Chapter 2 of Eisenbud: Localization

2.1 Fractions

We learn:

What is a local ring?

How to invert 'multiplicative' sets of elements in a ring.

Big question: why would we want to do this?

Defn. A ring R is local E) it has a unque maximal ideal

Examples. 1. Frelds are boat 2. Z/AZ has unique max ideal 27/47 3. Let p le a pinne Q(p) = { a | p / b } = Z(p) Here (p) = ideal generated by p = 1 in Q(p) is the unique maximal ideal.

Pre-class Warm-up!

When p is a prime number, consider the subset of the rational numbers

What are the units in this ring?

- The elements by Ptb
- The elements $\frac{q}{1}$, $a \neq 0$ The elements $\frac{q}{10}$, $p \neq q$, $p \neq 0$ The elements $\frac{q}{10}$, $q \neq 0$, $p \neq 0$

 - None of the above

Homework 1 18 due on Thursday

unique maximal ideal if and only if every element of R - I is invertible. Proof Suppose I is the unique maximal lideal of R: If reR-I' and f (r) + R, then (r) SI - contraduction. Thus (r) = R J. S. E. Sr = 1. Every clement not in I da aunt. Conversely, of every element not in I le armint and I il an ideal if J. E to is an ideal then J convists of non-units 80 J' G I, I = umque maxl. Ideal.

Proposition. An ideal I in a ring R is the

Corollary. $\mathbb{Z}_{(b)}$ is a local ring. The units in L(p) are the set 7(p) - P 2(p) b/c p Z4) = { a | ptb } Thus p Zp) is the unique max L. Ideal of Z(4). The ideals of Z(p) are $\mathbb{Z}_{(p)} > p\mathbb{Z}_{(p)} > p$

The general form of localization = inverting some elements

In a ring R we start with a multiplicative set U:

Defn: If u, v \(\) then u.v \(\) and

I \(\) We went elements \(\) in \(\) [U']

Eisenbud inverts U to get a ring R[U^-1] and also, given an R-module M he constructs a R[U^-1]-module M[U^-1]. He deduces the ring case from the module case. We can also do the ring case and then construct M[U^-1] as $\text{Result} \otimes_{\mathbb{R}} \mathbb{M} \quad .$

taking M=R

Problem 1. We haven't done & yet

2. D might not be every to understand.

M[v-1] is an R-module, infact, on R(v-1)-module.

We want townte elements of M[vi] as m where mEM, ue U. If vm = 0 for some $v \in U$. then $m = \frac{vm}{v} \approx 0$ in $M(v^{-1})$ Also in = m', (=) mu'-m'u=0 which will happen if 3 vev, v(mu-m'u) Formal definition of M[U^-1]. We define ~ on MXU us that (m,u)~(n,u)~(n,m)~(n,m) Define M(vi) = the set of MXU convinceme classes of MXU under ~

Write the equivalence class of (m,u) as m/u.

(m,u) = M. We define

m + m', = mu' + m'u

r(m) = rm

Multiplich by reR: r(m) = u

When M = R we get a ring structure on $R[U^{-1}]$ and $M[U^{-1}]$ becomes a $R[U^{-1}]$ -module.

Examples. I. In
$$R[X]$$
 take the multiplicative subset $[1,X,X^2,X^3,...]$

$$= ring of Laurent phynomials$$

$$a_m X^{-m} + a_{m+1} X^{m+1} + ... + a_n X^n$$

$$m, n \in \mathbb{Z}$$

$$2 \cdot U = \mathbb{Z} - \{0\} \quad \mathbb{Z}[U^n] = \mathbb{Q}$$

Question: what set of elements U did we invert to obtain Z(4)?

- A {p}
- B {p, p^2, p^3,...}
- C The set of primes other than p.
- D All integers not in the ideal (p)
- E None of the above.

Pre-class Warm-up!!!!

Let k be the field of rational numbers and R = k[x,y] the polynomial ring in two variables.

What does the residue class field of R at the ideal (x) look like?

A k

B a finite degree extension of k (other than k)

C an infinite degree extension of k

D a field of positive characteristic.

E none of the above

Discuss with someone else!!

Recall: (x) is a prime ideal. = polynamials, not divis. by x (x) R[0"

Definition. If P is a prime ideal Them R-P is a multiplicative subset . R-P is also written Rp. e.g. f.P=6) < Z we write Z(b). The residue class field of R at P is

RUJ P RUJ Note that P. R[U'] is the unique maximal ideal Question. For a prime integer p, what do you think the residue class field of \mathbb{Z} at (p) is? $\mathbb{Z}_{(p)}$ B Z/pZ / The set of elements set of coset reps tov None of the above $PZ_{(4)}$ in $Z_{(4)}$. Conclude: b/c Z(p) satisfies the universal property.

Universal property of the localization.

Given a ring hom. o. R -> S so that Yue U then I unique map to R[U] -> S map to R[U] -> S map to R[U] -> S Proof Define to (L) = A(r) of (U)

Why would we want to know about this?

Any mg with the ame universal property as R[0-1] is isomorphic to R[0-1] is we (Given such a ving S we have R[0-1] S.

The two compretes are the identity by unique news.

Ideals of the localization.

Proposition 2.2. Ideals of R[U^-1] biject with ideals J of R for which the elements of U are non zero divisors on R/J.

Prime ideals of $R[U^{-1}]$ biject with prime ideals of R not meeting U.

Example: The ideals of
$$Z_{(p)}$$
 are $I_{(p)} \supset p Z_{(p)} \supset p Z_{($

Proof. Let $f: R \rightarrow R[U^{-1}]$ be the map $r \rightarrow r/1$. We have maps

The composite $\alpha\beta$ is the identity. Flements of I have from I, $u \in U$ also $\alpha \in I$. The composite $\beta\alpha$ has $\beta\alpha$ has

We show that we have equality $J = f^{-1}(f(J)) R[U^{-1}]$ if and only if no element of U is a zero divisor on R/J.

Question: Is it

A easy, or B difficult to see that Prime ideals of R[U^-1] biject with prime ideals of R not meeting U. Proof. Let $f: R \rightarrow R[U^{-1}]$ be the map $r \rightarrow r/1$. We have maps

{ideals of R}
$$\leftarrow >$$
 {ideals of R[U^-1]}
 $T \xrightarrow{\sim} f(T) \mathcal{R}[U^{-1}]$
 $f^{-1}(T) \xleftarrow{\beta} I$

The composite $\beta \propto$ is the identity.

The composite $\alpha \beta$ has $\alpha \beta(J) \ge J$

We show that we have equality $J = f^{-1}(f(J) R[U^{-1}])$ if and only if no element of U is a zero divisor on

Suppose J= and ure J
with ue U, reR. We show re J.
Now
$$f = ur \in f(J)R[U]$$

so re $f'() = J$. Done.

" Suppose no element of U sa zero divisor on E/J and let re f-1 (f(J) R(U-]). We show reJ. The supposition means $f(r) \in \mathcal{C}^{1,1}f(\overline{J}) \notin \mathcal{C}^{1,1}$, so $\frac{r}{1} = \frac{s}{U}$ for some SEJ, UEU Thus v(ur-s) = 0 for some v ∈ U vur = vs EJ This re J b/c vu is not a zero divisor on R/J.

Question: On a scale 1: easy —- 10: difficult, how hard was that?

Corollary. A localization of a Noetherian ring is Noetherian.