The dimension of affine rings

Affine rings = finitely generated algebras over a

field k.
It's nice to know
Theorem.

If k isa fieldthen dimk[x_1, ... x_r]l=r

Noether Normalization

If A is a graded algebra finitely generated over
k then the degree of the Hilbert polynomial is
dimA -1
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Let k beafieldand f in T=k[x_1, ... x_r]
a non-constant polynomial.
There are elements x’_1, ...
so that
T is a finitely generated module over the k-
subalgebra generated by x’_1, ..., x’_{r-1} and
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The x’_i can be chosen in various ways. We
will show that we can choose x’ i of the form
x_i - x_rMeAi} for any sufficiently large e. el

X -1 Iin T

If f is homogeneous, they can be chosen (in a
different way) homogeneous.
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Pre-clage Warm-up

Is the following statement obvious?

Let A be a commutative ring and let B be a

homomorphism image of A.
Then dim A <dim B.

A Yes, it is obvious

B No, it is not obvious.

We have the understanding that if a
statement is not true, then it is not obvious.




Theorem 13.1

Let k be a field. Then
dimk[x_ 1, ... ,xr]l=r.
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Corollary. Any k-algebra that can be
generated by r elements has dimension <r.






Simplified and weaker form of Noether’s
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Theorem (compare 13.3 in Eisenbud)

Let k be afield and let A# 0 be a finitely
generated k-algebra (an ‘affine ring over k).
There is a polynomial subring

S=kI[x_1, ... ,x_d] suchthat A is integral
over S.
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Theorem (compare 13.3 in Eisenbud)

Let k be afield and let A # 0 be a finitely
generated k-algebra (an ‘affine ring over k).
There is a polynomial subring

S=k[x_1, ... ,x_d] suchthat A is integral
over S.

Furthermore, if X, € ;< - Lm

is a chain of ideals of A with dim A/l_j = d_j
and d 1>d2>...>dm>0

then S can be chosen so that

IJ(\S ~ <xolj; ?Xd>

If the ideals are homogeneous, the x_j can be
chosen to be homogeneous.




Theorem. If A is an affine domain over a
field k, then dim A =tr.deg._k R.

Proof. Let S=k[x 1, ... ,x_d] be the
polynomial subring of A over which A is
integral. Then

tr.deg. S =d

and the field of fractions of A is a finite
degree extension of S, so tr.deg. A =d
also.




