Dimension theory and related things

1. Hilbert polynomials, Hilbert series, Poincare series

A graded ring is a ring A together with a family $(A_n)_{n,n}$ of subgroups of the additive group of A, such that

1.
$$A = \bigoplus_{n \neq 0} A_n$$

2. Am An = Am+n
We see: each An is an Ao - module.
Examples. 1. and Ao a a subtring.

A = k[x1, ..., xr], An = set of honogeneous polynomials of degree n.

$$A = k[t^2, t^3] \subseteq k[t]$$

Pre-class Warm-up!!

Are you familiar with the formula for the dimension of the space of homogeneous polynomials in $k[x_1, ..., x_d]$ of degree n as

$$\binom{n+d-1}{d-1}$$
?

A Yes

B No

Definition.

Let A be a graded ring

A graded A-module is an A-module M together with a family $(M_n)_{n>0}$ of subgroups of M such that

1. $M = \bigoplus_{n \geq 0} M_n$

2. Am Mr

Mm+n

An element $u \in M_m$ is called numogenous of degree m.

The subgroups Mm are the homogeneous companants

is an ideal $A_{+} = \bigoplus_{n > 1} A_{n}$ of A.

More definitions:

Homogeneous elements, degree, homogeneous components, homomorphism of graded modules.

A honomorphism $\phi: L \rightarrow M$

is a hanon of graded modules if $\phi(L_m) \leq M_m$

Aw.

Proposition. TFAE for a graded ring A:

a. A is a Noetherian ring;

b. A_0 is Noetherian and A is finitely generated as an A_0-algebra.

Proof.

b => a is Hilbert's basis theorem. As a > b Noetheran, and A is an ingge of this. a > b $A_0 = A/A_+$ is Noetherian.

The ideal A_+ is finitely generated, say by $x_1, ..., x_s$. We may take these elements to be homogeneous.

Let A' be the subring of A generated by x_1, \dots, x_s . We show that $A_n = A'$ for all $n \ge 0$.

Induction on N

For n > 0 let y be in A_n. Because y is in A_+ we can write y as a linear combination of the x_i, say

$$y = \sum_{i=1}^{s} a_i x_i$$

Let k_i be the degree of the homogeneous element x_i .

Each $k_i > 0$ so by induction each a_i is a polynomial in the x's with coefficients in A_0. The same is true of y, therefore y is in A'. Hence A_n is contained in A', so A = A'.

Hilbert functions

Let $A = \bigwedge_{N=0}^{N} \bigwedge_{N=0}^{N} N$ be a Noetherian graded ring. Then A_{0} is a Noetherian ring, and A is generated (as an A_{0} -algebra) by elements

which we may choose to be homogeneous, of degrees k_1, \ldots, k_s

Let M be a finitely generated graded A-module, generated by homogeneous elements m_j , $1 \le j \le t$. Each graded component M_n is now finitely generated as an A_0 -module

because Mn is generated as an A - module by elements

g(x) m, where g(x) is a

monomial in the xi of total degree

n-deg m_j . Example $A = M = k[x_1, \dots x_n]$ $P(M,t) = \overline{(1-t)}n$

Let li fin gen A-modules -> Z Le an additive function, meaning V s.e.s. of Ao-modules O - L -1 M -1 N -1 O We have $\lambda(M) = \lambda(L) + \lambda(M)$ e.g. if to=k is a field x=dim is possible or x = composition length.

Definition. The Poincaré series of M (with respect to λ) is

$$P(M,t) = \sum_{n > 0} \lambda \left(M_n \right) t^n \quad \text{in } Z[[t]].$$

Definition. The Poincaré series of M (with respect to) is

$$P(M,t) = \sum_{n \geq 0}^{t} \lambda(M_n) t^n \quad \text{in } Z[[t]].$$

Theorem (Hilbert, Serre)

Let A be a Noetherian graded ring, M a finitely generated graded A-module, λ a length function.

Then P(M,T) is a rational function in t of the form

$$P(M,t) = \frac{f(t)}{s}, f \in \mathbb{Z}[t]$$

Here
$$A = A_o[x_1, \dots, x_s], deg x_i = k_i$$