Spectral sequences

Source: | prefer the treatment in
K.S. Brown, Cohomology of groups,
chapter VII

Topics:

- the spectral sequence of a filtered complex
- how these arise from double complexes

- application to the homology of a union

of spaces.

Motivation

We know that a short exact sequence of
chain complexes 0 ->A.->B.->C.->0
gives rise to a long exact sequence in

homology, perhaps giving information about
H_*(B.)
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A 1 and 2 describe the same simplicial complex.
B 1 and 3 describe the same simplicial complex.
C 2 and 3 describe the same simplicial complex.

D They all describe the same simplicial complex.




Filtrations of modules and associated
graded modules
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We assume that filtrations are finite.
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How did that work for you?

A 1so totally got that

B OK

C I’'m not sure about what we just did.

D Shaky



Definition. [qt
A filtration of a chain complex C. is a chain
of subcomplexes
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Pre-clage Warm-up!!

Suppose we have a chain complex C. That
is filtered

"'QFP'\C QFFC < F}ﬂc <

Writing the terms of the associated graded
complex on a grid, as we did last time, where

would we position the term of F_5 C/F_4 C
that is in homological degree 7?

A At position (5,7) UN\WR’Q

B At position (4,7) 6F EP‘} L( F+?
C At position (5,2) f E,\o(()(es fCL

D At position (7,5) {:(l NS~ .

E None of the above.




How did that work for you?

A 1so totally got that

B OK

C I’'m not sure about what we just did.

D Shaky



The filtration on the homology of a
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How did that work for you?
A |so totally got that

B OK

C I'm not sure about what we just did.

D Shaky



The spectral sequence of a filteled complex
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Assume the filtration is finite in each homological

degree. Then
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How did that work for you?

A 1so totally got that

B OK

C I'm not sure about what we just did.

D Shaky



Defition
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For r sufficiently large. The sequence

‘converges’ to Gr H(C) as r->#9.
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How did that work for you? Question:

A | so totally got that ¢ C /o © _ Zm/Bw /
'e Ep = Zg/Bp ma Ep =4[5

B OK

C I'm not sure about what we just did.

D Shaky




Proposition.
The EAO and EAT pages of the spectral
sequence are as follows:

a. EPf-FC/F C -G, C

A GITAY

Thus EA1 is the homology of EAO, relative to
the differential induced on EAO by 8
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Proposition. ¢ induces a differential on EAr
of bidegree (-r, r-1) so that EA{r+1} = H(E/r).



Pre-clage Warm-up!le

Starting from a short exact sequence of chain

complexes 0->A ->C->D ->0, what does the
EAO page of the corresponding spectral sequence

look like?
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Example. Consider a short exact sequence of

chain complexes 0->A ->C->D ->0.
As & A | =
This means we have a filtration of C.

F,C=0 Fc=A ERC=C.
o RBC/F.C D.

We draw the EAO page of the spectral sequence
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The spectral sequence from 0 ->A->C->D ->0
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The differentials on the spectral sequence

We recall the picture of the filtration of C:
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Proposition Let p: C->C’ be a filtration-
preserving chain map, where C and C’ have
degree-wise finite filtrations. If the induced
map EAr(p) : EAr(C) -> EAr(C') of spectral
sequences is an isomorphism for some r, then
H(p) : H(C) -> H(C’) is an isomorphism.

Spectral sequences can be used to compute
Euler characteristics using any of their pages.




Pre-clage Warm-up!!!

Wthat is the rank of the degree 1 term C_1(X)
in the simplicial chain complex of the
simplicial complex
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C 5
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Double complexes

Definition
A double complex is a bigraded

moduleC?cf , P19 € Z

With a "horizontal” differential ¢" of
bidegree (-1,0) and a "vertical’
differential ¢” of bidegree (0,-1) so that
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Pre-clage Warm-up!!

Suppose we have a chain complex in the
category of chain complexes. Do we
understand what its homology is, say in degree
5? Is it best described as

A a module

B a graded module

C a chain complex of modules \/

D a chain complex of chain complexes

E  None of the above




Example: the homology of a union.

Suppose that a simplicial complex X is the
union of subcomplexes X; indexed by some
totally ordered set J. We construct the nerve of
this covering: Le J
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Example: the spectral sequence

We draw The sequena ak a dombole w”\f[ﬁx
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Lemma
The previously constructed complex (of chain
complexes) is acyclic: (e

D — )= Cp o €y Ca=— =+ ®

Proof.
Recall

[.We show the complex is acyclic in each
degree q (as a chain complex of modules).

w anses eac[«ﬁw.ﬂ, T s Q
sta(ex n X

5.
Fix a g-simplex u in X. The o-that arise in pairs

( &7 u) are the faces (=subsets) of the single
simplex whose vertices are { & € J | uis in Xa }.

4.

These basis elements (& ,u) with u fixed
span a subcomplex isomorphic to the chain
complex of the single simplex. Itis
contractible, so acyclic. The chain complex is
the direct sum of these.




Filtering by rows
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Filtering the double complex by columns

The spectral sequence looks like:
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This looks like a coefficient system on the nerve
of the covering.

Theorem. Suppose the simplicial complex X
is the union of subcomplexes where every non-
empty intersection is contractible. Then the
homology of X is the same as the homology of
the nerve of the covering (in a graded version).

Suppose that every non-empty intersection of the
spaces in the covering is contractible. The EA1
page becomes:




