Math 8212 Commutative and Homological Algebra I Spring 2022

Solutions 1
Each question part is worth 1 point.

1. Let R C S C T be commutative rings and let M be an S-module.

(a) (4.1 of Eisenbud) Show that if S is finite over R and M is finitely generated as an
S-module, then M is finitely generated as an R-module.

(b) Suppose that S is integral over R and T is integral over S. Show that T is integral
over R.

Solution. (a) If S is generated as an R-module by elements s1,...,s. and M is generated
as an S-module by elements my,...,mg then we claim that M is generated as an R-
module by the elements s;m;. Every element of M can be written m = Zj a;jm; for
certain elements a; € S. We may also write each a; = ) . b;;s; with b;; € R. Putting
this together, m = >, (3_; bijsi)m; = >, ; bizsym;. Thus M is finitely generated as an
R-module.

(b) Each element a in T is the root of a monic polynomial 2™ + a,,_12" ! + - - - + ag with
a; € S. The subring S of S generated by ay,...,a,_1 is finite over R by integrality and
a lemma in class. Also the subring S’[a] is finitely generated as an S’-module because the
monic polynomial of which a is a root has coefficients in S’ so a is also integral over S’.
Thus by part (a), S’(a) is finitely generated as an R-module. It follows that a is integral
over R by another lemma in class. Hence T' is integral over R.

2. (4.2 of Eisenbud with R and S interchanged.) Let k be a field, R = k[t| and suppose
R C S is a containment of rings, where S is supposed to be a domain.

(a) Show that if S is finitely generated as an R-module, then S is free as an R-module.
(b) Show by giving a basis that if S = k[x,y]/(2? — y3) and t = 2™y", then the rank of S
as an R-module is 3m + 2n.

(c) Assuming again only that the domain S is finitely generated as an R-module, let S be
the integral closure of S in its field of fractions. Assume Noether’s theorem 4.14 that S is
again finitely generated (and thus free) as an R-module. Show that it has the same rank
as S.

[Feel free to make use of the structure theorem for finitely generated modules over a PID.]

Solution. (a) Because S is a domain, no non-zero element of R annihilates any non-zero
element of S, so as an R-module S is torsion-free. Also R is a PID and S is finitely
generated as an R-module, so by the structure theorem for such modules S is free.

(b) Because z>

an R-module. Multiplying each basis element by x™y" gives another basis element, and

= 7% in S, the elements 1,¥,%2,...,Z, Ty, Ty>, ... form a basis of S as

so S is the direct sum of cyclic R-modules that have subsets of these basis elements as
a basis. Two basis elements z%7° and z°7¢ lie in the same R-submodule if and only if
(¢ — a,d — b) is a multiple of (m,n) modulo the subgroup of Z? generated by (2, —3), if



and only if (¢ — a,d — b) lie in the same coset of the subgroup of Z? generated by the

rows of (731 _713) By the theory of Smith normal form, this subgroup has index the

determinant of the matrix, which is 3m + 2n, so this is the number of such cosets.

(c) Let K(R) be the field of fractions of R, realized as the subfield of K () generated by
R. The elements of S are algebraic over R, so K(5) is an algebraic extension of K(R). We
claim that a basis for S as an R-module is also a basis for K(5) as a K(R)-module. This is
because a basis of S as an R-module is also independent over K (R) (clear denominators in
a relation over K (R) to get a relation over R), and it spans K (.S) over K (R) because each
element in the span, being algebraic, has its inverse in the span of its powers, which lie
in the K (R)-span of S. We also have that K(S) = K(S), and again because S is finitely
generated as an R-module, a basis of S over R is also a basis of K(S) over K(R). Such
bases have the same size, so the ranks of S and S are the same.

3. (4.7 of Eisenbud) Show that the Jacobson radical of R is

J={r € R|1+rsisa unit for every s € R}.

Solution. Let L = {r € R ‘ 1 4 rsis a unit for every s € R}. If r € J and 1 + rs is
not a unit for some s then 1 + rs generates a proper ideal of R, so 1 4+ rs € m for some
maximal ideal m. Thus 1 € m, a contradiction, because r lies in every maximal ideal. Thus
J C L. On the other hand, if » € m for some maximal ideal m then Rr +m = R, so that
1 = —rs+ m for some s € R. This means that 1 + rs € m is not a unit, and shows that
L CJ.

4. (4.11 of Eisenbud minus the graded bit)

(a) Use Nakayama’s lemma to show that if R is a commutative local ring and M is a
finitely generated projective module, then M is free.

[Identify the radical, consider factoring out its action, produce a map from a free module
that is an isomorphism with M ]

(b) Use Proposition 2.10 to show that a finitely presented module M is projective if and
only if M is locally free, in the sense that the localization Mp is free over Rp for every
maximal ideal P of R (and then of course Mp is free over Rp for every prime ideal P of

R).

Solution. (a) If R is a local ring it has a unique maximal ideal P, and this is also the
radical (the intersection of the maximal ideals). Let M be a finitely generated projective
R-module. Now M/PM is a finite dimensional vector space over the field R/P, and if
it has dimension d we can take a surjection F = R? — M/PM. By projectivity of F
it lifts to a homomorphism ¢ : F' — M. This has the property that ¢(F) + PM = M
so ¢(F) = M, i.e. ¢ is surjective, by Nakayama’s lemma. This ¢ is split because M is
projective, so there is a homomorphism 6 : M — F with ¢0 = 1,,. Factoring out P, ¢
and 6 induce inverse isomorphisms between F//PF and M/PM, so §(M)+ PF = F and



O(M) = F by Nakayama’s lemma. Thus 0 : M — (M) @ Ker ¢ is surjective. It follows
that Ker ¢ = 0 and ¢ is an isomorphism. Thus M is free.

(b) Assume M is finitely generated. The module M is projective if and only if for all
exact sequences B — C — 0 the sequence Homp (M, B) — Hompg (M, C) — 0 is exact. If
this is so, then because localization is exact and by 2.10, Homgy-1(M[U'], BU™']) —
Hom g1 (MUY, ClUTY]) — 0is exact, and every epimorphism has the form B[U '] —
ClU™Y — 0, so M[U™'] is projective. Conversely, if all such locallized sequences at
maximal ideals are exact then so is Homg (M, B) — Hompg(M,C) — 0, because (by
another result) it is the intersection of the localizations at the maximal ideals, so if M is
projective on localization at all maximal ideals, it is projective.

5. (4.20 of Eisenbud) For each n € Z, find the integral closure of Z[\/n] as follows:

(a) Reduce to the case where n is square-free.

(b) v/n is integral, so what we want is the integral closure R of Z in the field Q[y/n]. If
a = a+by/n with a,b € Q, then the minimal polynomial of « is 22 — Trace(a)x + Norm(c)
where Trace(a) = 2a and Norm(a) = a? — b?n. Thus a € R if and only if Trace(a) and
Norm(«) are integers.

(c) Show that if & € R then a € 1Z. If a = 0, show o € Riff b € Z. If a = 1 and
a € R, show that b € %Z. Thus, subtracting a multiple of y/n, we may assume b = 0 or %
Observe b = 0 is impossible.

(d) Conclude that the integral closure is Z[y/n] if n # 1 (mod 4), and is Z[3 + $/n] if
n =1 (mod 4).

Solution. (a) If n = p?n’ for some integers p and n’ then Z[\/n] and Z[\/n’] have the same
field of fractions and integral closure (because /n and \/ﬁ/ are both integral over Z), so
we can assume n is square-free.

(b) We accept many of the assertions made in the question. Thus the minimal polynomial
of a has that form because it equals (z — (a + by/n))(x — (a — by/n)). Also if Trace(«)
and Norm(«) are integers then o € R because it is a root of a monic polynomial with
coefficients in Z. Conversely, if & € R it is a root of a monic polynomial f(x) € Z[z] of
which the minimal polynomial z? — Trace(a)x + Norm(a) is a factor in Q[z]. By Gauss’s
Lemma the minimal polynomial has integer coefficients.

(c) If & € R then Trace(a) = 2a is an integer, so a € 1Z. If a = 0 and b € Z then
a? —b?n = 0 so « is integral. If @ = 0 and b € Z then the minimal polynomial a? — b?n
does not have coefficients in Z because n is square-free, so « is not integral. If a = %
and a € R then, because Norm(a) = a? — b?n = 1 — b*n € Z, we deduce that b € 1Z.
The integrality of « is unchanged on adding or subtracting integer multiples of y/n, so to
determine the possibilities for b when a = % it suffices to assume b = 0 or % If b =0 we
get a = %, which is not integral, so b = 0 is impossible.

(d) From (c) we see that if the integral closure is larger than Z[\/n] then it must be
Z[3 + 3+/n] because any integral element a + by/n not in Z[y/n] must have a,b not in

1

Z and with denominator 2, and all such elements are equivalent to 5 + %\/ﬁ by adding



elements of Z[y/n]. Now 1 + £/n is integral if and only if + — 1n = 152 € Z, which means

n =1 (mod 4).

6. (1.3 of Matsumura plus) Let A and B be rings, and f : A — B a surjective homomor-
phism.

(a) Prove that f(Jac A) C Jac B, and construct an example where the inclusion is strict.
(b) Prove that if A is a semilocal ring (a ring with only finitely many maximal ideals) then
f(Jac A) = Jac B.

(c) Continue to assume that A is a semilocal ring. Show that, as an A-module, A/ Jac(A) is
a direct sum of finitely many simple A-modules, and that Jac(A) is the smallest ideal with
this property. (That is, if J is an ideal so that A/J is a direct sum of simple A-modules,
then J O Jac(A).)

Solution. (a) If.I is a maximal ideal of B then f~!(I) is a maximal ideal of A by the
correspondence theorem for surjective maps. Thus if r € Jac(A4) then r € f~1(I), so
f(r) € I. Since I was arbitrary, f(r) € Jac(B), so f(Jac A) C Jac B. Consider the example
A =7 and B = 7Z/4Z where Jac(A) = 0 and Jac(B) = 27Z/47Z, so the containment is strict.
(b) We will show that B/ f(Jac(A) = f(A/ Jac(A)) has Jacobson radical 0. From this it will
follow that Jac(B) = f(Jac A) because, by part (a) applied to the quotient homomorphism
B — B/f(Jac A), we have Jac(B)+ f(Jac(A)) C f(Jac(A)) and we already know Jac(B) 2
f(Jac(A)). Now Jac(A) is the intersection of finitely many maximal ideals Iy,..., I;, so
the Chinese Remainder Theorem (extended by induction to the case of more than 2 ideals)
implies that A/ JacA =2 A/I; x --- x A/I; is a product of fields. The only ideals in such
a ring are the products of certain of the fields, so f(A/Jac(A)) is also a product of fields.
This has Jacobson radical 0 because the maximal ideals are products of all except one of
the fields, and such ideals intersect in 0.

(¢) In the expression A/ JacA = A/I} X --- x A/I; from part (b), each field is a simple
A-module, which establishes the first statement. If J is an ideal of A with the property
that A/J =51 @ --- & St is a direct sum of simple modules, let I,, be the preimage in A
of - 5,180 5,41 - where S, is omitted from the direct sum. Then I, is a maximal
ideal of A and (!, _, I, = J. It follows that J D Jac(A).

Extra question: do not upload to Gradescope.

7. Show that the Jacobson radical of k[x1,...,x,] is 0.



