Dimension theory and related things
1. Hilbert polynomials, Hilbert series,
Poincare series

Definition. =7~ "=

A graded ring is a ring A together with a family
(A_n)y,0f subgroups of the additive group of A,

such that
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Pre-clage Warm-up!!

Are you familiar with the formula for the
dimension of the space of homogeneous
polynomials in k[x_1, ..., x_d] of degree n
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A Yes

B No




Definition.
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A graded A-module is an A-module M
together with a family (M_n), _ - of subgroups
of M such that
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More definitions:
Homogeneous elements, degree, homogeneous
components, homomorphism of graded modules.
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LLeT A be canvewwldiahve -
Proposition. TFAE for a graded ring A:

a. A is a Noetherian ring;

b. A_O is Noetherian and A is finitely
generated as an A_0O-algebra.

Proof.

b => a is Hilbert’s basis theorem. A ) )qu
W Noef{*@to& angl A S an f’ﬂgo A,
a=>b A _0=A/A_+ is Noetherian.

The ideal A_+ is finitely generated, say by
x_1, ..., x_s. We may take these elements to
be homogeneous. \Nw <
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For n>0 let y bein A_n. Because y isin
A_+ we can write y as a linear combination of

the x_i, say
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Let k_i be the degree of the homogeneous
element x_i.

Each k_i > 0 so by induction each a_i isa
polynomial in the x’s with coefficients in A_O.
The same is true of vy, therefore y isin A'.
Hence A_n is containedin A, so A=A
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Hilbert functions

Let A =@OA*\ be a Noetherian graded ring.
Then A_O is a Noetherian ring, and A is

generated (as an A_0-algebra) by elements
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which we may choose to be homogeneous, of
degrees k_1, ..., k_s

Let M be a finitely generated graded A-
module, generated by homogeneous elements
m_j, 1 <j <t. Each graded component M_n
is now finitely generated as an A_0O-module
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Pre-clage Warm-up!

s the following true/false, obvious/
not obvious ?

Let M be an R-module where R is a
commutative ring, and let r be an element
of R.

There is an exact sequence

-
O >K->M->M->L >0

where the middle map is multiplication by
r and both K and L are annihilated by .

A false

B (probably) true and not obvious
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Definition. The Poincare series of M (with
respect to N is

P(M, 1) = ZT X(M)‘t

N0

in Z[[t]].

Theorem (Hilbert, Serre)
Let A be a Noetherian graded ring, M a

finitely generated graded A-module, X\ a
length function.

Then P(M,T) is a rational function in t of

the form t)
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Corollary. A is a Noetherian graded ring
generated as an A_0-algebra by
homogeneous elements of degrees k_i.

If each k_i =1 then, for sufficiently large
n, X(M_n)is a polynomial in n (with
rational coefficients) of degree d-1,
where d is the order of the pole of P(M,t)

at t=1. 4 =dm)
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Definition. The polynomial just described is
the Hilbert function (or polynomial) of M.




Pre-clagg Warm-up!!

Let d be the order of the pole of

'+t-\— t* _ =
oot - ) a,t
nzo

at t =1. Which of the following
correctly describes the degree of
polynomial growth of the coefficients
a_n as n increases’

Ado1

B d
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D None of the above.
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Write d(M) for the order of the pole
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Corollary. If a homogeneous element x in + 3@*)

A is not a zero divisor on M then d(M/xM)
0‘,(L> — 0‘ <M> - |

= d(M) -

Not a zero divisor means xm =0 implies A
m = 0. This happens e.g. if A=M isa
domain and x # 0.
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2. A=k[th2, 3] = kIBOS btebT@..

P(A€)

What is the Poincare series of A
(with respect to the k-dimension of
terms)?
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The graded ring associated to an ideal

Proposition.
et ] be an ideal of a Noetherian ring A.
Then the graded ring

G(A)Zé a’h/JhH

is Noetherian, generated by elements of
degree 1.
If M is a finitely generated A-module then
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is a finitely generated G(A)-module.

Proof

The same is true for G(M) if it is defined by a
filtration that eventually is multiplication by }
and has ] M i contained in M {i+1}. Such is
called J-stable.




We look for a situation where | is an ideal
of A for which there is a suitable additive
function on A/J-modules.

If Jis primary for some maximal ideal of A
then A/} is Artinian.

Proposition.
Let ] be an ideal of A so that A/] is
Artinian, let M be a finitely generated A-

module. Then
a. M/JAnM s of finite length for each n > 0.

b. For all sufficiently large n this length is a
polynomial g(n) of degree <s in n where | [he Proposition works for a filtration of
s is the least number of generators of ). M that is J-stable. Part c. says the
degree and leading coefficient of g(n)
Proof. do not depend on the filtration chosen.




Definition.

Aliyah-Macdonald and Matsumura write
the polynomial

g(n) = ’P\’:(W) =l Q"\/ J”M) >0

Proposition.
Matsumura calls it the Samuel function. I J is #-primary where W is a maximal
When M = A, Aliyah-Macdonald call  |ideal then
it the characteristic polynomial of the Vlﬁ 'X.J,Q"’) = C&j ,Xfm/("’>
ideal J.
Corollary.

For large n, length (A JAn) is a polynomial
of degree <s, where s = least number of




Let A be a (Noetherian) ring. We already| Goal: Let A be a Noetherian local ring
with maximal ideal.

Let O(A) = least number of generators of
an -primary ideal of A.

We indicate a proof that
O(A) = d(A) = dim(A)
We have seen:

DimA=0 <=> A is Artinian.
Dimension is preserved under integral




Goal: Let A be a Noetherian local ring
with maximal ideal.

Let O(A) = least number of generators of
an -primary ideal of A.

We indicate a proof that

Oo(A) = d(A) = dim(A)

Proposition.



