2.4 The structure of finite length modules and
commutative rings.

Proposition. Every simple R-module M is
isomorphic to R/l for some maximal (left)
ideal I. Every such quotient R/I where 1| is
a maximal (left) ideal is a simple R-module.
When R is commutative, R/l and R/ are
isomorphic simple modules if and only if | =
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Let S be the ([x]-module thatis € asa
vector space, with x acting on it as
multiplication by 2, and let T be the C[x]-
module that is € as a vector space, with x
acting on it as multiplication by 1.

Are S and T isomorphic as €[x]-modules?

A Yes
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Theorem 2.13. An R-module M has a
composition series if and only if it is both
Noetherian and Artinian.

Let M have a composmon series. Then:

1. Every chain of submodules can be refined to
a composition series. Mt G202/

2. If R is commutative the map

&

« Aeal s
‘Iof- =
is an isomorphism. The maximal ideals | that
appear in the direct sum are those for which M
has a composition factor R/I, and the length of
M_I is the number of such composition

factors.

M— & Mx

3. M=M_I ifand only if M is annihilated by
some power of |.
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Can we recall why itis thatif | and J are

distinct prime ideals then _ 7
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Pre-clage Warm-up!!

Which of the following are true for a module
M over a commutative ring R?

A If M is simple then there is a unique prime

ideal in the supportof M. Timev"
P Fadse
B If M has a unique prime ideal | inits

support and J is a prime ideal with ] #1 then
the localization M_J = 0.

C If M isasimpleand | is a prime ideal not
in the support of M, then,the localization
M_] =0. Twe

False . Y . -
D If M has finite length and ] is a prime]. [N
ideal not in the support of M, then the W‘/\o\i

localization M_J = 0. T!'U\Q / J
Falke

¢T3 74T =My )
K 6t YN (22 >(3)

o 2 Y

zTthSM“W"janhM .

w\ 2.(3,

~ d@’ >

5, g ik T € qpock oris
i f g + L BXéI"T
Kb\lfi: .\M EJ/JMj P\T,Max Dol
%C;:\%Z«MS o‘fﬂ\ AC R/ T
WA AL . foms
belo‘ca&ZL O“’t\) o
M = O (ty ewchnes (F lombz_ ,



Theorem. TFAE for a commutative ring R.
1. R is Noetherian and all prime ideals
are maximal.

2. R has finite length as an R-module.

3. R is Artinian.

For non-commutative rings Hopkins proved
Artinian implies Noetherian.

We already know (it’s easy):

Proposition. For any module M, TFAE
1. M is Noetherian and Artinian.
2. M has finite length as an R-module.

We will show:

Theorem. Let R be a Noetherian and Artinian
commutative ring. Then R has finitely many
maximal ideals, all prime ideals are maximal,
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We also show:

Theorem: If R is Noetherian and all prime
ideals are maximal then R has finite length as
an R-module.
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Pre-clage Warm-up!!

At the end of last class | briefly mentioned
the result below.

Corollary 2.17. Let R be a Noetherian ring,
and let M be a finitely generated R-module.

TFAE
a. M has finite length

b. Some finite product of maximal ideals
annihilates M.

c. All the primes that contain the annihilator of
M are maximal.

d. R/ann(M) is an Artinian ring.

Question: Which of the following
implications have | either done in class, or
follow easily from something done in class?
A aimpliesb

B b implies c

C cimplies d

D dimplies a )\‘o

E cimplies a
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Corollary 2.17. Let R be a Noetherian ring,
and let M be a finitely generated R-module.
TFAE

a. M has finite length

b. Some finite product of maximal ideals
annihilates M.

c. All the primes that contain the annihilator of
M are maximal.

d. R/ann(M) is an Artinian ring.




Corollary 2.18. Let R be a Noetherian ring, Corollary 2.19. Let | be an ideal in a

0 # M a f.g. R-module with annihilator I, P a Noetherian ring R. TFAE for a prime P
prime ideal containing |. The R_P-module containing 1.
M_P is a non-zero module of finite length if
and only if P is minimal among primes a. P is minimal among primes containing |.
containingl b. R_P/I_P is Artinian.
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One more thing:

Corollary 2.15. Let X be an affine algebraic set

over an algebraically closed field k.
TFAE

a. X is finite
b. A(X) is a finite dimensional vector space over

k whose dimension is the number of points in X.
c. A(X) is Artinian.
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For each of the following statements, how easy
is it for you to see if it is True or False?

A If "C-:'P;, = PL-H .
is a chain of prime ideals then ﬂ ‘PV
is prime. Ye,g ‘

B Ina Noetherlan ring, rad(0) is nilpotent.

hH

C Ifthering R=R_1 xR_2 is a product of
rings and M is any R-module then there is a

decomposition

M=MOM,

where R 1 actsas O on M_2 and R 2 acts
as 0O on M_1.
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“Pre-clage Warm-up!D> | T

Let x be an element of an R-module
M. Are any of the following statements
necessarily true?

A R has a submodule isomorphic to

M/ <x>, where <x> is the submodule
generated by x. e

——

talle
B R has a quotient module ISOFﬂOI‘%hIC

to M/ <x>. gud/\ai) s olepz it .
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C M hasas bmodule isomorphic to
R/ Ann x. \/
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