Spectral sequences

Source: I prefer the treatment in K.S. Brown, Cohomology of groups, chapter VII

Topics:

- the spectral sequence of a filtered complex
- how these arise from double complexes
- application to the homology of a union of spaces.

Motivation

We know that a short exact sequence of chain complexes 0 -> A. -> B. -> C. -> 0 gives rise to a long exact sequence in homology, perhaps giving information about H_*(B.)

Examples 1. Ext groups Given a s.e.s. of R-modules D-) L-1M-)N-10' we get a s.e.s of chain complexes O-Hom (P, L) Hom (P,M)-> How (P,N)->D where PAAO is a projection of A, hence a long e.s. 2. We may have a simplicial complex xxx xux where xxx x where xxx x where xxx is a subsimplicial complex Get long e.s. in homology. What if the simplicial complex D has several subcomplas X_1, \dots, X_n Q = QX $C.(xi) \subseteq C.(\Delta)$ Let $F_p(\Delta) = span of the$ simplices in D that lie in at least p of the X1, ..., Xn We get subcompleres $F_3(\Delta) \subseteq F_2(\Delta) \subseteq F_3(\Delta) = C.(\Delta)$ Can we get info about

 $H_*(C.(\Delta))$ from the H+ (FP(A)/F+1(A))? There is a spectral requence generalizing the Mayer -Vietais long e.s.

Pre-class Warm-up!!

Which of the following define the same simplicial complexes?

- A 1 and 2 describe the same simplicial complex.
- B 1 and 3 describe the same simplicial complex.
- C 2 and 3 describe the same simplicial complex.
- D They all describe the same simplicial complex.

An (abstract) simplicial complex is a certain subsets of a set S so that $T \in \Delta$, $U \subseteq T$ $U \in \Delta$.

Filtrations of modules and associated graded modules

An ascending fittration of a module M is a chain of submodules $-\cdots \subseteq F_{p}(M) \subseteq F_{p+1} \subseteq \cdots \subseteq M$ Altgraded module is a list of modules Mp, PEZ. We may want to think of it $P \in \mathbb{Z}^{M}$

Given a filtration the associated graded module Gr M had Grp M = Fp M/Fp-1 M e.g. $k[x] = \bigoplus kx^p$

We assume that filtrations are finite.

This means $F_p = F_{p+1} = ...$ If p is large enough and $F_p = F_{p-1} = ...$ This means $F_p = F_{p+1} = ...$ If p is small enough.

A I so totally got that

В ОК

C I'm not sure about what we just did.

Definition.

A filtration of a chain complex C. is a chain of subcomplexes

of subcomplexes ··· ← F_p(c.) ← F_{p+1}(c.) ← Picture Chil me associated graded object has Grp C. = FpC./Fp1C. which is also a list of moduled indexed by homological degree n.

We consider filtrations finite in each honological degree. The differential isk totaldegree Finiteness means?

Pre-class Warm-up!!

Suppose we have a chain complex C. That is filtered

Writing the terms of the associated graded complex on a grid, as we did last time, where would we position the term of F_5 C / F_4 C that is in homological degree 7?

18m	dogicald	egree
4	Epq is indexes	P+92
Þ	indexes	the
Filration.		

A I so totally got that

В ОК

C I'm not sure about what we just did.

The filtration on the homology of a filtration

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- C

Write $H_{\kappa}(C) = Z/B$ suppressing hamblegreat degree

a. The image of H.(F_p C) in H.(C) is $(F_p C \cap Z)/(F_p C \cap B)$

Gr. H(c) = (F, CnZ)/((F, CnB)+(F, CnZ))

Proof a. cycles of FpC

H*(FpC) = cycles of FpC = FCOZ o(FC) The map H*(Fpc) -> H*C is induced by the Forz > 2/B and surjects to Fp(HxC). The kernel is (FC nZ) nB = FC nB b. Gr, (HC) = F, (HC)/F, (HC) $= \frac{(F_{p}C_{n}Z)+B}{(F_{p-1}C_{n}Z)+B}$ $= \frac{(F_{p}C_{n}Z)+B}{F_{p}C_{n}Z}$ $= \frac{(F_{p}C_{n}Z)+B}{F_{p}C_{n}Z}$ (Fo-, Cn2)+B) (Fp-, Cn2)+B) NECOZ) = FpCnZ (Fp-1CnZ)+(BnFpC) modular law

A I so totally got that

В ОК

C I'm not sure about what we just did.

The spectral sequence of a filtered complex

We define for each
$$r = 0, 1, 2, ...$$
 $Z_{pq}^{r} = F_{p}C_{p+q} \cap \partial F_{p-r}C_{p+q-1}$
 $Z_{p}^{\infty} = F_{p}C_{n}Z$
 $Z_{p}^{\infty} = F_{p}C_{n}Z$
 $Z_{p}^{\infty} = F_{p}C_{p+q} \cap \partial F_{p+r-1}C_{p+q+1}$
 $Z_{p}^{\infty} = F_{p}C_{n}B$

Proposition.

Assume the filtration is finite in each homological degree. Then

$$\mathcal{B}_{p}^{0} \subseteq \mathcal{B}_{p}^{1} \subseteq \dots \subseteq \mathcal{B}_{p}^{\infty} \subseteq \mathcal{Z}_{p}^{\infty} \subseteq \dots$$

$$\subseteq \mathcal{Z}_{p}^{1} \subseteq \mathcal{Z}_{p}^{0} = \mathcal{F}_{p}^{0} \subseteq \mathcal{Z}_{p}^{\infty} = \mathcal{Z}_{p}^{\infty} \subseteq \mathcal{Z}_{p}^{\infty} = \mathcal{F}_{p}^{0} \subseteq \mathcal{Z}_{p}^{\infty} = \mathcal{F}_{p}^{0} \subseteq \mathcal{Z}_{p}^{\infty} = \mathcal{Z}_{p}^{\infty} \subseteq \mathcal{Z}_{p}^{\infty} = \mathcal{Z}_{p}^{\infty} \subseteq \mathcal{Z}_{p}^$$

In each degree the B and Z segmences stabilize.

Z_{2,2} = all etts of F₂C₄ that map into F₆C₃

B₂₂ =
$$\frac{1}{3}$$
C₅

Proof B_p is the image of something bigger than B_p-1 is As r increased bigger than B_p-1 is As r increased F₂ is the preimage of something smaller.

F_p-r C₂+q-1 = F₆C₃

Page r.

Ast mapped to its outside

F₃C.

A I so totally got that

В ОК

C I'm not sure about what we just did.

Definition
$$E_{p}^{r} = Z_{p}^{r}/(B_{p}^{r} + Z_{p-1}^{r-1})$$

$$= Z_{p}^{r}/(B_{p}^{r} + (F_{p-1}C \cap Z_{p}^{r}))$$

$$= Z_{p}^{\infty}/(B_{p}^{\infty} + Z_{p-1}^{\infty}) = G_{p}^{\infty} HC)$$

Proposition.

a.
$$Z_{p-1}^{r-1} = F_{p-1}C \cap Z_{p}$$

b.
$$Z_{p}^{\infty}/(B_{p}^{\infty}+Z_{p-1}^{\infty})=G_{r_{p}}H(C)$$

c. For fixed (p,q) we have

$$E_{pq}^{\Gamma} = E_{pq}^{\Gamma+1} = \dots = E_{pq}^{\infty}$$

For r sufficiently large. The sequence 'converges' to Gr H(C) as $r \to \infty$.

Which seems hardest? A a. B b. C c.

Other terminology: H(C) is the abutment of the spectral sequence.

A I so totally got that

В ОК

C I'm not sure about what we just did.

D Shaky

Question:

$$E_p^r = Z_p^r / B_p^r$$
 and $E_p^\infty = Z_p^\infty / B_p^\infty$?

Proposition.

The E^0 and E^1 pages of the spectral sequence are as follows:

a.
$$E_p^\circ = F_p C / F_{p-1} C = G f_p C$$

Thus E^1 is the homology of E^0, relative to the differential induced on E^0 by ∂

Where would you draw E_p^0 on the grid?

- A the vertical line distance p from the origin.
- B the horizontal line distance p from the origin
- C the slope -1 line distance p from the origin.
- D at coordinate (p,0)

Proposition. ∂ induces a differential on E^r of bidegree (-r, r-1) so that E^{r+1} = H(E^r).

Example. Consider a short exact sequence of chain complexes $0 \rightarrow A \rightarrow C \rightarrow B \rightarrow 0$.

Proposition Let $\mu: C -> C'$ be a filtrationpreserving chain map, where C and C' have degree-wise finite filtrations. If the induced map $E^r(\mu): E^r(C) -> E^r(C')$ of spectral sequences is an isomorphism for some r, then $H(\mu): H(C) -> H(C')$ is an isomorphism.

Spectral sequences can be used to compute Euler characteristics using any of their pages.