for some element s where (s) is proper,

so s is not a unit. Then r = st for some element t, which must be a unit because r is

irreducible. This means that (r) = (s) so (r) is maximal.

Conversely, suppose (r) is maximal among proper principal ideals. Then if r = st we have

(r) ⊆ (s) and (r) ⊆ (t). We cannot have (s) = (t) = R because then s, t are units, and r

would be a unit, which it isn’t. Thus if (s) is proper then (r) = (s), which forces s = ru

for some u, and r = st = rut, so ut is a unit because R is a domain, so t is a unit. Thus r

is irreducible.

5. (ii) For this part we should continue with the assumption that R is a domain. Suppose

that R has ACC on principal ideals and consider an element r ∈ R. We show that r is a

finite produce of irreducible elements. If not, then r is not irreducible and we can write

r = r11r12 where neither element is a unit and one of them is not irreducible. Write such a
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non-irreducible element in the form r2ir2j , and repeat such factorizations. If we ever find

that all our factorization conclude with irreducible elements, we will have factored r as a

product of irreducible elements, so there exists an infinite chain r1i1 , r2i2 , r3i3 , . . . where

rjij divides r(j− 1)ij−1
, so that (r1i1) ⊆ (r2i2) ⊆ (r3i3) ⊆ · · ·. This chain must terminate,

so for some j, rjij and r(j − 1)ij−1
generate the same ideal, and because R is a domain

they must differ by a unit, which contradicts the factorization they had. Thus 4(b) holds.

For the implication 4(b) implies ACC on principal ideals an assumption is missing, and we

should probably suppose R is a UFD. Sorry! Let (r1) ⊆ (r2) ⊆ · · · be an ascending chain

of principal ideals. We get that each ri is a factor of r1, so its irreducible factors appear

among the finitely many irreducible factors of r1. Because there are only finitely many

factors, the chain must terminate.

6. Eisenbud 1.1 on page 46.

1. ⇒ 2. Suppose submodules of M are finitely generated and consider an ascending chain

of submodules M1 ⊆ M2 ⊆ · · ·. Let N =
⋃

Mi. It is finitely generated, by elements

x1, . . . , xd. These elements must lie in some single term Mj and now the chain stabilizes

with Mj = Mj+1 = · · ·.
2.⇒ 3. Suppose ACC on submodules, and consider a set of submodules. If there is no

maximal element in the set then for each submodule N1 there is a larger submodule N2,

which has a larger submodule N3, and by this means we construct an ascending chain that

does not stabilize.

3.⇒ 4. The submodules Rf1 ⊆ Rf1 + Rf2 ⊆ Rf1 + Rf2 + Rf3 ⊆ · · · have a maximal

element, so this chain terminates at some Rf1 + Rf2 + · · ·+ Rfm. Now if n > m then fn
lies in this submodule, so can be written

∑
aifi.

4.⇒ 1. Let N be a submodule of M . If N is not finitely generated, having constructed

f1, . . . fi we can find fi+1 in N and not in Rf1 + Rf2 + · · · + Rfi, and this constructs a

sequence contravening condition 4.

7. Eisenbud 1.9 on page 49. Let X be an algebraic set. Under the correspondence,

algebraic subsets of X correspond to radical ideals J with J ⊇ I(X). If subsets X1, X2

correspond to radical ideals J1, J2 then X1 ∪X2 corresponds to J1J2. Thus X = X1 ∪X2

if and only if J1J2 ⊆ I(X). If I(X) is prime we cannot have J1J2 ⊆ I(X) with ideals

J1J2 that strictly contain I(X), so X cannot be expressed as a union of proper algebraic

subsets.

Conversely, if X cannot be expressed as a union of proper algebraic subsets, then J1J2 ⊆
I(X) is not possible for radical ideals J1, J2 that strictly contain I(X). For arbitrary ideals

J1, J2 that strictly contain I(X) we check that J1J2 ⊆ I(X) implies that (rad J1)(rad J2) ⊆
I(X), using the fact that I(X) is radical, which again is not possible, so I(X) is prime.

8. Eisenbud 1.24 on page 55, (a). We have that
⋂

j Z(Ij) = Z(
∑

j Ij without using the

condition that the ideals in Z(I) be prime, because an ideal contains all Ij if and only if

it contains the ideal they generate, from the definition of the ideal they generate. To show
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that finite unions of closed sets are closed we show that Z(I1)∪ · · · ∪Z(In) = Z(I1 · · · In).

To see this, every ideal in some Z(Ij) contains I1 · · · In because this ideal is contained in Ij ,

so the left side is contained in the right. Now suppose a prime ideal P lies in Z(I1 · · · In),

so it contains I1 · · · In. By iterating the prime condition we deduce that P contains some

Ij , so lies in Z(Ij). Thus the right side is contained in the left side, and they are equal.

(b) The closed subsets of A1(k) correspond to the maximal ideals of k[x] that contain

some ideal I of k[x]. Such an ideal has the form I = (f) for some polynomial f =

r(x− a1) · · · (x− an) for some elements a1, . . . , an, r ∈ k, or f = 0. There are only finitely

many elements a1, . . . , an in such a closed set, unless f = 0, when we get the whole

space. Thus the open sets are the complements of finite sets, and the empty set. Any two

non-empty such open sets have non-empty intersection, so given to points v1, v2 it is not

possible to find two disjoint open sets, each containing one of them. Thus the topology

is not Hausdorff. In A2(k), the product of two proper open sets has infinite complement,

so is not open in the Zariski topology. In the product topology it is open, so these two

topologies are distinct.
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