Groebner basis theory

Books:

Eisenbud Chapter 15 Dummit and Foote Section 9.6

We have seen how effective it is to compute with monomial deals of $S = k[x_1, ..., x_n]$ Definition. A monomial of S is a product $x_1, x_2, ..., x_n = x_n$ where $a = (a_1, ..., a_n) = \partial(x_n^2)$ is the multidegree.

Perhaps it is sometimes a scalar multiple? A scalar multiple is called a term.

A monomral ideal I is one generated by monomials. It has a k-basis of monamals. We have been c.g. we can compute intersections of m. ideals. $(x_{5}, \times A) = (x) \cup (x_{5}, XA, A_{5})$ $(x_{5}, \times A) = (x) \cup (x_{5}, XA, A_{5})$

We can easily compute the Hilbert function of Poincaré series of S/I.

We see that monomial ideals are finitely generated.

In fact we know ideals of S are all finitely gen'd.

Gordan's 1900 proof of Hilbert's basis theorem word this.

Proof of Hilbert's basis theorem

Definition. A basis for an ideal is a set of ideal generators for the ideal.

Hilbert's Basis Theorem.

If R is a Noetherian ring then so is the polynomial ring R[x].

Every ideal of RIXI has a finite bains.

Let I CR[x] be an ideal.

L = Eleading coefficients of clements of I

Claim: this is an ideal of R.

(Proof $f = ax^d + lower$ $g = bx^e + lower$

then ra-b is either 0 or the leading weff of rxef-xqg) L is finitely generated by $a_1, \dots, a_n \in \mathbb{R}$. Let fi & I have leading coeffai Put ei = deg fi, N=max [P1, ..., Pn] FOSASN-1 put Ld = { leading wells of polys in I
of degree of } This is also an ideal. Ld = (bd,1, ,..., bd, nd) by = K Find fa, i = I of degree d with leading coeff bds i

Clauin: $T = \left(\frac{1}{2} f_1, \dots, f_n \right) \cup \left\{ f_{d,i} \mid 0 \leq d \leq N, 1 \leq i \leq n_a \right\}$ (tf. Let I' be the ideal on the right. T'CT. If +, pick feT-I's least degree. if deg f > N then its leading well is a combn of a_1, \dots, a_n . Let $g = same combn of <math>x = f \in I$ Now fig e I - I' has smaller degree than f. Contradiction.

Similar if deg f < N. Find g = cambon of fdeg f, $i \in L'$ with same leading term as f. Now $f \cdot g \in I - I'$ how smaller with same leading term as f. Now $f \cdot g \in I - I'$ how smaller with same leading term as f. Contradiction

Pre-class Warm-up!!

Consider the following:

Proposition.

Monomial ideals of $S = k[x_1, ..., x_d]$ satisfy ACC:

If J is a monomial ideal of S, every set of monomials that generates it contains a finite set of monomials that generates it.

Use Dickson's Lemma:

Given infinitely many vectors $v_1, v_2, ...$ in N^r , there exists i < j with $v_i \le v_j$, where \le means coordinate-by-coordinate comparison.

This means IN

Any sequence in M contains a weakly increasing sequence (Fint a smallest clement in the find a smallest clement. Repeat) Now find a weakly increasing sequence of first corrdinates. Among those, tind a weakly increasing sequence in second coordinate. Repeat We could find a sequence untradicting

Monomial orders

Recall: $S = k[x_1, ..., x_n]$. $A = x_1 - x_n$ A monomial is an expression $X = x_1 - x_n$ A term is a scalar multiple of a monomial.

Definition.

A monomial ordering is one of the following equivalent relations on the set of monomials:

- 1. A well-ordering \geq on {monomials} such that $u \geq v$ implies $mu \geq mv$ always.
- 2. A total order on $\{monomials\}$ such that $u \ge v$ implies $mu \ge mv$, and $m \ge 1$ always.

Is it obvious that L. =) m? I +m

Examples of monomial orders: The lexicographic order: $X_1^{a_1} \cdots X_n > X_1^{b_1} \cdots X_n^{b_n}$ the earliest a, ≠ bi had a, >, b; Homogeneous lexicographic u>v => deg u>deg v or degu = deg v and u> ex v. More definitions. Let $f \in S$ Fix a monomial ordering on $S = k[x_1, ..., x_n]$.

Extend the order to terms.

The leading term (or initial term) LT(f) is

The leading term (or initial term) LT(f) in the largest term in f.

If I is an ideal of S, the ideal of leading terms is

It is a monomial ideal.

Examples (page 318 of D & F) S = k[x,y]. Lexicographic order x > y.

Let
$$f = x^3y - xy^2 + 1$$
, $g = x^2y^2 - y^3 - 1$
LT y^3y $(2,2)$

Observe yf - xg = x + y lies in J = (f,g)We see: $LT(J) \neq (LT(f), LT(g))$.

Question: if y > x, what are LT(f) and LT(g)?

Proposition (Macaulay, see 15.3 of Eisenbud) Let I be an ideal of S. The (images of the) monomials of S not in LT(J) are $a_{\mathbf{k}}$ basis for S / J. Proof. Let B be the set of monomials 2-linear They are lin and modulo J IP p= I uimi EJ uit LT(J). LT(P) is one of the mi & LT(J). Conhadiction
we show They span: \(\B \rightarrow + J = S IF & S, pick FES-(B)+J) with LT(f) minimal. If LT(f) & B Then f-LT(f) e S-(KB)+J)
has smaller LT. O/W LT(f)=LT(g) g & J. Now f-9 & (B)+J, and has

Example: $J = (x^2 - y^3)$ (x^2) The manamials not in (x^2) do give a bonce for S/J.

Each f in S determines one of these basis elements as the coset representative of its coset f + J. Groebner methods give a way to compute this, and in particular determine whether f is in J.

We can compute Samuel functions.

To compute the Samuel function for the maximal ideal (\tilde{x},\tilde{y}) of $k[x,y]/(x^2 - y^3)$, for example, compute the leading term ideal for each of $(x,y)^n + (x^2 - y^3)$. Then get a basis for the quotient by this ideal, whose size is part of the information we need.

Definition.

A Groebner basis for an ideal J in S is a finite set g_1, \ldots, g_d of elements of J so that the leading terms $LT(g_1), \ldots, LT(g_d)$ generate LT(J).

Examples.

1.
$$J = (x^2 - y^3)$$
 has $x^2 - y^3$ as
6. basis because $LT(J) = (LT(x^2y^3))$

2.
$$J = (f, g)$$
 on before doesn't have f, g as a G . basis in fact $x+y$, and another polynomial in J with $LT=y^4$ is a G . boaris such as $g(y^2-xy^2)(x+y)=y^4-y^3-1$

Proposition. If $g_1, ..., g_d$ is a Groebner basis, it generates J.

Proof.

Let $g_1, ..., g_d$ be a Groebner basis for J and let $L = (g_1, ..., g_d)$ be the ideal it generates, so L is contained in J.

Pick f in J - L with least leading term among such f. Write LT(f) = LT(g) for some polynomial g in L. Then f - g lies in J - L has smaller LT, a contradiction.

Note: LT(L) = LT(J) because it is generated by LT 5 of polynomials in L.

Corollary.

Pre-class Warm-up!!!

Is the following a proof of Hilbert's basis theorem for $S = k[x_1, ..., x_d]$?

Theorem.

When k is a field, every ideal of $S = k[x_1, ..., x_d]$ is finitely generated.

Proof. Let J be an ideal of S. We have shown that J has a Groebner basis which, by definition, is finite. Therefore J is finitely generated. QED

A Yes \

Is this suddenly a much eavier proof?

General polynomial division

Fix a monomial ordering on S.

Let g_1, ..., g_m be a set of non-zero polynomials.

Let f be a polynomial in S.

We will work with 'quotients' q_i and a 'remainder' r so that at the end

Each q_ig_i has multi degree $\leq \partial(f)$. The remainder r has no nonzero term divisible by any LT(g_i).

Start with the q_i and r all equal to 0. Successively test whether the leading term of the dividend f is divisible by the leading terms of the divisors g_1, \ldots, g_m , in that order.

Step 1. If LT (f) is divisible by LT(g_i), say, LT(f) = a_i LT(g_i), add a_i to the quotient q_i, replace f by the dividend $f - a_i = (a_i + b_i)$ and reiterate the entire process. Go back to g_i

Step 2. If the leading term of the dividend f is not divisible by any of the leading terms LT(g_1), n..., LT(g_m), add the leading term of f to the remainder r, replace f by the dividend f - LT(f), and reiterate the entire process

Example (D & F page 321)

$$S = k[x,y]$$
, lexicographic order with $x > y$.
We divide $f = x^2 + x - y^2 + y$ LT(f) = x^2
by $g_1 = xy + 1$, LT g_1) = xy and $g_2 = x + y$, LT g_2) = x

Round 1.

LT(f) is not divisible by $LT(g_1)$.

$$q_1 = 0$$
, $q_2 = x$, $r = 0$
Replace f by $f' = f - xg_2 = -xy + x - y^2 + y$

Round 2.

$$\begin{split} & LT(f') = -xy = -LT(g_1). \\ & \text{Replace } f' \text{ by } f'' = f' + g_1 = x - y^2 + y + 1. \\ & \text{Now } q_1 = -1. \quad \text{Is } LT(f'') \text{ alvis. by } LT(g_1)? \\ & LT(f'') = x = LT(g_2). \\ & \text{Replace } f'' \text{ by } f''' = f'' - g_2 = -y^2 + 1. \end{split}$$

Round 3.

 $LT(f''') = -y^2$ is not divisible by either $LT(g_1)$ or $LT(g_2)$. Q_1 and q_2 stay the same. r becomes $-y^2$. Replace f''' by $f'''' = f''' + y^2 = 1$.

Round 4.

LT(f'''') = 1 is not divisible by $LT(g_1)$ or $LT(g_2)$. q_1 and q_2 stay the same.

We stop. We check that $f = q_1g_1 + q_2g_2 + r$

If we change the order of g_1 and g_2 , so $g_1 = x+y$ and $g_2 = xy+1$, we get $q_1 = x-y+1$, $q_2 = 0$, r = 0f = (x-y+1)(x+y) in (g_1, g_2) . In the last examples $g_1 = xy+1$, $g_2 = x+y$, note that these are not a Groebner basis for (g_1, g_2) , because $g_1 - yg_2 = 1 - y^2$ has $LT = -y^2$, and this does not lie in $(LT(g_1), LT(g_2))$.

$$=(xy,x)=(x)$$

The division algorithm failed to show that $f = x^2 + x - y^2 + y$ lies in (g_1, g_2) , when done with one ordering of g_1 and g_2 .

Theorem 23 of D & F.

Fix a monomial ordering.

Suppose $\{g_1, \dots, g_n\}$ is a Groebner basis for J.

Then

a. Every polynomial f can b vaniquely written
 f = f_J + r

where f_J in J and no nonzero monomial term of r is divisible by any of the leading terms $LT(g_1), \ldots, LT(g_n)$.

- b. Bothe f_J and r can be computed by general polynomial division by g_1, ..., g_n, independently of the order in which they appear.
- c. The remainder r provides a unique representative for the coset of f in the quotient S/T

Proof. a. We have seen:
the monomials not LT (J) give
a basis for 5 modulo J, so
the k-linear combinations of such
monomials are a set of weet reps for Jin S. We can write any f=fj+r,fj e J where r is such a k-linear combn. No monomal term of r lies in LT(J) re. is not divisible by any LT(gi), because they are a Glosbner bains. 6. In the computation, at each stage we have $f = f_J + \Gamma'$, $f_J \in J$ If Γ' has any monomial in LT(J), it would have been divisible by a LT(gi), because these generale

Finally:

Buchberger's Criterion provides a test for when a basis is a Groebner basis, and Buchberger's Algorithm provides a way to find a Groebner basis.

Let
$$(g_1, ..., g_n) = J$$
.

For each pair of g_1, g_1

Find terms a, b so that $aLT(g_i) = bLT(g_1)$.

Adjoin $ag_1 - bg_1$ to the generators if it has a new leading term. Repeat.

Bet a Groebner basis.

Let
$$g_1 = xy+1$$
 $g_2 = x+y$
 LT : xy
 $g_1 - yg_2 = 1 - y^2 = g_3$
 $LT - y^2$
 $yg_1 + xg_3 = x+y$
 $LT = x$
 $E(xy,x,-y)$

Nothing new $e(xy,x,-y)$
 $E(xy+1,x+y)$
 $E(xy+1,x+y)$

So $\mathcal{J} = (x, -y^2)$ so $\mathcal{J} = (x+y, 1-y^2)$ is a Gröbner basis.

Note $xy+1 = y(x+y) + (1-y^2)$