
Math 8300 Homework 2 due Thursday 10/28/2021

Upload to Gradescope

1. Let A be a ring with a 1, and let V be an A-module. An element e in any ring is called

idempotent if and only if e2 = e.

(a) Show that an endomorphism e : V → V is a projection onto a subspace W if and only

if e is idempotent as an element of EndA(V ). (The term projection means a linear mapping

onto a subspace that is the identity on restriction to that subspace.)

(b) Show that direct sum decompositions V = W1 ⊕ W2 as A-modules are in bijection

with expressions 1 = e + f in EndA(V ), where e and f are idempotent elements with

ef = fe = 0. (In case ef = fe = 0, e and f are called orthogonal.)

Solution. (a) If e is a projection then, for any vector v we have e(e(v)) = e(v) because e

is the identity on its image, so that e2 = e. Conversely, if e2 = e then for any vector v we

have e(e(v)) = e(v) so e is the identity on its image.

(b) Given a direct sum decomposition V = W1⊕W2 let e be the endomorphism of V that

is e(w1, w2) = w1 and let f(w1, w2) = w2. Then 1 = e + f , e2 = e, f2 = f , ef = fe = 0.

Conversely, given such e, f we define W1 = e(V ), W2 = f(V ). Then V = W1 +W2 because

if v ∈ V then v = 1(v) = e(v)+f(v) ∈W1 +W2. Also if v ∈W1∩W2 then v = e(x) = f(y)

for vectors x, y. Then v = e(x) = e(e(x)) = e(f(y)) = 0. Thus V = W1 ⊕W2. These two

constructions are mutually inverse.

2. Consider a ring with identity that is the direct sum (as a ring) of non-zero subrings

A = A1 ⊕ · · · ⊕Ar.

(a) Writing 1A = u1 + · · ·+ ur with ui ∈ Ai, show that the elements ui are idempotent.

(b) Suppose that A has exactly n isomorphism types of simple modules. Show that r ≤ n.

Solution. (a) If i 6= j then uiuj = 0 because these elements lie in different summands,

and multiplication is summand by summand. Then ui = 1Aui = (u1 + · · ·+ ur)ui = uiui
because the other products are zero.

(b) Each Ai has at least one simple module Si (and possibly more) constructed as Si =

Ai/Ji where Ji is a maximal left ideal of Ai. Each Si becomes an A-module by letting the

factors Aj with j 6= i act as 0, and it is simple as an A-module. If i 6= j then Si and Sj

are non-isomorphic because ui acts as the identity on one of them and as 0 on the other.

Thus A has at least r simple modules.

3. Let g be any non-identity element of a group G. Show that G has a simple complex

character χ for which χ(g) has negative real part.

Solution. The real part of the dot product of the columns indexed by 1 and g of the

character table is a positive integral combination of the real parts of the χ(g), and it must

be 0. Because the trivial character has value 1 at g it means that some other real part

must be negative.

1



4. Suppose that V is a representation of G over C for which χV (g) = 0 if g 6= 1. Show

that dimV is a multiple of |G|. Deduce that V ∼= CGn for some n. Show that if W is any

representation of G over C then CG⊗C W ∼= CGdimW as CG-modules.

Solution. The character ψ =
∑
diχi of the regular representation (where di is the degree

of χi) has values ψ(1) = |G| and ψ(g) = 0 if g 6= 1. From independence of the characters it

follows that χV =
∑

dimV
|G| diχi is the unique expression for χV as a linear combination of

the simple characters. Because d1 = 1 we deduce that dimV
|G| is an integer, as required. Now

χV is the character of CGn where n = dimV
|G| , so V ∼= CGn because characters determine

representations. Finally, if W is any (finite dimensional, but actually it doesn’t matter)

representation of G then the character of CG⊗CW at g is χCG(g)χW (g) = 0χW (g) = 0 if

g 6= 1 and the dimension of CG⊗C W is |G|dimW , so CG⊗C W ∼= CGdimW .

5. Show that if every element of a finite group G is conjugate to its inverse, then every

character on G is real-valued.

Conversely, show that if every character on G is real-valued, then every element of G is

conjugate to its inverse.

[Extra irrelevant information: it is possible to have a group G in which every element is

conjugate to its inverse, but not every complex representation of G is equivalent to a real

representation.]

Solution. If g and g−1 lie in the same conjugacy class then for every character, χ(g) =

χ(g−1) = χ(g) so χ(g) is real. Conversely, if every character on G is real-valued, because

the columns of the character table corresponding to any element g and its inverse g−1 are

complex conjugates of each other, they are the same. Also, the columns of the character

table are linearly independent, so g = g−1.

6. Let G permute a set Ω and let RΩ denote the permutation representation of G over R

determined by Ω. This means RΩ has a basis in bijection with Ω and each element g ∈ G
acts on RΩ by permuting the basis elements in the same way that g permutes Ω.

(a) Show that when H is a subgroup of G and Ω = G/H is the set of left cosets of H in

G, the kernel of G in its action on RΩ is H if and only if H is normal in G.

(b) Show that the normal subgroups of G are precisely the subgroups of the form Kerχi1 ∩
· · · ∩ Kerχit where χ1, . . . , χn are the simple characters of G. Deduce that the normal

subgroups of G are determined by the character table of G.

(c) Show that G is a simple group if and only if for every non-trivial simple character χ

and for every non-identity element g ∈ G we have χ(g) 6= χ(1).

Solution. (a) An element u ∈ G is in the kernel of the action of RΩ if and only if it

fixes each coset gH under left multiplication: ugH = gH. This means g−1ugH = H, or

g−1ug ∈ H, so u ∈ gHg−1. The kernel is H if and only if H ⊆ gHg−1 for all g ∈ G, if and

only if H is normal in G.

(b) The intersections of kernels are always normal subgroups. Conversely, if H is a normal

subgroup then H is the kernel of the action on R[G/H], which is the common kernel, or
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intersection of the kernels, of the simple constituents of R[G/H]. Thus all normal sub-

groups arise as intersections of kernels of simple representations. The kernel of a (simple)

character χ is determined as the set of elements g for which χ(g) = χ(1), so the normal

subgroups are determined by the character table.

(c) By part (b), G is simple if and only if the kernel of every simple character is either

G or 1. The only character with kernel G is the trivial character, so G is simple if and

only if all non-trivial characters have kernel 1. The non-trivial characters have kernel 1 if

and only if there is no non-identity element g ∈ G with χ(1) = χ(g), and this finishes the

proof.

7. While walking down the street you find a scrap of paper with the following character

table on it:
1 1
1 −1

· · · 2 · · · −1 · · ·
3 1
3 −1

All except two of the columns are obscured, and while it is clear that there are five rows

you cannot read anything of the other columns, including their position. Prove that there

is an error in the table. Given that there is exactly one error, determine where it is, and

what the correct entry should be.

Solution. The dot product of the two columns is −2, so there must be an error. Suppose

the error is in the first of the visible columns. It is not in the first place, because there

would be no trivial character. Dot product with the other column shows that the correct

entries would have to be −1 in row 2, or 0 in row 3 (not possible, because this column

is no longer the column of degrees, and dot product with the column of degrees would

not be 0), or 5 in row 4 (not possible because this must be the column of degrees, and

tensoring with the non-trivial degree 1 character does not preserve simple characters), or

1 in row 5 (not possible because this must be the column of degrees, and tensoring with

the non-trivial degree 1 character does not preserve simple characters). All possibilities

are eliminated except −1 in row 2. In this case the first visible column is not the column

of degrees. Writing the character degrees as [a, b, c, d, e], dot product with the two visible

columns give a − b + 2c + 3d + 3e = 0 and a − b − c + d − e = 0 from which we deduce

3c+ 2d+ 4e = 0, which is not possible because c, d, e are positive integers.

We conclude there is no error in the first visible column. We deduce that that column

must be the column of degrees. Tensoring with the non-trivial degree 1 character preserves

simple characters, sending the degree 2 character to itself, so we deduce that the error is

in row 3 of the second column, where the value must be 0.

8. A finite group has seven conjugacy classes of elements with representatives c1, . . . , c7
(where c1 = 1), and the values of five of its irreducible characters are given by the following

3



table:
c1 c2 c3 c4 c5 c6 c7
1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1
4 1 −1 0 2 −1 0
4 1 −1 0 −2 1 0
5 −1 0 1 1 1 −1

Calculate the numbers of elements in the various conjugacy classes and the remaining

simple characters.

Solution. The Kronecker product of the non-identity degree 1 character with any simple

character is a simple character, and doing this with the degree 5 character gives another

character with values [5,−1, 0, 1,−1,−1, 1]. There remains one character [a, b, c, d, e, f, g],

say, where a is a positive integer. Taking the dot product of columns c1 and c3 gives ac = 6,

from which we deduce the degree of the last character is a = 1, 2, 3 or 6. Computing the

sum of the squares of the degrees, we get |G| = 85, 88, 93 or 120. The only one of these

divisible by the degrees 4 and 5 is 120, so we deduce the last character has degree 6 and

|G| = 120. Column orthogonality now gives the last character as [6, 0, 1,−2, 0, 0, 0]. Dot

products of columns with themselves gives the centralizer orders, whose indices are the

conjugacy class sizes: [1, 20, 24, 15, 10, 20, 30].

Extra questions: do not upload to Gradescope

9. Let g ∈ G.

(a) Prove that g lies in the center of G if and only if |χ(g)| = |χ(1)| for every simple

complex character χ of G.

(b) Show that if G has a faithful simple complex character (one whose kernel is 1) then

the center of G is cyclic. (You may assume that every finite subgroup of C is cyclic.)

10. Let U be a module for a semisimple finite dimensional algebra A. Show that if EndA(U)

is a division ring then U is simple.

11.(a) By using characters show that if V and W are CG-modules then (V ⊗C W )∗ ∼=
V ∗ ⊗C W

∗, and (CGCG)∗ ∼= CGCG as CG-modules.

(b) If k is any field and V , W are kG-modules, show that (V ⊗k W )∗ ∼= V ∗ ⊗k W
∗, and

(kGkG)∗ ∼= kGkG as kG-modules. (Can you guess maps that might be isomorphisms?)
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12. Here is a column of a character table:

g

1
−1
0
−1
−1

−1+i
√
11

2
−1−i

√
11

2
0
1
0

(a) Find the order of g.

(b) Prove that g 6∈ Z(G).

(c) Show that there exists an element h ∈ G with the same order as g but not conjugate

to g.

(d) Show that there exist two distinct simple characters of G of the same degree.
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