Groebner basis theory

Books:
Eisenbud Chapter 15
Dummit and Foote Section 9.6
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Proof of Hilbert’s basis theorem

Definition. A basis for an ideal is 4 Q—{_
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Hilbert’s Basis Theorem.
If R is a Noetherian ring then so is the

olynomial ring R][x]. ~
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Pre-clagg Warm-up!!

Consider the following:

Proposition.
Monomial ideals of S=k[x_ 1, ... ,x_d]
satisfy ACC:
If J is a monomial ideal of S, every set
of monomials that generates it contains

a finite set of monomials that generates
it.
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Use Dickson’s Lemma:
Given_infinitely many vectors v_1,v_2, ...
' there exists i < with v_i<v_j,
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Monomial orders

Recall: S=k[x_1, ... ,x_n]. a 4

QU
A monomial is an expression X = X; == Bn

A term is a scalar multiple of a monomial.

Definition.

A monomial ordering is one of the
following equivalent relations on the set of
monomials:

1. A well-ordering > on {monomials} such
that u>v implies mu>mv always.

2. A total order on {monomials} such that
u>v implies mu>my, and m=>1
always.
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Examples of monomial orders:
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More definitions.

Fix a monomial ordering on S = k[x_1, ... ,x_n].
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The leading term (or initial term) LT(f) is

If | isanideal of S, the ideal of leading

terms is
LT(I) = (LT(f) | f isin 1)
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It is @ monomial ideal.
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Examples (page 318 of D & F)
S = klx,y]. Lexicographic order x >y.

Let f=xA3y-xy"N2 +1, g=x"N2yN2-yA3 -1
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Observe yf-xg=x+y liesin | = (f,g)

LT =X
We see: LT()) # ( LT(f), LT(g) ). # LS

Question: if y > x, whatare LT(f) and LT(g) ?
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Proposition (Macaulay, see 15.3 of Eisenbud)
Leb J de an Aual o-F S.

The (images of the) monomials of S not in
LT()) are a)\basis for S/).
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Example: | = (xA2 - yA3)
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Each f in S cleterminesﬁ(‘)nék()f these basis
elements as the coset represéntative of its
coset f+ ). Groebner methods give a way to
compute this, and in particular determine
whether f isin J.

We can « u@‘u)ul« Samuel functions.
malleS LT .




To compute the Samuel function for the
maximal ideal (X,y) of k[x,y]/(xA2 -yA3),
for example, compute the leading term ideal
for each of (x,y)An + (xA2 - yA3). Then get a
basis for the quotient by this ideal, whose size
is part of the information we need.




Definition.
A Groebner basis for anideal ] in S is a
finiteset g 1, ..., g_d of elements of ] so

that the leading terms LT(g_1), ..., LT(g_d)
generate LT()).

Examples.
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Proposition. If g_1, ..., g d isa Groebner

basis, it generates J.

Proof.
Let g 1, ... ,g_d be a Groebner basis for |
and let L=(g_1, ... ,g.d) be the ideal it

generates, so L is contained in .
Pick f in J-L with least leading term among

such f. Write LT(f) = LT(g) for some
polynomial g inL. Then f-gliesin J-L
has smaller LT, a contradiction.

Note « LT(L)= LT(T) becanic
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" ?fwz j

Corollary.



Pre-clagg Warm-up!!!

s the following a proof of Hilbert’s basis
theorem for S=k[x_1, ..., x_d] ?

Theorem.
When k is a field, every ideal of S =
kIx_T, ..., x_d] is finitely generated.

Proof. Let ] be an ideal of S. We
nave shown that )] has a Groebner
pasis which, by definition, is finite.
Therefore ] is finitely generated.
QED




General polynomial division

Fix a monomial ordering on S.

Let g 1, ..., g m be a set of non-zero
polynomials.

Let f be a polynomial in S.

We will work with ‘quotients’” g_i and a
‘remainder’ r so that at the end
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Each g_ig i has multi degree < &(f).
The remainder r has no nonzero term

divisible by any LT(g_i).

Start with the g_i and r all equal to O.
Successively test whether the leading term of
the dividend f is divisible by the leading terms
of the divisors g 1, ... ,g m, in that order.

Step 1. If LT (f) is divisible by LT(g_i), say,
LT(f) = a_i LT(g_i), ad a_i to the quotient
q_i, replace f by the dividend f-a_ig i (a
polynomial with lower order LT) and reiterate

the entire process. Go back- o s

Step 2. If the leading term of the dividend f
is not divisible by any of the leading terms
LT(g_1), n..., LT(g_m), add the leading term
of f tothe remainder r, replace f by the
dividend f - LT(f), and reiterate the entire
process




Example (D & F page 321)
S = kIx,yl, lexicographic order with x >y.
We divede f; X’Hf—j‘ +y L’T(.D = X
45 i = ij-}l) VT3 () =2 ond
Ja =Xtq, LTg‘)—; A
Round 1.
LT(f) is not divisible by LT(g_1).
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Round 2.

LT(f') = -xy = -LT(g_1).

Replace " by f"=f +g 1 =x-y "2 +y+
Now q_1 =-1. tﬁ LT é" PATS &3 L’I‘(cj
LT(f") = x = LT(g

Replace " by f”’ f"-g 2=-yN2 +1.

1.
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Round 3.

LT(f"”) = -yA2 is not divisible by either

LT(g_1) or LT(g_2).

Q_T1 and ¢_2 stay the same.

r becomes -yA2.

Replace " by " ={" + yA2 =1.

Round 4.

LT(f””") =1 is not divisible by LT(g_1) or
LT(g_2).
q_1 and q_2 stay the same.

We stop.
We check that

f=q1g 1+q2g 2+r

and g 2,
we get

If we change the order of g_1
and g 2 =xy+1,
q_1 =x-y+1, q_2 = ( r=20

f = (X-y+1)(x+y) in «,g_l, g_z ).

sO g 1T =x+y



In the last examples g 1 =xy+1, g 2 = x+y,
note that these are not a Groebner basis for
(g_1, g 2), because

g 1-yg 2=1-yA2 has LT =-yA2, and this
does not lie in (LT(g_1), LT(g_2)).

= (g, %) =)

The division algorithm failed to show that
f=xA2+x-yA2 +y liesin (g_1,g 2),
when done with one ordering of g 1 and

g 2.




Theorem 23 of D & F.

Fix a monomial ordering.

Suppose {g_1, ..., g n} is a Groebner basis
for J.

Then

a. Every polynomial f can BRuniquely written
f=1f])+r

where f Jin] and no nonzero monomial term
of r is divisible by any of the leading terms

LT(g_1), ..., LT(g_n).

b. Bothe f_J and r can be computed by
general polynomial divisionby g 1, ..., g n,
independently of the order in which they
appear.

c. The remainder r provides a unique
representative for the coset of f in the quotient
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Finally:

Buchberger’s Criterion provides a test for
when a basis is a Groebner basis, and
Buchberger’s Algorithm provides a way to find
a Groebner basis.
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