Chapter 2 of Eisenbud: Localization

2.1 Fractions

We learn:
What is a local ring?

How to invert ‘multiplicative’ sets of elements in
a ring.

Big question: why would we want to do this?
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Pre-clage Warm-up!

When p is a prime number, consider the subset
of the rational numbers

Zg: = {4ept b

What are the units in this ring?

|
A Theelements 7 P‘l/ L

B The elements 91- . a +O
L. ppaspfe

D The elements % 5 q#D) P{’Jo

%3 The elements

E None of the above f




Proposition. An ideal | in a ring R is the
unique maximal ideal if and only if every

element of R - | is invertible.
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Corollary. Z(F) is a local ring.
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The general form of localization =
Inverting some elements

Inaring R we start with a multiplicative set U:
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Eisenbud inverts U to get aring R[UA-1] and also,
given an R-module M he constructs a R[UA-1]-
module M[UA-1]. He deduces the ring case from
the module case. We can also do the ring case and

then construct M[UA-1] as
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Formal definition of M[UA-1].
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Write the equnvalence class of (m,u) as m/u.
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We have a map of R-modules M -> M[UA-1]

M — -"i‘—

When M =R we get a ring structure on R[UA-1]
and M[UA-1] becomes a R[UA-1]-module.
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Question: what set of elements U did we invert

to obtain Z Cp) ?

A {p}

B {p, p"2, p"3,...}

C The set of primes other than p.

D Allintegers not in the ideal (p)

E None of the above.
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Let k be the field of rational numbers and
R = Kk[x,y] the polynomial ring in two
variables.

What does the residue class field of R at
the ideal (x) look like?

A Kk

B afinite degree extension of k (other
than k)

C aninfinite degree extension of k ‘/
D a field of positive characteristic.

E none of the above

Discuss with someone else!!
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Question. For a prime integer p, what do you think the
residue class field of Z. at (p) is?
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Umversal property of the localization.
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ldeals of the localization.

Proposition 2.2. Ideals of R[U”-1] biject with
ideals J of R for which the elements of U are
non zero divisors on R/J.

Prime ideals of R[UA-1] biject with prime ideals of

R not meeting U.

Example: The ideals of Z(P
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Proof. Let f: R -> R[UA-1] be the map r-> r/1.
We have maps

{idealsof R} <--> ({ideals R[U’\ 1]}
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We show that we have equality J = A-1(f(J) R[UA-1]

if and only if no element of U is a zero divisor on
R/J.

Question: Is it

A easy, or B difficult to see that

Prime ideals of R[U”-1] biject with prime
ideals of R not meeting U.



Proof. Let f:R -> R[UA-1] be the map r-> /1.
We have maps

{idealsof R} <--> {ideals of I?[UM]}
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The composite L is the identity.
b/
The composite ~ «§ has & f’@ = dJ

We show that we have equality J = A-1(f(J) R[UA-1]
if and only if no element of U is a zero divisor on
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Question: On a scale 1:easy —- 10: difficult,
how hard was that?



Corollary. A localization of a Noetherian ring is
Noetherian.




