Why should we want to study Commutativ eAIgeb ra?
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Why Homolog cal Algeb ra?
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Basic definitions of commutative algebra
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We may come to class already knowing:

Theorem. The following are equivalent for an
ideal P inaringR.

1. P is prime.

2. Whenever | and J are ideals with P =1J then
either P2l or P2J

3. R/P is a domain

4. R-Pisamult Iﬁve subset. H‘F(‘m
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Question. On a scale 1 - 10, how difficult is the
implication 1 implies 27
How difficult is the implication 2 implies 17?
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- A domain has a field of fractions.

- If R is a Unique Factorization Domain, so is
R[X].

- If R is a Principal Ideal Domain then R is
a UFD. -

- The Chinese Remainder Theorem.

True or False:

S(ZTTZN = (ZITZ)M x (ZIZ)M

- Every domain is a UFD.

- Every finitely generated commutative ring is
Noetherian.

- If U is a sub module of M and both U and M/U
are Noetherian, then so is M.



Pre-clags Warm-up!!

X
True or false? ( Z/mZ  means the
multiplicative group of invertible
elements of the ring Zpd- )
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1. Z/7Z is a cyclic group. /
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3. Every finitely generated commutative
ring is Noetherian.
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Things we probably know from Math
8201/2 or a previous course

1. Anideal | in aring R is maximal if and only if R/I
is a field.

2. An ideal | is prime if and only if R/l is a domain,
plus other characterizations mentioned last time.

3. A domain has a field of fractions.
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Things about Unique Factorization Domains =
factorial domains.

What is a UFD? Why should we care?
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5.1f R isa UFD sois R[Xx]. [enpma _

6. Principal Ideal Domains are UFDs.

7. Example of a domain that is not a UFD. Discuss!
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Modules

The definition on page 15 of Elsenbud N
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Noetherian modules: Exercise 1.1 in Eisenbud
Theorem. TFAE

1. All sub modules of M are finitely generated.
2. M has ACC on sub modules.

3. Every set of sub modules of M contains
maximal elements.

4. Something about sequences of elements.




Exercise 1.3 of Eisenbud.

Let M’ be a sub module of M. Show that M
Is Noetherian if and only if both M’ and M/M’
are Noetherian.




Homological algebra is all about exact
sequences and that kind of thing, so we
will be doing that.

Things done in Math8201/2 that we might
not need:

- Structure of finitely generated modules
over a PID.

- Jordan-Holder theorem for modules with
a composition series




