Spectral sequences

Source: | prefer the treatment in
K.S. Brown, Cohomology of groups,
chapter VII

Topics:

- the spectral sequence of a filtered complex
- how these arise from double complexes

- application to the homology of a union

of spaces.

Motivation

We know that a short exact sequence of
chain complexes 0 ->A.->B.->C.->0
gives rise to a long exact sequence in

homology, perhaps giving information about
H_*(B.)
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A 1 and 2 describe the same simplicial complex.
B 1 and 3 describe the same simplicial complex.
C 2 and 3 describe the same simplicial complex.

D They all describe the same simplicial complex.




Filtrations of modules and associated
graded modules
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We assume that filtrations are finite.
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How did that work for you?

A 1so totally got that

B OK

C I’'m not sure about what we just did.

D Shaky



Definition. [qt
A filtration of a chain complex C. is a chain
of subcomplexes

< < C.) <€ .
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Pre-clage Warm-up!!

Suppose we have a chain complex C. That
is filtered

"'QFP'\C QFFC < F}ﬂc <

Writing the terms of the associated graded
complex on a grid, as we did last time, where

would we position the term of F_5 C/F_4 C
that is in homological degree 7?

A At position (5,7) UN\WR’Q

B At position (4,7) 6F EP‘} L( F+?
C At position (5,2) f E,\o(()(es fCL

D At position (7,5) {:(l NS~ .

E None of the above.




How did that work for you?

A 1so totally got that

B OK

C I’'m not sure about what we just did.

D Shaky



The filtration on the homology of a

filtered u>m$b3b< Clo we. have & ‘f\l‘ﬁaM

1: C Chﬂ - CC The inclusion
’F C L C ?‘;‘(25 a W\a)b n Wbbj
H»(F@ ) = ©.
De—f\*ﬁ T-‘PU_L‘LC)> Image O‘F Lv_ '

NCX Z-LWM d‘f ’f\'_‘(cs

O aml

Proposition.

a. Trf)]e image of H.(F_p C) in H.(C) i

GZPC“Z>/ (F PC“B)

GrF HS) =<FP CGZ>/(Q§°COB)+(§_ Co )

cujcles d() I:PC
)

z(F,,c) Yl C .
m wia H*OTC' -
IWAMMBM FCnZ—*b /%
and swiFS o RS )
'_D\L Q(W\LL (¢ (FCnZBﬂB FC '\B
b G, b c)= FKHC)/F ﬁ*‘c)

. 6 m>+5 (Frs S

_<FPC«2)+‘5 v _C0%

(Fi €A 2)4R [(F;"an)m)r(&,CnZ)
L _FpCnZ hy The

(Fo-iCnl) "‘(E“FC) ﬂ selaler lan




How did that work for you?
A |so totally got that

B OK

C I'm not sure about what we just did.

D Shaky



The spectral sequence of a tllteled complex
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Proposition.

Assume the filtration is finite in each homological
degree. Then
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How did that work for you?

A 1so totally got that

B OK

C I'm not sure about what we just did.

D Shaky
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c. For fixed (p, q) we have
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For r sufficiently large. The sequence
‘converges’ to Gr H(C) as r->#9.

Which seems hardest? Aa Bb Cc. Other terminology: H(C) is the abutment
of the spectral sequence.




How did that work for you? Question:

A | so totally got that ¢ C /o © _ Zm/Bw /
'e Ep = Zg/Bp ma Ep =4[5

B OK

C I'm not sure about what we just did.

D Shaky




Proposition.
The EAO and EAT pages of the spectral
sequence are as follows:

a. E :FPC/FWC - &, C

p
b. E; H CFPC/“FF-IC’>

Thus EA1 is the homology of EAO, relative to
the differential induced on EAO by &

{)

Where would you draw E_p/O on the grid?

A the vertical line distance p from the origin.
B the horizontal line distance p from the origi
C the slope -1 line distance p from the origin.

D at coordinate (p,0)

Proposition. & induces a differential on EAr
of bidegree (-r, r-1) so that EA{r+1} = H(E/r).



Example. Consider a short exact sequence of
chain complexes 0 ->A->C->B -> 0.




Proposition Let p: C->C’ be a filtration-
preserving chain map, where C and C’ have
degree-wise finite filtrations. If the induced
map EAr(p) : EAr(C) -> EAr(C') of spectral
sequences is an isomorphism for some r, then
H(p) : H(C) -> H(C’) is an isomorphism.

Spectral sequences can be used to compute
Euler characteristics using any of their pages.




