Groebner basis theory

Books:
Eisenbud Chapter 15
Dummit and Foote Section 9.6
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Proof of Hilbert’s basis theorem

Definition. A basis for an ideal is 4 Q—{_

a@&mﬂ %W—Erﬁ daz |

Hilbert’s Basis Theorem.
If R is a Noetherian ring then so is the

olynomial ring R][x]. ~
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POre-clage Warm-up!!

Consider the following:

Proposition.
Monomial ideals of S =k[x_1, ... ,x_d]
satisfy ACC:
If ] is a monomial ideal of S, every set
of monomials that generates it contains

a finite set of monomials that generates
it.
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Use Dickson’s Lemma:

leen infinitely many vectors v_1, v_2,
there exists i < with v_i<v J,

where < means coordinate-by-coordinate
comparison.
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Monomial orders

Recall: S=k[x_1, ... ,x_n]. a 4

QU
A monomial is an expression X = X; == Bn

A term is a scalar multiple of a monomial.

Definition.

A monomial ordering is one of the
following equivalent relations on the set of
monomials:

1. A well-ordering > on {monomials} such
that u>v implies mu>mv always.

2. A total order on {monomials} such that
u>v implies mu>my, and m=>1
always.
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Examples of monomial orders:
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More definitions.

Fix a monomial ordering on S = k[x_1, ... ,x_n].
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The leading term (or initial term) LT(f) is

If | isanideal of S, the ideal of leading

terms is
LT(I) = (LT(f) | f isin 1)
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It is @ monomial ideal.
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Examples (page 318 of D & F)
S = klx,y]. Lexicographic order x >y.

Let f=xA3y-xy"N2 +1, g=x"N2yN2-yA3 -1
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Observe yf-xg=x+y liesin | = (f,g)

LT =X
We see: LT()) # ( LT(f), LT(g) ). # LS

Question: if y > x, whatare LT(f) and LT(g) ?
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Proposition (Macaulay, see 15.3 of Eisenbud)
Leb J de an Aual arF S.

The (images of the) monomials of S not in
LT()) are a)\basis for S/).
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Example: | = (xA2 - yA3)
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Fach f in S determines one of these basis
elements as the coset representative of its
coset f+ ). Groebner methods give a way to
compute this, and in particular determine
whether f isin |.

We can compute Samuel functions.
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Definition.
A Groebner basis for anideal ] in S is a
finiteset g 1, ..., g_d of elements of ] so

that the leading terms LT(g_1), ..., LT(g_d)
generate LT()).

Examples.
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Proposition. If g_1, ..., g d isa Groebner

basis, it generates J.

Proof.
Let g 1, ... ,g_d be a Groebner basis for |
andlet L=(g_1,...,8 d) be the ideal it

generates, so L is contained in .
Pick f in J-L with least leading term among

such f. Write LT(f) = LT(g) for some
polynomial g inL. Then f-gliesin J-L
has smaller LT, a contradiction.

Note « LT(L)= LT(T) becanic
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Proof of Hilbert’s basis theorem for S

Theorem.

When k is a field, every ideal of
S=kIx_1, ..., x_d] is finitely
generated.

Proof. Let ] be an ideal of S.




General polynomial division

Fix a monomial ordering on S.

Let g 1, ..., g m be a set of non-zero
polynomials.

Let f be a polynomial in S.

We will work with ‘quotients’” g_i and a
‘remainder’ r so that at the end
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Each g_ig i has multi degree < &(f).
The remainder r has no nonzero term

divisible by any LT(g_i).

Start with the g_i and r all equal to O.
Successively test whether the leading term of
the dividend f is divisible by the leading terms
of the divisors g 1, ... ,g m, in that order.

Step 1. If LT (f) is divisible by LT(g_i), say,
LT(f) = a_i LT(g_i), ad a_i to the quotient
q_i, replace f by the dividend f-a_ig i (a
polynomial with lower order LT) and reiterate
the entire process.

Step 2. If the leading term of the dividend f
is not divisible by any of the leading terms
LT(g_1), n..., LT(g_m), add the leading term
of f tothe remainder r, replace f by the
dividend f - LT(f), and reiterate the entire
process




