Groebner basis theory

Books:

Eisenbud Chapter 15 Dummit and Foote Section 9.6

We have seen how effective it is to compute with monomial deals of $S = k[x_1, ..., x_n]$ Definition. A monomial of S is a product $x_1 x_2 ... x_n = x_n$ where $a = (a_1, ..., a_n) = \partial(x_n^a)$ is the multidegree.

Perhaps it is sometimes a scalar multiple? A scalar multiple is called a term.

A monomral ideal I is one generated by monomials. It has a k-basis of monamals. We have been c.g. we can compute intersections of m. ideals. $(x_{5}, \times A) = (x) \cup (x_{5}, XA, A_{5})$ $(x_{5}, \times A) = (x) \cup (x_{5}, XA, A_{5})$

We can easily compute the Hilbert function of Poincaré series of S/I.

We see that monomial ideals are finitely generated.

In factive know ideals of S are all finitely general.

Gordan's 1900 proof of Hilbert's basis theorem word this.

Proof of Hilbert's basis theorem

Definition. A basis for an ideal is a set of ideal generators for the ideal.

Hilbert's Basis Theorem.

If R is a Noetherian ring then so is the polynomial ring R[x].

Every ideal of RIXI has a finite bains.

Let I CR[x] be an ideal.

L = Eleading coefficients of clements of I

Claim: this is an ideal of R.

(Proof $f = ax^d + lower$ $g = bx^e + lower$

then ra-b is either 0 or the leading weff of rxef-xqg) L is finitely generated by $a_1, \dots, a_n \in \mathbb{R}$. Let fi & I have leading coeffai Put ei = deg fi, N=max [P1, ..., Pn] FOSASN-1 put Ld = { leading wells of polys in I
of degree of } This is also an ideal. Ld = (bd,1, ,..., bd, nd) by = K Find fa, i = I of degree d with leading coeff bds i

Clauin: $T = \left(\frac{1}{2} f_1, \dots, f_n \right) \cup \left\{ f_{d,i} \mid 0 \leq d \leq N, 1 \leq i \leq n_a \right\}$ (tf. Let I' be the ideal on the right. T'CT. If +, pick feT-I's least degree. if deg f > N then its leading well is a combn of a_1, \dots, a_n . Let $g = same combn of <math>x = f \in I$ Now fig e I - I' has smaller degree than f. Contradiction.

Similar if deg f < N. Find g = cambon of fdeg f, $i \in L'$ with same leading term as f. Now $f \cdot g \in I - I'$ how smaller with same leading term as f. Now $f \cdot g \in I - I'$ how smaller with same leading term as f. Contradiction

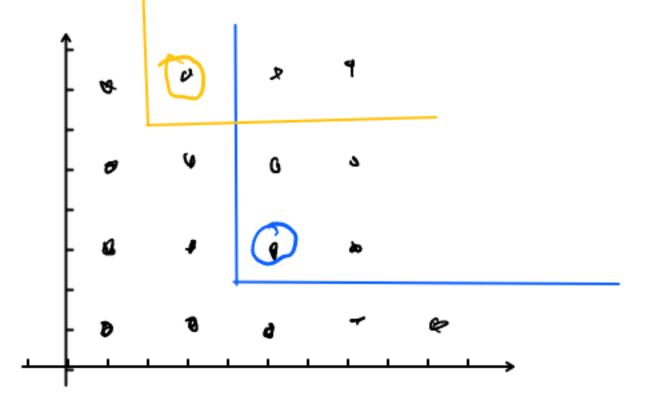
Pre-class Warm-up!!

Consider the following:

Proposition.

Monomial ideals of $S = k[x_1, ..., x_d]$ satisfy ACC:

If J is a monomial ideal of S, every set of monomials that generates it contains a finite set of monomials that generates it.



Use Dickson's Lemma:

Given infinitely many vectors $v_1, v_2, ...$ in N^r , there exists i < j with $v_i \le v_j$, where \le means coordinate-by-coordinate comparison.

This means IN

Any sequence in N containe a weakly increasing sequence.

Monomial orders

Recall: $S = k[x_1, ..., x_n]$. $A = x_1 - ... x_n$ A monomial is an expression $X = x_1 - ... x_n$ A term is a scalar multiple of a monomial.

Definition.

A monomial ordering is one of the following equivalent relations on the set of monomials:

- 1. A well-ordering \geq on {monomials} such that $u \geq v$ implies $mu \geq mv$ always.
- 2. A total order on {monomials} such that $u \ge v$ implies $mu \ge mv$, and $m \ge 1$ always.

Is it obvious that L. =) m? I +m

Examples of monomial orders: The lexicographic order: $X_1^{a_1} \cdots X_n > X_1^{b_1} \cdots X_n^{b_n}$ the earliest a, ≠ bi had a, >, b; Homogeneous lexicographic u>v => deg u>deg v or degu = deg v and u> ex v. More definitions. Let $f \in S$ Fix a monomial ordering on $S = k[x_1, ..., x_n]$.

Extend the order to terms.

The leading term (or initial term) LT(f) is

The leading term (or initial term) LT(f) in the largest term in f.

If I is an ideal of S, the ideal of leading terms is

It is a monomial ideal.

Examples (page 318 of D & F) S = k[x,y]. Lexicographic order x > y.

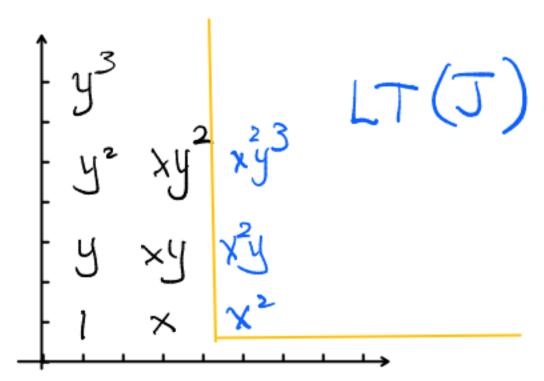
Let
$$f = x^3y - xy^2 + 1$$
, $g = x^2y^2 - y^3 - 1$
LT y^3y $(2,2)$

Observe yf - xg = x + y lies in J = (f,g)We see: $LT(J) \neq (LT(f), LT(g))$.

Question: if y > x, what are LT(f) and LT(g)?

Proposition (Macaulay, see 15.3 of Eisenbud) Let I be an ideal of S. The (images of the) monomials of S not in LT(J) are $a_{\mathbf{k}}$ basis for S / J. Proof. Let B be the set of monomials 2-linear They are lin and modulo J IP p= I uimi EJ uit LT() = LT(J). LT(P) is one of the mi & LT(J). Conhadiction we show They span: \(\B \rangle + J = S IF & S, pick FES-(B)+J) with LT(f) minimal. If LT(f) & B Then f-LT(f) e S-(KB)+J)
has smaller LT. O/W LT(f)=LT(g) geJ. Now f-9 & (B)+J, and has

Example: $J = (x^2 - y^3)$ (x^2) The manamials not in (x^2) do give a bonce for S/J.



Each f in S determines one of these basis elements as the coset representative of its coset f + J. Groebner methods give a way to compute this, and in particular determine whether f is in J.

We can compute Samuel functions.

Definition.

A Groebner basis for an ideal J in S is a finite set g_1, ..., g_d of elements of J so that the leading terms $LT(g_1), ..., LT(g_d)$ generate LT(J).

Examples.

1. $J = (x^2 - y^3)$ has $x^2 - y^3$ as 6. basis because LT(J) = (LT(x2-y3)) 2. J = (f, 9) og before

doesn't have f, g as a G. basis In fact x+y, and another polynomial in J with LT=y4 is a G. bouris

Proposition. If g_1, \dots, g_d is a Groebner basis, it generates J.

Proof.

Let $g_1, ..., g_d$ be a Groebner basis for J and let $L = (g_1, ..., g_d)$ be the ideal it generates, so L is contained in J.

Pick f in J - L with least leading term among such f. Write LT(f) = LT(g) for some polynomial g in L. Then f - g lies in J - L has smaller LT, a contradiction.

Note: LT(L) = LT(J) because it is generated by LT 5 of polynomials in L.

Corollary.

Proof of Hilbert's basis theorem for S

Theorem.

When k is a field, every ideal of $S = k[x_1, ..., x_d]$ is finitely generated.

Proof. Let J be an ideal of S.

General polynomial division

Fix a monomial ordering on S.

Let g_1, ..., g_m be a set of non-zero polynomials.

Let f be a polynomial in S.
We will work with 'quotients' q_i and a 'remainder' r so that at the end

Each q_ig_i has multi degree $\leq \partial(f)$. The remainder r has no nonzero term divisible by any LT(g_i).

Start with the q_i and r all equal to 0. Successively test whether the leading term of the dividend f is divisible by the leading terms of the divisors g_1, \ldots, g_m , in that order.

Step 1. If LT (f) is divisible by LT(g_i), say, LT(f) = a_i LT(g_i), ad a_i to the quotient q_i, replace f by the dividend f - a_ig_i (a polynomial with lower order LT) and reiterate the entire process.

Step 2. If the leading term of the dividend f is not divisible by any of the leading terms LT(g_1), n..., LT(g_m), add the leading term of f to the remainder r, replace f by the dividend f - LT(f), and reiterate the entire process