Spectral sequences

Source: I prefer the treatment in K.S. Brown, Cohomology of groups, chapter VII

Topics:

- the spectral sequence of a filtered complex
- how these arise from double complexes
- application to the homology of a union of spaces.

Motivation

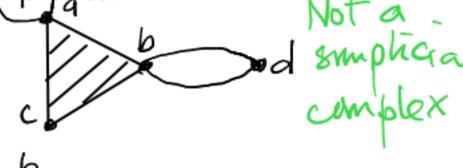
We know that a short exact sequence of chain complexes 0 -> A. -> B. -> C. -> 0 gives rise to a long exact sequence in homology, perhaps giving information about H_*(B.)

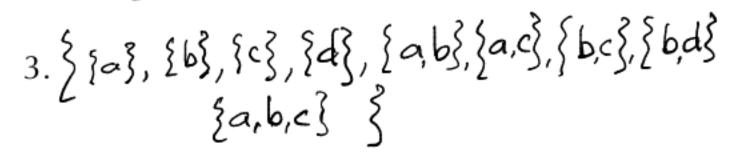
Examples 1. Ext groups Given a s.e.s. of R-modules D-) L-1M-)N-10' we get a s.e.s of chain complexes O-Hom (P, L) Hom (P,M)-> How (P,N)->D where PAAO is a projection of A, hence a long e.s. 2. We may have a simplicial complex xxx xux where xxx x where xxx x where xxx is a subsimplicial complex Get long e.s. in homology. What if the simplicial complex D has several subcomplas X_1, \dots, X_n Q = QX $C.(xi) \subseteq C.(\Delta)$ Let $F_p(\Delta) = span of the$ simplices in D that lie in at least p of the X1, ..., Xn We get subcompleres $F_3(\Delta) \subseteq F_2(\Delta) \subseteq F_3(\Delta) = C.(\Delta)$ Can we get info about

 $H_*(C.(\Delta))$ from the H+ (FP(A)/F+1(A))? There is a spectral requence generalizing the Mayer -Vietais long e.s.

Pre-class Warm-up!!

Which of the following define the same simplicial complexes?





- A 1 and 2 describe the same simplicial complex.
- B 1 and 3 describe the same simplicial complex.
- C 2 and 3 describe the same simplicial complex.
- D They all describe the same simplicial complex.

An (abstract) simplicial complex is a certain subsets of a set S so that $T \in \Delta$, $U \subseteq T$ $U \in \Delta$.

Filtrations of modules and associated graded modules

An ascending fittration of a module M is a chain of submodules $-\cdots \subseteq F_{p}(M) \subseteq F_{p+1} \subseteq \cdots \subseteq M$ Altgraded module is a list of modules Mp, PEZ. We may want to think of it $P \in \mathbb{Z}^{M}$

Given a filtration the associated graded module Gr M had Grp M = Fp M/Fp-1 M e.g. $k[x] = \bigoplus kx^p$

We assume that filtrations are finite.

This means $F_p = F_{p+1} = ...$ If p is large enough and $F_p = F_{p-1} = ...$ This means $F_p = F_{p+1} = ...$ If p is small enough.

How did that work for you?

A I so totally got that

В ОК

C I'm not sure about what we just did.

D Shaky

Definition.

A filtration of a chain complex C. is a chain of subcomplexes

of subcomplexes ··· ← F_p(c.) ← F_{p+1}(c.) ← Picture Chil me associated graded object has Grp C. = FpC./Fp1C. which is also a list of moduled indexed by homological degree n.

We consider filtrations finite in each honological degree. The differential isk totaldegree Finiteness means?

Pre-class Warm-up!!

Suppose we have a chain complex C. That is filtered

Writing the terms of the associated graded complex on a grid, as we did last time, where would we position the term of F_5 C / F_4 C that is in homological degree 7?

18m	dogicald	egree
4	Epq is indexes	P+92
Þ	indexes	the
Filration.		

How did that work for you?

A I so totally got that

В ОК

C I'm not sure about what we just did.

D Shaky

The filtration on the homology of a filtration

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- CC. The inclusion

FPC = Fp+ C = -- C

Write $H_{\kappa}(C) = Z/B$ suppressing hamblegreat degree

a. The image of H.(F_p C) in H.(C) is $(F_p C \cap Z)/(F_p C \cap B)$

Gr. H(c) = (F, CnZ)/((F, CnB)+(F, CnZ))

Proof a. cycles of FpC

H*(FpC) = cycles of FpC = FCOZ o(FC) The map H*(Fpc) -> H*C is induced by the Forz > 2/B and surjects to Fp(HxC). The kernel is (FC nZ) nB = FC nB b. Gr, (HC) = F, (HC)/F, (HC) $= \frac{(F_{p}C_{n}Z)+B}{(F_{p-1}C_{n}Z)+B}$ $= \frac{(F_{p}C_{n}Z)+B}{F_{p}C_{n}Z}$ $= \frac{(F_{p}C_{n}Z)+B}{F_{p}C_{n}Z}$ (Fo-, Cn2)+B) (Fp-, Cn2)+B) NECOZ) = FpCnZ (Fp-1CnZ)+(BnFpC) modular law

How did that work for you?

A I so totally got that

В ОК

C I'm not sure about what we just did.

D Shaky

The spectral sequence of a filtered complex

We define for each
$$r = 0, 1, 2, ...$$

$$Z_{pq}^{r} = F_{p}C_{p+q} \cap \overline{\partial}F_{p-r}C_{p+q-1}$$

$$Z_{p}^{\infty} = F_{p}C \cap Z$$

$$Z_{p}^{\infty} = F_{p}C \cap Z$$

$$Z_{p}^{\infty} = F_{p}C \cap Z$$

Pre-class Warm-up! Study this setup and get familiar with it.

Proposition.

Assume the filtration is finite in each homological degree. Then

$$\mathcal{B}_{p}^{0} \subseteq \mathcal{B}_{p}^{1} \subseteq \dots \subseteq \mathcal{B}_{p}^{\infty} \subseteq \mathcal{Z}_{p}^{\infty} \subseteq \dots$$

$$\subseteq \mathcal{Z}_{p}^{1} \subseteq \mathcal{Z}_{p}^{0} = \mathcal{F}_{p}^{0} \subseteq \dots$$

In each degree the B and Z sequences stabilize.

Z² = all etts of F₂C₄ that map into F₆C₃

B² =
$$\int F_3$$
C₅

Proof Bp is the image of something bigger than Br-1 is. As r increased to something smaller.

Fp-r Cp+9-1=F₆C₃

Page r.

Ast mapped to B²₁₂ blc it is outside.

F₃C.

How did that work for you?

A I so totally got that

В ОК

C I'm not sure about what we just did.

D Shaky

Definition
$$E_{pq}^{r} = Z_{pq}^{r}/(B_{pq}^{r} + Z_{p-19}^{r-1})$$

$$= Z_{p}^{r}/(B_{p}^{r} + (F_{p-1}C \cap Z_{p}^{r}))$$

$$= Z_{pq}^{\infty}/(B_{pq}^{\infty} + Z_{p-19}^{\infty}) = G_{pq}^{r}/(B_{pq}^{\infty} + Z_{p-19}^{\infty}) = G_{pq}^{r}/(B_{pq}^{r} + Z_{p-19}^{\infty})$$

Proposition.
a.
$$Z_{p-1}^{r-1} = F_{p-1} C \cap Z_p^r$$

b.
$$Z_{p}^{\infty}/(B_{p}^{\infty}+Z_{p-1}^{\infty})=G_{r_{p}}H(C)$$

c. For fixed (p,q) we have

$$E_{pq}^{\Gamma} = E_{pq}^{\Gamma+1} = \dots = E_{pq}^{\infty}$$

For r sufficiently large. The sequence 'converges' to Gr H(C) as $r \rightarrow \infty$.

Which seems hardest? A a. B b. C c.

Zp-1=Fp-1 Cn Zp b/c Zp=thasex in FpC, Dx & Fp-+C Zp-1 = those x in Fp1C, dx = Fp-r C b, Gr, H(C) = (+ Cn Z) (F, Cn B) + (+ Cn Z) <. The tems B' < B'+1 < B' stabilize with r So do the Zp F F C stabilizes in each homological degree at C Then

Other terminology: H(C) is the abutment of the spectral sequence.

How did that work for you?

A I so totally got that

В ОК

C I'm not sure about what we just did.

D Shaky

Question:

$$E_p^r = Z_p^r / B_p^r$$
 and $E_p^\infty = Z_p^\infty / B_p^\infty$?

Proposition.

The E^0 and E^1 pages of the spectral sequence are as follows:

a.
$$E_{\beta}^{\circ} = F_{\beta}C/F_{\beta}C = Gr_{\beta}C$$

Thus E^1 is the homology of E^0, relative to the differential induced on E^0 by ∂

Where would you draw E_p^0 on the grid?

A the vertical line distance p from the origin.

B the horizontal line distance p from the origin

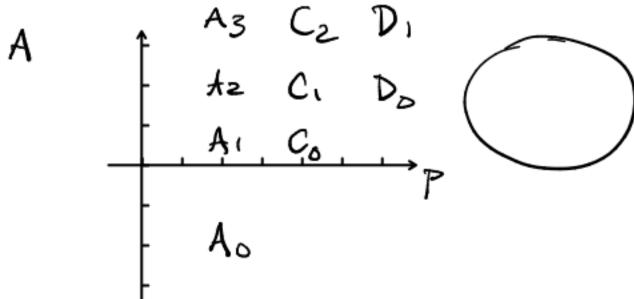
C the slope -1 line distance p from the origin.

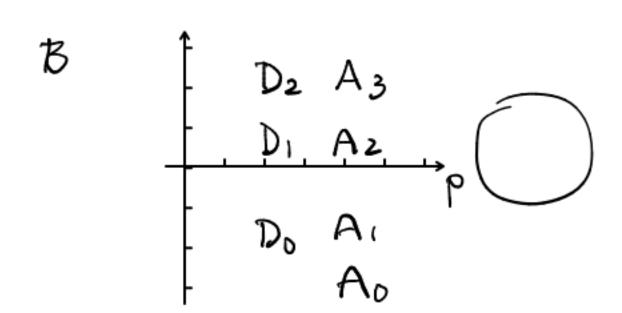
D at coordinate (p,0)

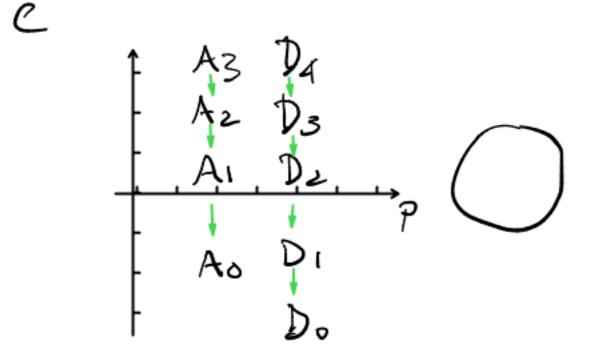
Proposition. ∂ induces a differential on E^r of bidegree (-r, r-1) so that E^{r+1} = H(E^r).

Pre-class Warm-up!!

Starting from a short exact sequence of chain complexes $0 \rightarrow A \rightarrow C \rightarrow D \rightarrow 0$, what does the E^0 page of the corresponding spectral sequence look like?







D something else.

Each page of the S.S. comes with a differential diepertual diepert

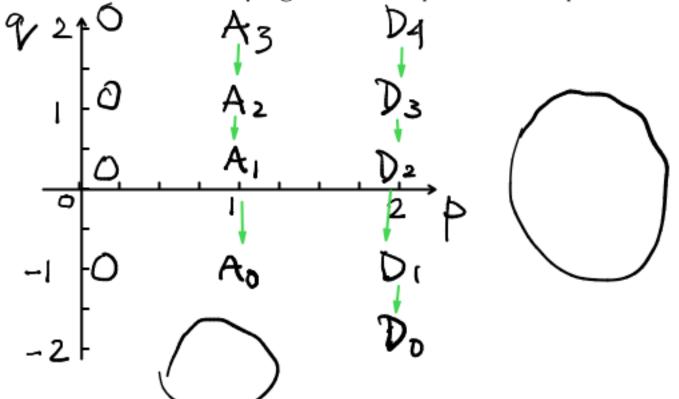
Example. Consider a short exact sequence of chain complexes $0 \rightarrow A \rightarrow C \rightarrow D \rightarrow 0$.

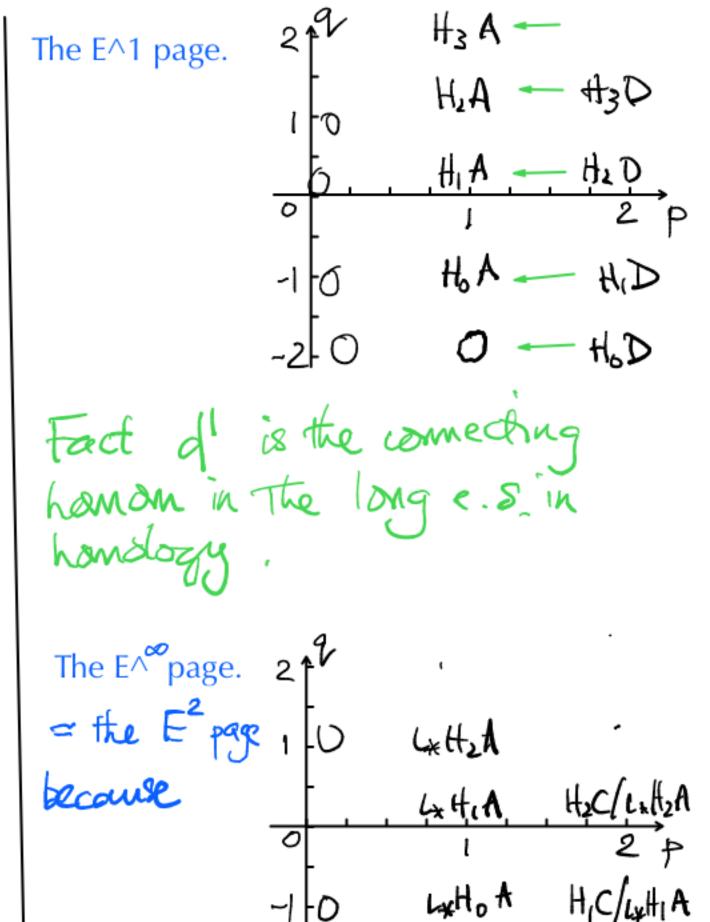
Ao ~A, ~

This means we have a filtration of C.

$$F_{\delta}C=0$$
 $F_{1}C=A$. $F_{2}C=C$.

We draw the E^0 page of the spectral sequence



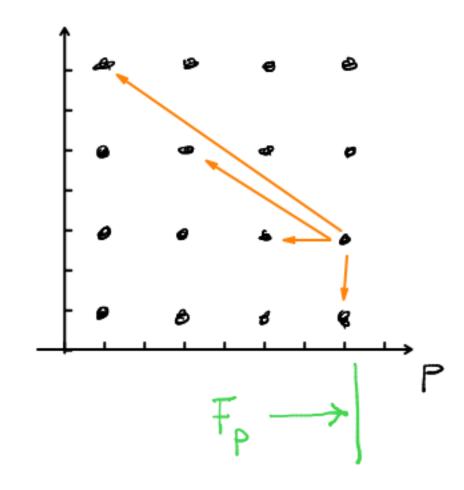


The spectral sequence from $0 \rightarrow A \rightarrow C \rightarrow D \rightarrow 0$ H2A-H3(D) 0 O. HIA - H2(D) O. O 4.W-H,D) O Q -H*D) O O LX HIA HZC)/LXHZA -6 L*HOA HIC/C*HOA

The long e.s. in the is H2C - H2D-6+1,A5+1,C → H,D> This gives exact sequences H2D -HIA -> CxHit -> O O> HETICATION HIA We see that the E2 page is the homology of the connecting homom. In the

The differentials on the spectral sequence

We recall the picture of the filtration of C:



At the F page we get
the component of the full
differential with bidegree
(-r, r-1) only, because

the components to the right are zero on the homology of the differential on Ent; the components to the left are the components to the left are the because we have factored out their boundary contributions.

A spect. sequence with t columns have $E^{t} = E^{t+1} = \dots = E^{\infty}$.

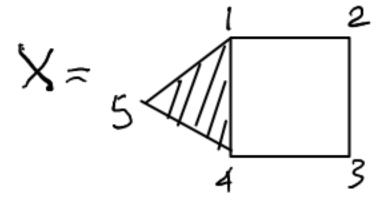
2 columns has the E^{∞} terms encoded in a long e^{s} .

Proposition Let $\mu: C \to C'$ be a filtrationpreserving chain map, where C and C' have degree-wise finite filtrations. If the induced map $E^r(\mu): E^r(C) \to E^r(C')$ of spectral sequences is an isomorphism for some r, then $H(\mu): H(C) \to H(C')$ is an isomorphism.

Spectral sequences can be used to compute Euler characteristics using any of their pages.

Pre-class Warm-up!!!

Wthat is the rank of the degree 1 term C_1(X) in the simplicial chain complex of the simplicial complex



A 1

B 3

C 5

D 6

Ct(X):= free R-module with basis the simplices in dimension t

Double complexes

Definition

A double complex is a bigraded module $C_{q}=$, $p,q\in \mathbb{Z}$

With a `horizontal' differential ∂' of bidegree (-1,0) and a `vertical' differential ∂'' of bidegree (0,-1) so that

So that all squares commute:

7'3"= 2"8 always

and where $\partial'\partial'=0$, $\partial''\partial'=0$ We can regard a double complex as a chain complex in the category as a chain complexes - in 2 ways The total complex TC has

TCh = D Cpg with

boundary map d: TCn - TCn-1

with components d| = 0/pq + (-1) 2"

so that dd = 0.

Example. The tensor product of two chain complexes C' and C'' over a commutative R, $C' = \leftarrow C_{p-1}' \leftarrow C_p' \leftarrow \cdots$ $C'' = C_{p-1}' \leftarrow C_p'' \leftarrow \cdots$

$$C_{p-1}' = C_{p-1}' = C_{p}' \otimes C_{q-1}''$$
 $C_{p-1}' = C_{p-1}' \otimes C_{q-1}''$

 $P_{1}\otimes C(X) \leftarrow P_{1}\otimes C(X)$

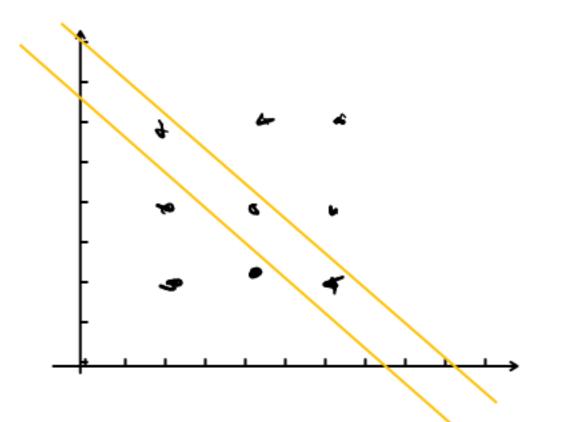
Example. G is a finite group acting on a simplicial complex X. The chain complex $C(x) = C_p(x) - C_p(x)$ is a complex of ZG-modules. We may take a projective resolution of Z over ZG:

 $Y=(P_0\leftarrow P_1\leftarrow P_2\leftarrow \cdots)$ Fam the double complex $P \otimes_{\mathbb{Z}_{6}} C(x)$. Definition: The houndary of T/POZG C(X)) is equivariant

hondogy of Gacting on X:

 $H_*(G; X)$

The spectral sequences associated to a double complex:



We can filter TC by columns: FTC = @ tehms to the left

We can also fifter using rows

P There ...
tems give
F(TC).

of we have a 1st quodrant operate sequence, the filtrations are finite in each handlogical degree. The spectral requences both anverge to $H_*(TC)$

Pre-class Warm-up!!

Suppose we have a chain complex in the category of chain complexes. Do we understand what its homology is, say in degree 5? Is it best described as

- A a module
- B a graded module
- C a chain complex of modules
- D a chain complex of chain complexes
- E None of the above

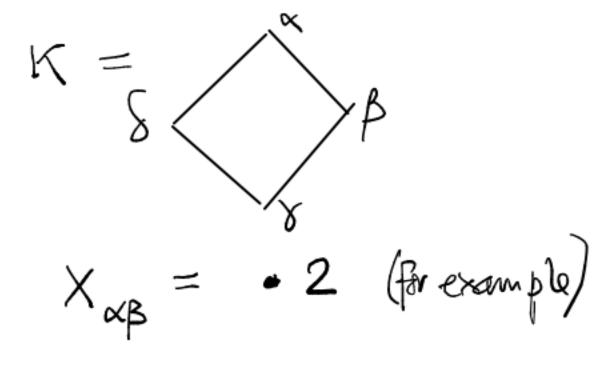
Example: the homology of a union.

Suppose that a simplicial complex X is the union of subcomplexes X; indexed by some totally ordered set J. We construct the nerve of this covering:

It is a simplicial complex K with vertex set J The p-simplices of K Put an order on J are

Example.

$$K = \{ \alpha, \beta, \gamma, \delta, \alpha\beta, \beta\gamma, \delta\delta, \delta\alpha, \delta$$



For each simplex $\sigma = \alpha_0 < \dots < \alpha_p$ define $X_{\sigma} = X_{\alpha_0} \cap \dots \cap X_{\alpha_p}$

$$C^b = \bigoplus_{k \in K(b)} C(X^{2})$$

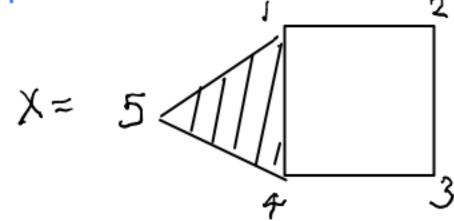
Thus has as a basis simplices $u \in X_{\sigma}$, for each $\sigma \in K$ 1-e. pairs (σ, u)

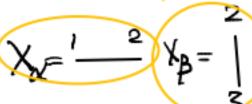
We define a complex of (M) C, 2' C, 2 ... '≥ C, < f 0-00<---< of and O < i < p put δι(σ) = ««< ···<«+ (a p-1 smplax) We have inclusions X5 -> X5giving a chain map dic(xo) - C(xo) We define J: Cp → Cp-1 to be

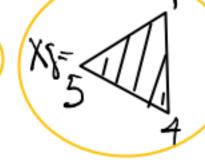
 $\partial = \underbrace{\sum_{k=0}^{\infty} (-1)^k J_k}_{L=0}$ We also have inclusions $X_{\alpha} \xrightarrow{\lambda} X$ giving $L_{\alpha} : C(X_{\alpha}) \to C(X)$.

The sum of these is the map $C_{\alpha}(X) = \bigoplus_{k \in J} C(X_{\alpha}) \xrightarrow{\lambda} C(X)$.

Example







degree

$$S \stackrel{2}{\underbrace{ }} \beta$$

$$C_{1} = C(X_{N}) \oplus C$$

Example: the spectral sequence We draw the sequence as a double complex 10 10 101

Lemma

The previously constructed complex (of chain complexes) is acyclic:

Proof. Recall $C_P = \bigoplus_{\delta \in KP} C(X_{\delta'}) = C_{P\delta}^{\prime}$

We show the complex is acyclic in each degree q (as a chain complex of modules).

2 Cpq has a basis indexed by pairs (σ, u) where $\sigma \in K^{(p)}$, $u \in X_{\sigma}$ a q-simplex

u anses each time it is a simplex in Xo

3

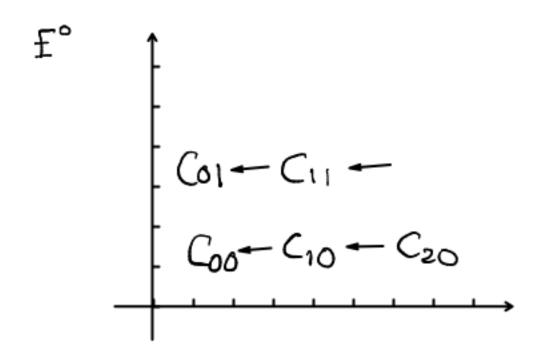
Fix a q-simplex u in X. The σ -that arise in pairs (σ ,u) are the faces (=subsets) of the single simplex whose vertices are { $\alpha \in J \mid u \text{ is in } X_{\alpha}$ }.

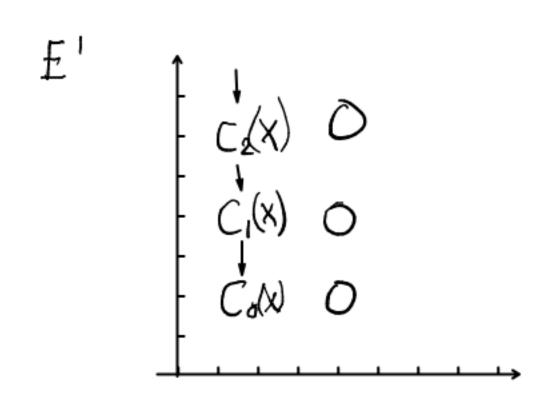
4.

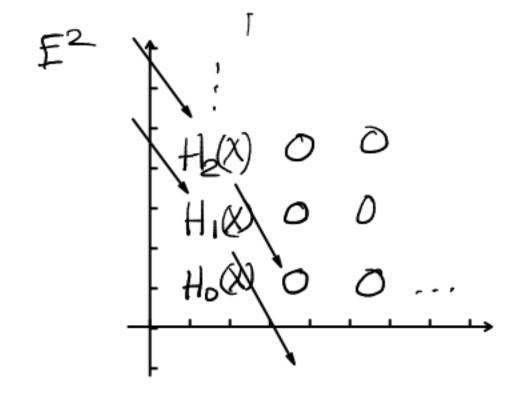
These basis elements (σ ,u) with u fixed span a subcomplex isomorphic to the chain complex of the single simplex. It is contractible, so acyclic. The chain complex is the direct sum of these.

Filtering by rows

Proposition.



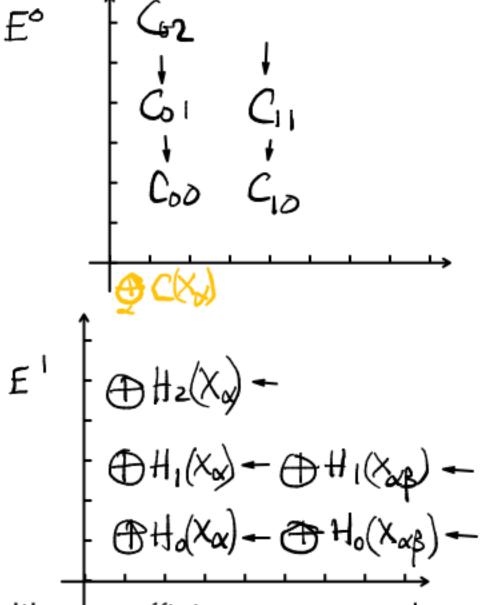




We conclude that $E^{\infty} = Gr H_{*}(X)$

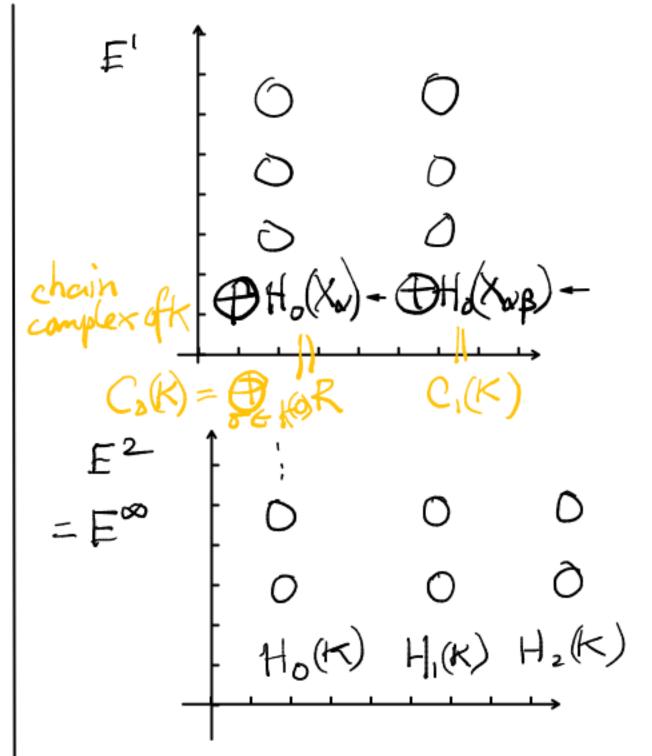
Filtering the double complex by columns

The spectral sequence looks like:



This looks like a coefficient system on the nerve of the covering.

Suppose that every non-empty intersection of the spaces in the covering is contractible. The E^1 page becomes:



Theorem. Suppose the simplicial complex X is the union of subcomplexes where every non-empty intersection is contractible. Then the homology of X is the same as the homology of the nerve of the covering (in a graded version).