Dimension theory and related things
1. Hilbert polynomials, Hilbert series,
Poincare series

Definition. =7~ "=

A graded ring is a ring A together with a family
(A_n)y,0f subgroups of the additive group of A,

such that
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Pre-clage Warm-up!!

Are you familiar with the formula for the
dimension of the space of homogeneous
polynomials in k[x_1, ..., x_d] of degree n

as (VH‘O[" | 7
d-1

A Yes

B No




Definition.
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A graded A-module is an A-module M
together with a family (M_n), _ - of subgroups
of M such that

| M= V@O Mq,
2 AM M, <= Mm+n
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More definitions:
Homogeneous elements, degree, homogeneous
components, homomorphism of graded modules.
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LLeT A be canvewwldiahve -
Proposition. TFAE for a graded ring A:

a. A is a Noetherian ring;

b. A_O is Noetherian and A is finitely
generated as an A_0O-algebra.

Proof.

b => a is Hilbert’s basis theorem. A ) )qu
W Noef{*@to& angl A S an f’ﬂgo A,
a=>b A _0=A/A_+ is Noetherian.

The ideal A_+ is finitely generated, say by
x_1, ..., x_s. We may take these elements to
be homogeneous. \Nw <

Let A’ be the subrin
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For n>0 let y bein A_n. Because y isin
A_+ we can write y as a linear combination of

the x_i, say
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Let k_i be the degree of the homogeneous
element x_i.

Each k_i > 0 so by induction each a_i isa
polynomial in the x’s with coefficients in A_O.
The same is true of vy, therefore y isin A'.
Hence A_n is containedin A, so A=A
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Hilbert functions

Let A =@OA*\ be a Noetherian graded ring.
Then A_O is a Noetherian ring, and A is

generated (as an A_0-algebra) by elements
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which we may choose to be homogeneous, of
degrees k_1, ..., k_s

Let M be a finitely generated graded A-
module, generated by homogeneous elements
m_j, 1 <j <t. Each graded component M_n
is now finitely generated as an A_0O-module
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Pre-clage Warm-up!

s the following true/false, obvious/
not obvious ?

Let M be an R-module where R is a
commutative ring, and let r be an element
of R.

There is an exact sequence

-
O >K->M->M->L >0

where the middle map is multiplication by
r and both K and L are annihilated by .

A false

B (probably) true and not obvious



e
Definition. The Poincare series of M (with
respect to N is

P(M, 1) = ZT X(M)‘t

N0

in Z[[t]].

Theorem (Hilbert, Serre)
Let A be a Noetherian graded ring, M a

finitely generated graded A-module, X\ a
length function.

Then P(M,T) is a rational function in t of

the form t)
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Corollary. A is a Noetherian graded ring
generated as an A_0-algebra by
homogeneous elements of degrees k_i.

If each k_i =1 then, for sufficiently large
n, X(M_n)is a polynomial in n (with
rational coefficients) of degree d-1,
where d is the order of the pole of P(M,t)

at t=1. 4 =dm)
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Definition. The polynomial just described is
the Hilbert function (or polynomial) of M.




Pre-clagg Warm-up!!

Let d be the order of the pole of

'+t-\— t* _ =
oot - ) a,t
nzo

at t =1. Which of the following
correctly describes the degree of
polynomial growth of the coefficients
a_n as n increases’

Ado1

B d

Cd+1

D None of the above.
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Write d(M) for the order of the pole
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Corollary. If a homogeneous element x in + 3@*)

A is not a zero divisor on M then d(M/xM)
0‘,(L> — 0‘ <M> - |

= d(M) -

Not a zero divisor means xm =0 implies A
m = 0. This happens e.g. if A=M isa
domain and x # 0.
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2. A=k[th2, 3] = kIBOS btebT@..

P(A€)

What is the Poincare series of A
(with respect to the k-dimension of
terms)?
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Pre-clage Warm-up!!

N <thevan
Let ] be an ideal of a commutative ring R.
Consider the two statements:

1. If R/ is Artinian then | is primary for
some maximal ideal of R.

2. 1f J is primary for some maximal ideal of
R then R/ is Artinian.

Which are true?

« K= kvk) T~ (0)

/

C Both 1. and 2. are true.

A 1.1s true.

B 2.is true.

D Neither are true.
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The graded ring associated to an ideal

Proposition. commkaiive

Let ] be an ideal of a Noetherian ring A.
Then the graded ring

0
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is Noetherian, generated by elements of
degree 1. o e A/ -0l %QWN&( |

If M is a finitely generated A-module then
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We look for a situation where | is an ideal
of A for which there is a suitable additive
function on A/J-modules.

If J is primary for some maximal |dea| of A
then A/ J IS Artinia n. LON\pD fion
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Let ] be an ideal of A so that A/] is
Artinian, let M be a finitely generated A-
module. Then

a. M/JAnM is of finite length for each n > 0.
b. For all sufficiently large n this length is a
polynomial g(n) of degree <s in n where

s is the least number of generators of ).
it
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}LCJC R be Noethevian

Let MU' be a maximal ideal and ] some ideal of
aring R.
Which of the following are true:

1. If J contains some power of W then |
is W -primary.

2. If J is M -primary then ] contains some

power of My

A Only 1. istrue.
B Only 2. is true
C Both 1. and 2. are true /

D Neither is true.




Definition. A 1S aﬁ“ﬁﬂg&”“ﬁ
Aliyah- Macdonald and Matsumura write

the polynomial

= Xy = gk (M) J‘“’M) n»0

P&(& Phiely gerezdkd A ~inedull Proposition.
Matsumura calls it the Samuel functlon If J is #-primary where W is a maximal
When M = A, Aliyah-Macdonald call  |ideal then "
it the characteristic polynomial of the ”lij 'XTCW) - C(ej kﬂm(’g
ideal |. . -
o soma - Thas
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Corollary. W M 2 -J-

For large n, length (A)/J/\n) is a polynomial rXM (h) < ‘X (n) < XM Q‘“—\ Vhfb
of degree <s, where s = least number of M < ,x
Aegixly, < A&‘JW dos Ko,
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Let A be a (Noetherian) ring. We already
know that the Krull dimension dim A
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We have seen:
DimA=0 <=> A Iis Artinian.
Dimension is preserved under integral
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Goal: Let A be a Noetherian local ring
with maximal ideal 44

Let 0(A) = least number of generators
of an W-primary ideal of A.

We indicate a proof that

o(A) = d(A) = dim(A)
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Question:

Why should we even be interested in knowing
about A(A), d(A) or dim A?

Are we interested in knowing about d(A), d(A)
or dim A?




Goal: Let A be a Noetherian local ring
with maximal ideal MWV

Let O(A) = least number of generators
of anM-primary ideal of A.

We indicate a proof that
J(A) = d(A) = dim(A)

showing J(A) = d(A) = dim A > 6(A)

Proposition.




Proposition 11.8 of Atiyah and Macdonald.
Notation as before.

Let M be a finitely-generated A-module, x in
A a non-zero-divisoron M and M’ = M/xM.

Then /
deg % < dag K7 -

We did this before in a graded situation

Proof. Let N = xM, which is isomorphic to M.
We have a s.e.s.

0 -> N/(Nn JANM) -=> M/JANM -> M/]JAnM’” -> 0

Writing g(n) = length of N/(NnJAnM) we have
0O For n>>0

:
M
- 'Xg\.(n}’r(x (“)z
(NaJ ")
Artin-Rees implies that Mls a stable J-

filtration of N, so g(n) and 'X:r ) have the
same leading term. Hence the result.

Corollary 11.9 of A and M.
If A is a Noetherian local ring and x is a
non-zero-divisor in A, then

d(A/(x)) < d(A) -
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Can we remember what d(A), 6(A) and Z)DDC ZP. < S @‘/
dim A are?
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Proposition 11.10 d(A) >dim A

Can you remember what d(A) is? What did the

last result say ./

Proof. Induction on d = d(A).

If d=0 then Length( AM) is constant for all
large n, soMV" ="' for some n, hence W =

by Nakayama’s lemma. Thus A is an Artinian

rlr)éand dlmA O E‘AC(SVW 44{\‘10‘ V‘\S'ﬂ

Suppose d > O and the result for smaller
values. Let 0, P, < C O

be any chain of prime ideals in A.

Let X €10, | xq:a?o) f\'=’/‘*/lpo

Let x’ be the image of x inA'.
Then x"#0, and A’ is an integral domain, so
by 11.9

d(A"/ (X)) < d(A) -

0

e levgl,

Also, if Is the maximal ideal of A, A/mis a
homomorphism image of A/'mf"hence
Length(Aﬂw) > Length (A'/#'} and therefore
d(A) > d(A’). Thus

dA /(X)) =dA)-1T=d-1.

By induction, the length of any chain of prime
ideals in A/ (x’) is <d-1.  Why are these
The images of Tp, R zp,- images prime?
in A"/ (x’) form a chain of length r-1, hence
r-1<d-1 and consequently r<d. Hence

dim A <d.

The final step dim A = 6(A) in proving 0(A) =
d(A) = dim A is a little technical and we are
going to miss it out. The next corollaries do not
depend on it.



The final step dim A > 6(A) in proving 6(A) =
d(A) = dim A is a little technical and we are
going to miss it out. The next corollaries do not
depend on it.

However: "proof by example’ that dim A > 6(A) !
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Recall: 6(A) > d(A) >dim A = 8(A)

Corollary 1.11 of A&M
If A is Noetherian local ring then dim A
is finite.

Definition. ,

The height of a prime ideal
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Corollary 11.12 of A&M.

In a Noetherian ring every prime ideal has
finite height. The set of prime ideals in a
Noetherian ring satisfies DCC.

Corollary 11.15 of A&M
In a Noetherian local ring with maximal

ideal 'VW we have ) Jd&k A/W/

Deflnltlon A Noetherian local

b :ylir/]ﬁ A is regular.
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Corollary 11.16 Let A be a Noetherian ring, Corollary 11.19. Let A be a local Noetherian

and x_1, ... x_r in A. Then every prime ring with maximal ideal m
ideal minimal over (x_1, ..., x_r) has height Then dim A = dim A},
<T.

The case r =1 plus a little bit is known as Krull’s







