
Chapter 2

Appendix: Basic Homological

Algebra

All rings we consider will have a 1, and modules will generally be left unital modules.
In this section R may denote any ring. We will need to know about tensor products,
and these are described in the books by Dummit and Foote (section 10.4) and Rotman
(section 8.4). Introduce:

commutative

diagram,

category?,

monomorphism

= injection =

mono = 1-1 map

2.1 Tensor products

See Dummit and Foote section 10.4.

Definition 2.1.1. See Dummit and Foote before Theorem 10. If R is a ring, M is
a right R-module and N is a left R-module we let X be the free abelian group with
basis the elements of M ⇥N and Y the subgroup generated by all elements of the form
(m1+m2, n)� (m1, n)� (m2, n), (m,n1+n2)� (m,n1)� (m,n2) and (mr, n)� (m, rn).
We define M ⌦R N := X/Y .

Elements of M ⌦R N are called tensors. We write m ⌦ n for the image of (m,n)
in M ⌦R N , and such tensors are called simple tensors or basic tensors. Every tensor
can be written as a linear combination of simple tensors. In M ⌦R N the following
relations hold:

(m1 +m2)⌦ n = m1 ⌦ n+m2 ⌦ n

m⌦ (n1 + n2) = m⌦ n1 +m⌦ n2

mr ⌦ n = m⌦ rn

We deduce, for example, that m⌦ 0 = 0 = 0⌦ n for all m and n. From the definition
we have that M ⌦R N has the structure of an abelian group. It does not, in general,
have the structure of an R-module.

Definition 2.1.2. Let M be a right R-module, N a left R-module and L an abelian
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group. A mapping � : M ⇥N ! L is said to be R-balanced if and only if

�(m1 +m2, n) = �(m1, n) + �(m2, n)

�(m,n1 + n2) = �(m,n1) + �(m,n2)

�(mr, n) = �(m, rn)

always. For example, the mapping M ⇥ N ! M ⌦R N given by �(m,n) = m ⌦ n is
balanced.

Class Activity. Discuss the di↵erence between the notion of being balanced and
some concept of being R-bilinear. We could try to formulate a notion of being R-
bilinear using axioms such as the following. Given left R-modules L,M,N , a mapping
� : M ⇥N ! L is R-bilinear if and only if

�(r1m1 + r2m2, n) = r1�(m1, n) + r2�(m2, n)

�(m, s1n1 + s2n2) = s1�(m,n1) + s2�(m,n2)

�(mr, n) = �(m, rn) = r�(m,n).

How much of that makes sense? Is it a problem that �(rm, sn) = r�(m, sn) =
rs�(m,n) = sr�(m,n)?

Theorem 2.1.3 (Dummit and Foote Corollary 11). The balanced map M ⇥ N !
M ⌦RN is universal with respect to balanced maps. This means: given a balanced map
M⇥N ! L there exists a unique group homomorphism M⌦RN ! L so that the given
balanced map is the composite M ⇥N !M ⌦R N ! L. The tensor product M ⌦R N
is defined up to isomorphism by this property.

Theorem 2.1.4 (Dummit and Foote Theorem 10). Balanced maps M ⇥N ! L biject
with group homomorphisms M ⌦R N ! L.

Example 2.1.5. If f : R! S is a ring homomorphism with f(1R) = 1S then S⌦RR ⇠=
S as left S-modules via an isomorphism s ⌦ r 7! sf(r). The left S-module structure
comes from multiplication on the left side. Thus, for example, Q⌦Z Z ⇠= Q.

Example 2.1.6. Let I be a right ideal of R. Then (I\R)⌦RM ⇠= M/IM . As a proof,
we construct inverse maps (I + r)⌦m 7! rm+ IM and (I + 1)⌦m m+ IM .

Example 2.1.7. Z/mZ⌦Z Z/nZ ⇠= Z/g.c.d.(m,n)Z.

Theorem 2.1.8. Tensor product distributes over direct sums:

(M �M 0)⌦R N ⇠= (M ⌦R N)� (M 0 ⌦R N),

with a similar formula on the other side.

Proof. This follows from the universal property.

Example 2.1.9. For example, Q⌦Z Zn ⇠= Qn.
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Example 2.1.10. Let U and V be vector spaces over a field K with bases u1, . . . , ur
and v1, . . . , vs. Then the tensors ui ⌦ vj where 1  i  r and 1  j  s form a basis
for U ⌦K V .

Sometimes people regard a rank n tensor as an array of numbers (ai,j,k,...) with n
su�ces i, j, k, . . .. Such numbers are the coordinates of the element

P
ai,j,k,...ui ⌦ vj ⌦

wk ⌦ · · · of the vector space U ⌦ V ⌦W ⌦ · · · .

Definition 2.1.11. Let � : M ! M 0 and  : N ! N 0 be homomorphisms of right
and left R-modules, respectively. We define � ⌦  : M ⌦R N ! M 0 ⌦R N 0 to be the
group homomorphism determined by the balanced map M ⇥N !M 0 ⌦R N 0 given by
(m,n) 7! �(m)⌦  (n).

Example 2.1.12. Let � : Z2 ! Z2 have matrix


1 2
3 4

�
and let  : Z2 ! Z2 have

matrix


1 0
�1 2

�
, with respect to given bases of Z2. Then on taking the basis of Z2⌦ZZ2

in a certain order the matrix of �⌦  is
2

664
1


1 0
�1 2

�
2


1 0
�1 2

�

3


1 0
�1 2

�
4


1 0
�1 2

�

3

775

Class Activity. Put the basis vectors ui ⌦ vj in the correct order so that the above
matrix is the matrix of �⌦  . What is the trace of �⌦  ? Is base change

for rank 2 tensors

B
T
aB or

BAB
�1

?

Definition 2.1.13. If A and B are rings there is a multiplication on the group A⌦B
defined on basic tensors by (a1⌦ b1)(a2⌦ b2) := a1a2⌦ b1b2, making A⌦B into a ring.

Examples 2.1.14. Consider exercises 3, 4, 25 of Dummit and Foote. Are any of
C⌦C C, C⌦R C, Q⌦Z C isomorphic as rings?

Definition 2.1.15. Let R and S be rings. An (S,R)-bimodule is a left S-module A
that is also a right R-module, in such a way that the actions of R and S commute:
(ra)s = r(as) for all r 2 R, a 2 A and s 2 S.

If R is a commutative ring then every left R-module A can also be regarded as a
right R-module, and so A is automatically an (R,R)-bimodule. The definition of a
bimodule has more serious impact when the rings R and S are not commutative.

If A is an (S,R)-bimodule, B is a left S-module and C is a left R-module then
A⌦RC is a left S-module with action given by s(a⌦ c) := sa⌦ c, HomS(A,B) is a left
R-module with action given by (r�)(a) := �(ar), and HomS(B,A) is a right R-module
with action given by (�r)(b) := �(rb). The operation of tensor product on bimodules
is associative.

Theorem 2.1.16 (Dummit and Foote Theorem 43 from 10.5). Let A be an (S,R)-
bimodule, B a left S-module and C a left R-module. Then

HomS(A⌦R C,B) ⇠= HomR(C,HomS(A,B))
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via an isomorphism that is natural in B and C.

Proof. We define inverse isomorphisms

� 7! (b 7! (a 7! �(a⌦ b)))

(a⌦ b 7!  (b)(a))  

With the first mapping we check that the image is an R-module homomorphism and
that the inner mapping is an S-module homomorphism. With the second mapping we
check that it is an S-module homomorphism and that the mapping (a, b)!  (b)(a) is
R-balanced.

The two mappings are mutually inverse, and so we have an isomorphism.

In categorical language, we say that the functor A ⌦R � : R-mod ! S-mod is
left adjoint to the functor HomS(A,�) : S-mod ! R-mod, which is right adjoint to
A⌦R �.

Corollary 2.1.17. Let f : R ! S be a ring homomorphism, let B be a left R-module
and let C be a left S-module. We regard S as an (S,R)-bimodule where the left action
of S is multiplication and the right action of R is multiplication after first applying f .
Then HomS(S ⌦R B,C) ⇠= HomR(B,C), where C is regarded as a left R-module via
the homomorphism f .

Proof. This is an instance of the previous theorem, because HomS(S,C) ⇠= C as R-
modules via a correspondence g $ g(1). This is an isomorphism of R-modules because
if r 2 R then rg $ (rg)(1) = g(r) = r · g(1). Note that the action of R on HomS(S,C)
is (rg)(s) = g(sr).

2.2 Splitting and exactness; projective and injective mod-

ules

Definition 2.2.1. Let ↵ : A ! B be a homomorphism. We say that ↵ is a split
monomorphism if there exists a morphism � : B ! A so that �↵ = 1A; and we say
that ↵ is a split epimorphism if there exists a morphism � : B ! A so that ↵� = 1B.

Define exact, and

short exact

sequence.

It is an exercise to see that a split monomorphism is a monomorphism, and a split
epimorphism is a epimorphism. From the algebraic point of view of manipulation of
symbols, it is a question of identifying whether an element ↵ has a right or left inverse
which, in the context of rings, is a natural thing to do. We are also familiar with
equivalent conditions for a matrix with entries in a field to have a left or right inverse.
Over more general rings the issue is a little more subtle.

Lemma 2.2.2. Given a short exact sequence of R-modules

0! A
↵�!B

��!C ! 0

the following are equivalent:
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1. the monomorphism ↵ is split;

2. the epimorphism � is split;

3. there is a commutative diagram

0 ! A
↵�! B

��! C ! 0
i1

& ⇠=
x??

⇡2

%

A� C

where i1 is inclusion and ⇡2 is projection.

Definition 2.2.3. If any of 1, 2, or 3 of Lemma 2.2.2 is satisfied we say the sequence
0! A! B ! C ! 0 is split.

The next result puts together Theorem 28, Corollary 32, Theorem 33, Proposition
34, Theorem 39 and Corollary 41 from section 10.5 of Dummit and Foote.

Lemma 2.2.4. Let A, B, C and M be left R-modules, N a right R-module.

1. The sequence A
↵�! B

��! C ! 0 is exact if and only if

0 ! HomR(C,M)
�
⇤
�! HomR(B,M)

↵
⇤
�! HomR(A,M) is exact for all M , if and

only if

N ⌦R A
↵⇤�! N ⌦R B

�⇤�! N ⌦R C ! 0 is exact for all N .

2. The sequence 0! A! B ! C is exact if and only if

0! HomR(M,A)
↵⇤�! HomR(M,B)

�⇤�! HomR(M,C) is exact for all M .

Proof. Outline. We first show that if A
↵�! B

��! C ! 0 is exact then

0! HomR(C,M)
�
⇤
�! HomR(B,M)

↵
⇤
�! HomR(A,M)

is exact. For the converse, assume that

0! HomR(C,M)
�
⇤
�! HomR(B,M)

↵
⇤
�! HomR(A,M)

is exact. We show that B ! C is onto: let B ! C ! C 0 ! 0 be exact. Then
0! HomR(C 0,M)! HomR(c,M)! HomR(B,M) is exact. Therefore Hom(C 0M) =
0 for all M , so that C 0 = 0. Next, we show that ↵A ✓ Ker�. If �↵ 6= 0 then
Hom(C,C)toHom(A,C) maps 1 ! �↵ is nonzero. Next we show ↵A = Ker�. Take
p : B !M = B/↵A in

0! HomR(C,M)
�
⇤
�! HomR(B,M)

↵
⇤
�! HomR(A,M),

which has ↵⇤p = 0, and Im�⇤ is contained in maps that are zero on Ker�. Now p
is not such unless etc. Use an adjoint property for the ⌦? Also, take N = R in one
direction. This needs some

work.
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Definition 2.2.5. We say that the functors HomR( ,M) and HomR(M, ) are left
exact, while N⌦ is right exact. A covariant functor F is exact if and only if whenever
0 ! A ! B ! C ! 0 is exact then 0 ! F (A) ! F (B) ! F (C) ! 0 is exact, i.e. F
is both right and left exact.

Definition 2.2.6. The R-module P is said to be projective if and only if given any
diagram

P
??y�

A
↵�! B

with ↵ epi there exists � : P ! A such that � = ↵�.

Lemma 2.2.7. The following are equivalent for an R-module P :

1. P is projective,

2. every epimorphism M ! P splits,

3. there is a module Q such that P �Q is free,

4. HomR(P, ) is an exact functor.

Definition 2.2.8. There is a similar (dual) definition of an injective module. An
equivalent condition is that an R-module I is injective if and only if HomR( , I) is an
exact functor. Also, an R module N is flat if and only if N ⌦ is an exact functor.

Proposition 2.2.9. Projective modules are flat.

Proof. Free modules are flat and hence so are projective modules, because they are
direct summands of free modules.

2.3 Chain complexes

Definition 2.3.1. A chain complex of R-modules is a sequence of R-modules

M = · · · d3�!M2
d2�!M1

d1�!M0
d0�! · · ·

such that didi+1 = 0 always. This condition is equivalent to the requirement that
Im(di+1) ✓ Ker(di) always. We define the homology group of M in degree i to be
Hi(M) = Ker(di)/ Im(di+1). The maps in the family d = (di) send modules in given
degrees to modules in degree lower by 1, and so we say d has degree �1. We also
consider sequences of modules with a family of mappings d of degree +1 and in that
case we term the sequence a cochain complex. The group H i(M) = Ker(di)/ Im(di�1)
is the cohomology group of M in degree i in this case.
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A morphism of complexes � : M ! N is a sequence of morphisms �i : Mi ! Ni

such that
· · · d3�! M2

d2�! M1
d1�! M0

d0�! · · ·

�2

??y �1

??y �0

??y

· · · e3�! N2
e2�! N1

e1�! N0
e0�! · · ·

commutes. Such a � induces a map Hn(�) : Hn(M)! Hn(N ).

Class Activity. The diagram I’m not sure

whether this is a

good example.

See also the next

example

Z2
[ 1 1
1 1 ]�! Z2

h
1 �1
�1 1

i

�! Z2

??y[ 1 1 ]

??y[ 1 1 ]

??y[ 1 1 ]

Z [2]�! Z [0]�! Z

is a morphism of chain complexes. We may compute the homology of a chain complex
in general using the Smith normal form for integer matrices. In this example the top
complex has homology groups Z, 0,Z and the bottom complex has homology groups
0,Z/2Z,Z.

In di↵erent language, a chain complex is a graded R-module M = (Mi)i2Z equipped
with a graded endomorphism d : M!M of degree �1 satisfying d2 = 0. This means
that d is a module homomorphism and d(Mi) ✓ d(Mi�1) for all i. The homology of
M is the graded group H(M) = Ker(d)/ Im(d). If the map d had degree +1 we would
have a cochain complex instead.

Definition 2.3.2. A (chain) homotopy between two morphisms �, ✓ : M ! N is a
graded module morphism h : M! N of degree +1 such that eh+ hd = �� ✓. In this
case we say that � and ✓ are homotopic and write � ' ✓.

Proposition 2.3.3. 1. If � and ✓ are homotopic then the two mappings Hn(�) =
Hn(✓) : Hn(M)! Hn(N ) are the same.

2. If there are chain maps � : M ! N and  : N ! M with � ' 1N and
 � ' 1M then Hn(�) and Hn( ) are inverse isomorphisms on homology.

See Exercise 3 of section 17.1 of Dummit and Foote for the following.

Lemma 2.3.4 (The Snake Lemma). Let the following commutative diagram of R-
modules have exact rows:

A
��! B

✓�! C ! 0
??y↵

??y�

??y�

0 ! A0 �
0
�! B0 ✓

0
�! C 0

Then there is an exact sequence

Ker↵! Ker� ! Ker �
!�! Coker↵! Coker� ! Coker �
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where the mappings between the kernels are the restrictions of � and ✓, and the map-
pings between the cokernels are induced by �0 and ✓0. Furthermore, if � is mono so is
Ker↵! Ker�, and if ✓0 is epi so is Coker� ! Coker �.

Proof. The map ! is defined as follows: let c 2 Ker �, choose b 2 B with ✓(b) = c. Then
✓0�(b) = �✓(b) = 0 so �(b) = �0(a) for some a 2 A0. Define !(c) = a+↵(A) 2 Coker(↵).
This is well-defined (see Mr Cooperman’s objections in ‘It’s My Turn’). We now check
exactness (see Hilton and Stammbach p.99).

For example, to check exactness at Ker �, we observe first that ✓(Ker�) ✓ Ker!.
This is because if �(b) = 0 then in the construction of !✓(b) we can use the elements
b 2 B, �(b) = 0 2 B0 and 0 2 A0, so that !✓(b) = 0.

To show that ✓(Ker�) ◆ Ker! let c 2 Ker � \Ker!. In constructing !(c) we find
elements b 2 B and a 2 A0 as above. The element a lies in ↵(A) because !(c) = 0. Write
a = ↵(a0) for some a0 2 A. Now ��(a0) = �0↵(a0) = �(b). Thus b � �(a0) 2 Ker�
and ✓(b� �(a0)) = ✓(b)� ✓�(a0) = ✓(b) = c. Therefore c 2 ✓(Ker�).

The remaining arguments are similar.

Class Activity. Is the morphism of chain complexes given earlier a chain homotopy
equivalence? Is the morphism below a chain homotopy equivalence?

Z2
[ 1 1
1 1 ]�! Z2

h
1 �1
�1 1

i

�! Z2

??y[ 1 0 ]

??y0

??y[ 1 1 ]

Z 0�! 0
0�! Z

Try upward morphisms


1
0

�
.

Definition 2.3.5. The mapping ! in the Snake Lemma is called the connecting ho-

momorphism. A sequence of complexes L ��!M ✓�!N is said to be exact at M if and

only if each for all i, the sequence Li

�i�!Mi

✓i�!Ni of modules in degree i is exact at
Mi.

Theorem 2.3.6. A short exact sequence 0 ! L ��!M ✓�!N ! 0 of chain complexes
gives rise to a long exact sequence in homology:

· · ·! Hn(L)
Hn(�)�! Hn(M)

Hn(✓)�!Hn(N )
!n�!Hn�1(L)! · · · .

The connecting homomorphism ! is natural, in the sense that a commutative diagram
of chain complexes

0 ! L ! M ! N ! 0

# # #

0 ! L0 ! M0 ! N 0 ! 0
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with exact rows yields a commutative square

Hn(N ) ! Hn�1(L)

# #

Hn(N 0) ! Hn�1(L0).

Proof. The di↵erential dn : Ln ! Ln�1 induces a map dn : Coker dn+1 ! Ker dn�1: Label the top

two edges of the

left term as

Coker dn+1.

Ln�2•

•

Ln�1•
Im dn�1•

dn�1�!
Ker dn�1• •#

Hn�1(L)
Ln•

Im dn•
dn�!

Ker dn• •#
Hn(L)

Im dn+1•

•

Similarly with the M ’s and N ’s. Apply the snake lemma to the following diagram, all
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rows and columns of which are exact:

0 0 0

# # #

Hn(L) Hn(M) Hn(N )

# # #

Coker dn+1 �! Coker en+1 �! Coker fn+1 �! 0

# # #

0 �! Ker dn�1 �! Ker en�1 �! Ker fn�1

# # #

Hn�1(L) Hn�1(M) Hn�1(N )

# # #

0 0 0

The naturality is an exercise.

Class Activity. Why are the middle rows of the last big diagram exact? (We use the
snake lemma with

0 ! Ln+1 ! Mn+1 ! Nn+1 ! 0

dn+1

??y en+1

??y fn+1

??y

0 ! Ln ! Mn ! Nn ! 0.)

Class Activity. Calculate the homology of the kernel complex of the morphism of
chain complexes given earlier. Noting that the morphism was surjective in each degree,
apply the last theorem with the long exact sequence.

There is a similar result that applies when we have a short exact sequence of cochain
complexes 0 ! L ! M ! N ! 0. In that case the connecting homomorphism has
degree +1, giving a long exact sequence

· · ·! Hn(L)! Hn(M)! Hn(N )
!n�!Hn+1(L)! · · · .

2.4 Projective resolutions, Ext and Tor

Let R be a ring and M an R-module. A projective resolution of M is an exact sequence

· · ·! P2 ! P1 ! P0 !M ! 0
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in which the Pi are projective modules. Let P be the complex obtained by replacing
M by 0 in the above, so Hn(P) = 0 if n > 0 and H0(P) ⇠= M is a given isomorphism.
It is useful to write P !M to denote this projective resolution. Example at this

point? Maybe

ZC2?
We may always construct resolutions of a module M as follows. Given M , choose

a free module P0 with surjective mapping P0 ! M and form the kernel K0. Repeat
this process with K0 instead of M . Depending on the context, other constructions of
resolutions may be available: we may have a bar resolution, and resolutions constructed
from other structures such as a presentation or an action on a space.

Given a second module N we may form the cochain complex

HomR(P, N) = [0! HomR(P0, N)
d0�!HomR(P1, N)

d1�!HomR(P2, N)
d2�! · · · ]

obtained by applying HomR(�, N) to P. We now define the degree n Ext group of M
and N by

ExtnR(M,N) = Hn(HomR(P, N)),

the nth cohomology group of this complex.
The above definition depends on the choice of resolution P. It is the case that if

we change the resolution we obtain Ext groups that are naturally isomorphic to those
just constructed. More of this later!

Example 2.4.1. Let R = Z, so that R-modules are the same thing as abelian groups.
For each integer m, the cyclic group Z/mZ has a projective resolution as follows:

0! Z m�! Z! Z/mZ! 0

where P is the chain complex 0 ! Z m�! Z ! 0. Taking another abelian group N we
compute Exti(Z/mZ, N) as the degree i cohomology of the cochain complex

Hom(P, N) = [Hom(Z, N)
m�! Hom(Z, N)] = [N

m�! N ].

Thus
Ext0Z(Z/mZ, N) ⇠= {x 2 N

�� mx = 0}

and
Ext1Z(Z/mZ, N) ⇠= N/mN

where mN = {mx
�� x 2 N}. Thus if N = Z/pZ, where p is prime dividing m, these

groups are both Z/pZ; and if p does not divide m then both groups are 0

Proposition 2.4.2. Ext0
R
(M,N) ⇠= HomR(M,N).

Proof. From the definition, Ext0
R
(M,N) = Ker d0. Now P1 ! P0 ! M ! 0 is exact,

so
0! HomR(M,N)! HomR(Po, N)

d0�!HomR(P1, N)

is exact by Lemma 2.2.4, and the result follows.
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Theorem 2.4.3. Let 0 ! A ! B ! C ! 0 be an exact sequence of R-modules and
let M be another R-module. There are exact sequences of abelian groups

(1)
0! HomR(M,A)! HomR(M,B)! HomR(M,C)

!�!Ext1(M,A)! Ext1(M,B)! · · ·

(2)
0! HomR(C,M)! HomR(B,M)! HomR(A,M)

! Ext1(C,M)! Ext1(B,M)! · · ·

Proof. (1) We calculate our Ext groups with a resolution P ! M . The sequence
0! A! B ! C ! 0 gives a sequence of cochain complexes

(⇤) 0! HomR(P, A)! HomR(P, B)! HomR(P, C)! 0.

where, at each level in the grading, this sequence is

0! HomR(Pn, A)! HomR(Pn, B)! HomR(Pn, C)! 0

obtained by applying HomR(Pn,�). Because each Pn is projective, HomR(Pn,�) is
exact, and so (⇤) is a short exact sequence of cochain complexes. We now apply
Theorem 2.3.6 and Proposition 2.4.2.

(2) We construct resolutions P ! B, P 0 ! A and P 00 ! C appearing in a commu-
tative diagram

P 0 �! A
??y

??y

P �! B
??y

??y

P 00 �! C

with exact columns. To do this, let P 0,P 00 be any resolutions of A and C and construct
P as follows. The start is pictured in a diagram:

P 0
0

✏
0
�! A �! 0

??y
??y

P 0
0 � P 00

0
✏�! B

??y
??y

P 00
0

✏
00
�! C �! 0.

Lift ✏00 to a map P 00
0 ! B and use this and ✏0 as the components of ✏, so that the

diagram commutes. By the snake lemma, Ker ✏0 ! Ker ✏ ! Ker ✏00 is exact and ✏ is
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epi. Now repeat this procedure with the terms Ker ✏0 ! Ker ✏! Ker ✏00 instead of with
A! B ! C, and then with subsequent kernels, to construct P 00. This could be

explained better!Apply HomR(�,M) to this diagram of resolutions and use the fact that

0! P 0
n ! P 0

n � P 00
n ! P 00

n ! 0

splits in each degree to get a short exact sequence of cochain complexes

0! HomR(P 00,M)! HomR(P,M)! HomR(P 0,M)! 0.

The long exact sequence in cohomology is the one we are trying to construct.

Here is an immediate deduction:

Corollary 2.4.4. 1. An R-module P is projective if and only if for all n � 1 and
for all modules M we have Extn

R
(P,M) = 0.

2. An R-module I is injective if and only if for all n � 1 and for all modules M we
have Extn

R
(M, I) = 0.

Proof. (1) If P is projective then · · · ! 0 ! P ! P ! 0 is a projective resolution
of P , so that the complex HomR(P,M) is zero above degree 0 and hence so is its
cohomology. Conversely, if Extn

R
(P,M) = 0 for all n � 1 then whenever we have a

short exact sequence 0! A! B ! C ! 0 the long exact sequence becomes

0! HomR(P,A)! HomR(P,B)! HomR(P,C)! Ext1R(P,A) = 0

so that HomR(P,�) is an exact functor. It follows that P is projective.
(2) If I is injective then HomR(�, I) is an exact functor so HomR(P, I) has zero

cohomology except in degree 0, and hence the Ext groups are zero above degree 0.
Conversely if these Ext groups are zero we deduce as in part (1) from the long exact
sequence that HomR(�, I) is an exact functor, so the I is injective.

We see in the above that we only need the groups Ext1
R
(P,M) to vanish for all

modules M to deduce that P is projective, and similarly only Ext1
R
(M, I) needs to

vanish for all modules M to deduce that I is injective.

Corollary 2.4.5. Let 0! A! B ! C ! 0 be a short exact sequence of R-modules.

1. If B is projective then Extn
R
(C,M) ⇠= Extn�1

R
(A,M) for all modules M , provided

n � 2.

2. If B is injective then Extn�1
R

(C,M) ⇠= Extn
R
(A,M) for all modules M , provided

n � 2.

Proof. For the proof of 1, part of the long exact sequence becomes

0 = Extn�1
R

(B,M)! Extn�1
R

(A,M)! ExtnR(C,M)! ExtnR(B,M) = 0

giving the claimed isomorphism. The proof of 2 is similar using the long exact sequence
in the second variable.
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The process of changing the degree of an Ext group at the expense of changing the
module as indicated in the above corollary is known as dimension shifting. It is useful
in showing that Ext groups are well-defined up to isomorphism, and also in defining
operations on the Ext groups, as well as obtaining di↵erent identifications of specific
Ext groups that arise.

The next result provides a useful way to compute Ext groups.

Proposition 2.4.6. Let A and M be R-modules, let · · · d3!P2
d2!P1

d1!P0 !M ! 0 be a
projective resolution of M , and put Ki = Ker di. There is an exact sequence

0! HomR(Kn�2, A)! HomR(Pn�1, A)! HomR(Kn�1, A)! ExtnR(M,A)! 0.

Proof. The long exact sequence associated to 0! Kn�1 ! Pn�1 ! Kn�2 ! 0 starts

0! HomR(Kn�2, A)! HomR(Pn�1, A)! HomR(Kn�1, A)! Ext1R(Kn�2, A)! 0.

By dimension shifting we have

Ext1R(Kn�2, A) ⇠= Ext2R(Kn�3, A) ⇠= · · · ⇠= Extn�1
R

(K0, A) ⇠= ExtnR(M,A).

One way to prove that Ext groups are well-defined is to prove a corresponding
uniqueness statement for projective resolutions, which is what we do now.

Theorem 2.4.7. Let P !M and Q! N be complexes of R-modules, where the mod-
ules in P are projective and Q! N ! 0 is an acyclic complex. Every homomorphism
� : M ! N lifts to a map of chain complexes

P �! M
??y

??y�

Q �! N

and any two such mappings of complexes P ! Q that lift � are chain homotopic.

Proof. We construct by induction on n a commutative diagram of the following form,
for each n:

Pn

dn�! Pn�1
dn�1�! Pn�2

dn�2�! · · · ! P0 ! M ! 0
??y�n�1

??y�n�2

??y�0

??y�

Qn

en�! Qn�1
en�1�! Qn�2

en�2�! · · · ! Q0 ! M ! 0

We start the induction at n = 0 using projectivity of P0 and the fact that Q0 !M is
an epimorphism. For the induction step, suppose that �0, . . . ,�n�1 have been defined.
Now en�1�n�1dn = �n�2dn�1dn = 0, so Im�n�1dn ✓ Ker en�1 = Im en. We may now
define �n by the projectivity of Pn.
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To show that any two families of maps (�n) and ( n) lifting � are chain homotopic,
we construct mappings Tn : Pn ! Qn+1 so that �n �  n = en+1Tn + Tn�1dn for all
n � 0, with the understanding that T�1 = 0. We define ��1 =  �1 = �. Suppose that
Tn�1 has been constructed. We calculate

en(�n �  n � Tn�1dn) = �n�1dn �  n�1dn � enTn�1dn

= (�n�1 �  n�1 � enTn�1)dn

= Tn�2dn�1dn

= 0.

Therefore Im(�n �  n � Tn�1dn) ✓ Im en+1 and so there exists Tn with

(�n �  n � Tn�1dn) = en+1Tn,

by projectivity of Pn. Rearranging this equation, it is �n �  n = en+1Tn + Tn�1dn, as
required.

Corollary 2.4.8. Let P1 !M and P2 !M be two projective resolutions of M .
(1) P1 !M and P2 !M are chain homotopy equivalent.
(2) If F is any R-linear functor from R-modules to abelian groups, then

H⇤(F (P1) ⇠= H⇤(F (P2)

by a canonical isomorphism.
(3) Extn

R
(M,N) is functorial in both variables.

We remark also that Extn
R
(M,N) can also be defined by taking an injective resolu-

tion N ! I of N and forming Hn(HomR(M, I)). It is a theorem that we get a group
that is naturally isomorphic to the group defined by a projective resolution of M . We
say that Ext is balanced to indicate that it has this property.

Definition 2.4.9. Let M be a left R-module, N a right R-module, and P ! N a
resolution of N by projective right modules. We put

TorRn (N,M) = Hn(P ⌦R M),

which is the nth homology of the complex

· · ·! P2 ⌦R M ! P1 ⌦R M ! P0 ⌦R M ! 0.

Tor has properties analogous to those of Ext and we list them below. They are proved
in a similar manner to the corresponding results for Ext, using that ⌦R M is right
exact instead of left exact.

Proposition 2.4.10. TorR0 (N,M) ⇠= N ⌦R M .
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Theorem 2.4.11. If 0 ! A ! B ! C ! 0 and 0 ! L ! M ! N ! 0 are short
exact sequences of right and left modules respectively there are long exact sequences

(i)
· · ·! TorR2 (C,L)! TorR1 (A,L)! TorR1 (B,L)! TorR1 (C,L)

! A⌦R L! B ⌦R L! C ⌦R L! 0

and

(ii)
· · ·! TorR2 (A,N)! TorR1 (A,L)! TorR1 (A,M)! TorR1 (A,N)

! A⌦R L! A⌦R M ! A⌦R N ! 0.

Remark 2.4.12. One can view Tor as a measure of the failure of ⌦ to be left exact.

Proposition 2.4.13. TorRn (N,M) = 0 if either of M or N is flat and n > 0.

It follows that TorRn (N,M) = 0 if M or N is projective, because projective modules
are flat. This allows a process of ‘dimension shifting’ analogous to that for Ext.

In the next result we let

· · · ! P2
d2�! P1

d1�! P0 ! N ! 0

& % & %

K1 K0

be the resolution of N , so that Kn = dn+1(Pn+1).

Proposition 2.4.14. There is an exact sequence

0! TorRn (N,M)! Kn�1 ⌦R M ! Pn�1 ⌦R M ! Kn�2 ⌦R M ! 0

for n � 1. (Here we take K�1 = N .)

Remark 2.4.15. We can also calculate TorRn (N,M) by taking a projective resolution of
M by left modules, applying N ⌦R � and taking homology of the resulting complex.
In this way one obtains a sequence of functors that turn out to be naturally isomorphic
to the functors we have defined.

2.5 Pushouts, pullbacks and Schanuel’s lemma

For this see section 10.5 of Dummit and Foote, Exercises 27 and 28.


